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Abstract. Quantization problems suggest that the category of symplectic manifolds and
symplectomorphisms be augmented by the inclusion of canonical relations as morphisms.
These relations compose well when a transversality condition is satisfied, but the failure of
the most general compositions to be smooth manifolds means that the canonical relations
do not comprise the morphisms of a category.

We discuss several existing and potential remedies to the nontransversality problem.
Some of these involve restriction to classes of lagrangian submanifolds for which the trans-
versality property automatically holds. Others involve allowing lagrangian ‘‘objects’’ more
general than submanifolds.
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1. Introduction

This paper is based on two lectures given at the Geometry Summer School at the

Istituto Superior Tecnico in Lisbon, in July of 2009. We describe several ongoing

e¤orts to build categories whose objects are symplectic manifolds and whose mor-

phisms are canonical relations. The lectures also included a discussion of cate-

gories whose hom-objects are symplectic manifolds, with the composition of mor-

phisms a canonical relation, but we do not include that topic in this paper.

The material presented here is based on the work of many people, including

the author’s work in progress with Alberto Cattaneo, Benoit Dherin, Shamgar

Gurevich, and Ronny Hadani.

1.1. Canonical relations as morphisms in a category. A canonical relation be-

tween symplectic manifolds M and N is, by definition, a lagrangian submanifold
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of M �N, where N is N with its symplectic structure multiplied by �1. For ex-

ample, the graph of a symplectomorphism is a canonical relation, as is any prod-

uct of lagrangian submanifolds in M and N.

In his work on Fourier integral operators, Hörmander [13], following Maslov

[16], observed that, under a transversality assumption, the set-theoretic composi-

tion of two canonical relations is again a canonical relation, and that this compo-

sition is a ‘‘classical limit’’ of the composition of certain operators.

Shortly thereafter, Sniatycki and Tulczyjew [22] defined symplectic relations as

isotropic1 submanifolds of products and showed that this class of relations was

closed under ‘‘clean’’ composition (see Section 2 below). They also observed that

the natural relation between a symplectic manifold and the quotient of a submani-

fold by the kernel of the pulled-back symplectic form is a symplectic relation.

Following in part some (unpublished) ideas of the author, Guillemin and

Sternberg [10] observed that the linear canonical relations (i.e., lagrangian sub-

spaces of products of symplectic vector spaces) could be considered as the mor-

phisms of a category, and they constructed a partial quantization of this category

(in which lagrangian subspaces are enhanced by half-densities. The automor-

phism groups in this category are the linear symplectic groups, and the restriction

of the Guillemin-Sternberg quantization to each such group is a metaplectic repre-

sentation. On the other hand, the quantization of certain compositions of canon-

ical relations leads to ill-defined operations at the quantum level, such as the eval-

uation of a delta ‘‘function’’ at its singular point, or the multiplication of delta

functions.

The quantization of the linear symplectic category was part of a larger project

of quantizing canonical relations (enhanced with extra structure, such as half-

densities) in a functorial way, and this program was set out more formally by the

present author in [28] and [29]. It was advocated there that canonical relations

should be considered as the morphisms of a ‘‘category’’, and that quantization

should be a functor from there to a category of linear spaces and linear maps, con-

sistent with some additional structures. The word ‘‘category’’ appears in quota-

tion marks above because the composition of canonical relations can fail to be

a canonical relation, as will be explained in detail below, so we do not have a

category. Briefly, there are two problems.

• The composition of two canonical relations may fail even to be a manifold.

• In the linear symplectic category, where each space of morphisms has a natu-

ral topology as a lagrangian grassmannian manifold, the composition opera-

tion is discontinuous.

These two problems are both related to the possible failure of a transversality

condition. It is in general hard to remedy this by imposing conditions on individ-

1The calculus of coisotropic relations does not seem to have been introduced until much later, in [31].
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ual canonical relations which are significantly weaker than local invertibility,

though we do present in Section 5 below such a condition which yields a category

whose objects are germs of symplectic manifolds around lagrangian submanifolds.

Otherwise, we must do something more drastic, using objects more general than

canonical relations as the morphisms in our category, or modifying the notion of

category itself.

We begin this paper with a general discussion of the category in which the

morphisms are arbitrary relations between sets. We then take a first look at the

composition of linear and nonlinear canonical relations and at reduction by coiso-

tropic submanifolds of symplectic manifolds. Next, we present a simple idea of

Wehrheim and Woodward [24], who embed the canonical relations in a true cate-

gory SYMP in what is in some sense the optimal way. Then we describe the cat-

egory of microfolds [3], whose objects are germs of symplectic manifolds around

lagrangian submanifolds. At this point, we are already outside the setting in which

the morphisms are maps between sets, but we go even further in the next section

by describing the construction by Wehrheim and Woodward [24] of a 2-category

of which SYMP could be thought of as the ‘‘coarse moduli space’’. After that, we

review and extend an idea of Sabot [19], who deals with the discontinuities of the

composition of linear canonical relations by forming the closure of the graph of

the composition operation. The result is a multiple-valued operation whose graph

is an algebraic subvariety of a product of Grassmann manifolds. Finally, we at-

tempt to unify and extend the examples above by using the language of simplicial

spaces, in which categories and groupoids appear as objects satisfying special

‘‘Kan conditions’’ (see, for example, [32]). For each of the remedies above, we

briefly discuss the quantization of the resulting structure.

Acknowledgments. I would like to thank my hosts in the group, Analyse Algébri-

que, at the Institut Mathématique de Jussieu (Paris), where this paper was written.

I would also like to thank John Baez, Christian Blohmann, Ralph Cohen, Benoit

Dherin, Dan Freed, Dmitry Roytenberg, Graeme Segal, Sobhan Seyfaddini, Ka-

trin Wehrheim, Chris Woodward, Chenchang Zhu, and the referees for helpful

suggestions.

2. Relations and their composition

We begin with the category REL whose objects are sets and for which the mor-

phism space RELðX ;YÞ is simply the set of all subsets of X � Y . We consider

each such relation f as a morphism to X from Y . Linear [a‰ne] subspaces of vec-

tor [a‰ne] spaces form a subcategory of REL.

The natural exchange mappings X � Y ! Y � X define a contravariant trans-

position functor f 7! f t from REL to itself.
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For any relation to X from Y , X is the target and Y the source. The image

f ðYÞ of f under projection to X is the range of f , and the image f tðXÞJY is

the domain of f . f is surjective if its range equals its target, and cosurjective if its

domain equals its source (i.e., if it is ‘‘defined everywhere’’). f is injective if, for

any x a X , there is at most one ðx; yÞ a f , and coinjective if there is at most one

ðx; yÞ a f for any y a Y (i.e. if it is ‘‘single valued’’. Thus, the cosurjective and

coinjective relations in X � Y are the graphs of mappings to X from Y . For any

y a Y , f ðyÞ denotes the image of f on fyg, i.e., the subset fx a X j ðx; yÞ a f g
of X .

The composition f � g of f a RELðX ;YÞ with g a RELðY ;ZÞ is

fðx; zÞ j by a Y such that ðx; yÞ a f and ðy; zÞ a gg:

It is useful to think of this as the result of a sequence of three operations: first,

form the product f � gHX � Y � Y � Z; second, intersect it with X � DY � Z,

where DY is the diagonal in Y � Y , to obtain the fibre product f �Y g; third, pro-

ject this intersection into X � Z.

When X and Y are manifolds and f is a (locally closed) submanifold of

X � Y , f is a smooth relation. When f a RELðX ;YÞ and g a RELðY ;ZÞ are
smooth, the pair ð f ; gÞ is transversal if f � g is transversal to X � DY � Z, so

that their intersection f �Y g is again a manifold. A transversal pair is strongly

transversal, and we will write f t g, if the projection map from f �Y g to X � Z

is an embedding onto a locally closed submanifold, in which case the image f � g
is again a smooth relation. When a pair is not strongly transversal, its composi-

tion may fail to be a submanifold, so the smooth relations do not form a subcate-

gory of REL.

A pair ð f ; gÞ of linear or a‰ne relations is transversal if and only if the domain

of f is transversal to the range of g as subspaces of Y , in which case the pair is

necessarily strongly transversal. In particular, f t g whenever f is cosurjective or

g is surjective. Transversality of smooth ð f ; gÞ is detected by the same criterion,

applied fibrewise to the tangent relations Tf and Tg. If f is the graph of a smooth

mapping to X from Y , then f t g is a transversal pair for any smooth relation g to

Y from Z. Similarly, if g is the transpose of the graph of a smooth mapping from

Y to Z, then f t g for every smooth relation f to X from Y . In particular, the

category of smooth manifolds and smooth mappings is a subcategory of REL.

There is a condition weaker than transversality which, together with an em-

bedding condition, still insures that the composition of two smooth relations is

again smooth. The pair ð f ; gÞ is clean if the fibre product f �Y g is a submanifold

of X � Y � Y � Z, and if the natural inclusion of Tð f �Y gÞ in the fibre product

tangent bundle Tf �TY Tg is an equality (equivalently, if Tð f � gÞ ¼ Tf � Tg), and
if the di¤erential of the projection from f �Y g to X � Z has constant rank. If this
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projection is a submersion onto a locally closed submanifold of X � Z, then f � g
is again a smooth relation, and the pair ð f ; gÞ is immaculate. For example, any

composable pair of linear or a‰ne relations is immaculate.

When X , Y , and Z are symplectic manifolds, C ¼ X � DY � Z is a coisotropic

submanifold of X � Y � Y � Z, and the leaves of the characteristic foliation are

connected components of the fibres of the projection from C to X � Z. It follows

that, for canonical relations, the constant rank condition in the definition of a

clean pair follows from the other conditions. For any transversal pair, the projec-

tion from f �Y g to X � Z is an immersion.

Finally, we note that any (lagrangian) submanifold L of a (symplectic) mani-

fold X may be thought of as a smooth (canonical) relation to X from a point or to

a point from X . Although points are neither initial nor terminal objects in our

categories of relations, they still play a special role. For instance, the composition

of L to a point from X with L 0 to X from a point is nonempty if and only if L and

L 0 have nonempty intersection. Upon quantization, a point usually becomes the

scalars C, and the intersection of two lagrangian submanifolds represents geomet-

rically the inner product of quantum states to which they correspond.

3. Canonical relations and coisotropic reduction

There are several connections between canonical relations and the reduction of

symplectic manifolds by coisotropic submanifolds. In this section, we also give

examples of the bad behavior of composition of canonical relations.

3.1. The linear case. We begin with the linear case, though much of what we

write here applies immediately to the case of manifolds. (See the following section

for further details.)

If C is a coisotropic subspace of a symplectic vector space X , the quotient XC

of C by the kernel C? of the induced bilinear form carries a natural symplectic

structure and is called the reduced space. It is connected to X by the canonical

relation

rc ¼ fðx; yÞ a XC � X j y a C and x ¼ ½y�g;

where ½y� is the equivalence class of y modulo C?. The composition of rC with a

lagrangian subspace L in X (a linear canonical relation to X from a point) gives

the reduced lagrangian subspace LC ¼ ðLBCÞ=ðLBC?Þ in XC . The composi-

tion is transversal, hence strongly transversal, exactly when L is transversal to C.

We will refer to ‘‘transversal reduction’’ in this situation. Denoting by LagðXÞ the
grassmannian of lagrangian subspaces of a symplectic vector space X , we will de-

note by RC the operation LagðXCÞ  LagðXÞ given by composition with rC .
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For any linear canonical relation f a RELðX ;YÞ, the range and domain are

coisotropic subspaces of X and Y respectively, and f induces an isomorphism

Xf ðYÞ  �
fred

Yf tðXÞ between the reduced spaces, giving a natural factorization

f ¼ r tf ðYÞ � fred � rf tðXÞ

of any linear canonical relation as the (transversal!) composition of a transposed

reduction, a symplectomorphism, and a reduction. In particular, any surjective

linear canonical relation is essentially a reduction, and any cosurjective one is es-

sentially a transposed reduction.

The composition of linear canonical relations is itself an instance of reduction.

As we have already mentioned in the previous section, X � DY � Z is a coiso-

tropic subspace of X � Y � Y � Z, and

ðX � DY � ZÞ? ¼ f0Xg � DY � f0Yg;

so ðX � Y � Y � ZÞX�DY�Z is naturally isomorphic to X � Z. Under this iso-

morphism, the composed relation is the reduction of the product f � g, and the

composition is transversal if and only if the reduction is.

The following example shows that composition of linear canonical relations is

not a continuous map between lagrangian grassmannians. If L1 and L2 are la-

grangian subspaces of X , then ðL1 � L2Þ � ðL2 � L1Þ ¼ L1 � L1. If L1 and L2

are transversal, then L1 � L2 is the limit as a! 0 of the graphs Ga ¼ fðTax; xÞg
of the symplectomorphisms Ta defined by Tax ¼ a�1x for x a L1 and Tax ¼ ax

for x a L2. Similarly, L2 � L1 is the limit of Ga�1 . The compositions Ga � Ga�1

are all equal to the diagonal G1 and hence so is their limit, but the composition

of the limits is L1 � L1.

3.2. The nonlinear case. We turn now to the case of manifolds. Any coiso-

tropic submanifold C of a symplectic manifold X carries a characteristic distribu-

tion TC?JTC which is, by definition, the kernel of the pullback to C of the sym-

plectic form on X . TC? consists of the values of hamiltonian vector fields whose

hamiltonians vanish on C and is always an integrable distribution, hence tangent

to a foliation which we will denote by C?. If C? is simple in the sense that its

leaves are the fibres of a submersion, then the leaf space XC ¼ C=C? is again a

symplectic manifold, and the reduction operation

rC ¼ fðx; yÞ a XC � X j x ¼ ½y�; y a Cg;

where ½y� is the leaf of C? containing y, is a canonical relation to XC from X .

Let pC be the projection from C to XC . For any lagrangian LHX (a canon-

ical relation to X from a point), the composition rC � L ¼ rCðLÞ is just the reduc-
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tion LC ¼ pCðLBCÞ. The composition is transversal when L is transversal to C,

in which case the restriction of pC to LBC is an immersion onto LC , but it is not

necessarily injective. Furthermore, if L is not transversal to C, then LBC may

not even be a manifold. There, a reduction operation RC to lagrangian submani-

folds of XC from the lagrangian submanifolds of X is not just discontinuous as in

the linear case, but not even defined everywhere.

3.3. Examples. Here are two examples of the bad behavior of composition, in

each case the result of a reduction operation on lagrangian submanifolds. Both

examples are based on the construction by Hörmander [13] of lagrangian sub-

manifolds of cotangent bundles in terms of phase functions, as interpreted by

Guillemin and Sternberg [9] as an instance of coisotropic reduction.

In these examples, X is T �R2, with canonical coordinates ðq1; q2; p1; p2Þ, and
C is the coisotropic submanifold defined by p2 ¼ 0. The leaves of the characteris-

tic foliation are then the lines in the q2-direction, and the reduced manifold XC

may be identified with T �R with coordinates ðq1; p1Þ.
Let LS be the image of the di¤erential of a function Sðq1; q2Þ, i.e., the lagran-

gian surface in X defined by pi ¼ qS=qqi. To determine RCðLSÞ, we first see

where p2 ¼ 0 on L, which amounts to finding the critical points of S along the

fibres of the projection ðq1; q2Þ ¼ 0. For each such critical point, we get the point

ðq1; qS=qq1Þ on LC .

Now let S be q32 þ q21q2, so that LS is defined by p1 ¼ 2q1q2 and p2 ¼ 3q22 þ q21 .

Then LS BC is just a single point, and so is its image ðLSÞC in the plane XC . This

is certainly not a lagrangian submanifold.

For the second example, we let e be a parameter and let Se be the function

eq1q2. The lagrangian submanifolds LSe
obviously depend smoothly on e. When

eA 0, we have q1 ¼ 0 for all fibre-critical points of S, and LSe
is the line q1 ¼ 0.

But when e ¼ 0, all points of R2 are fibre-critical, and LS0
is the line p1 ¼ 0. Thus,

the reduction operation RC is not continuous when applied to linear canonical re-

lations to T �R2 from a point.

4. The Wehrheim–Woodward category

Wehrheim and Woodward [24] begin with the following construction to circum-

vent the problem of bad compositions. (Our terminology and notation through-

out this section di¤er somewhat from theirs.) The result is in some sense the min-

imal way to produce a category whose morphisms include all of the canonical

relations.

Definition 4.1. The Wehrheim–Woodward category SYMP is the category

whose objects are symplectic manifolds and whose morphisms are generated by

267Symplectic categories



the canonical relations, subject to the relation that the composition of f and g in

SYMP is equal to the composition in REL when f t g.

More explicitly, as in [24], we may begin with the category whose objects are

symplectic manifolds and whose morphisms are sequences ð f1; . . . ; frÞ of canonical
relations which are composable in REL. We also include an empty sequence for

each object, which functions as an identity morphism. Composition is given by

concatenation of sequences. Set-theoretic composition of relations defines a func-

tor from this category to REL.

Now introduce the smallest equivalence relation which is closed under compo-

sition from both sides, for which ð f ; gÞ is equivalent to fg when ð f ; gÞ is a strongly

transversal pair, and for which each empty sequence is equivalent to the graph of

the identity map on the corresponding object. The equivalence classes are the

morphisms in SYMP, and the composition functor above descends to give a func-

tor from SYMP to REL. It follows that distinct canonical relations, considered

sequences with a single entry, give distinct morphisms in REL. The identity mor-

phisms are the (equivalence classes of the) diagonals DY HY � Y . A morphism

in SYMP is called a generalized lagrangian correspondence in [24], and a gener-

alized lagrangian correspondence to X from a point is a generalized lagrangian

submanifold.

SYMP is characterized by the universal property that any map F to any cate-

gory C from symplectic manifolds and canonical relations such that Fð f � gÞ ¼
Fð f ÞFðgÞ whenever f t g factors uniquely through SYMP. It is thus tempting

to think of SYMP as a universal quantization category. On the other hand, quan-

tization of canonical relations by operators on function spaces requires enhance-

ment of the morphisms by some extra structure, such as half-densities or half-

forms. Thus, it is natural to try to extend SYMP and its variants by building

larger categories with forgetful functors to SYMP. It will also be important to

extend to such categories the basic operations on canonical relations, such as

transpose and cartesian products.

The construction of SYMP is merely the beginning of what Wehrheim and

Woodward do in [24]. Imposing topological conditions (involving Chern classes,

Maslov classes, etc.) on the symplectic manifolds and canonical relations they de-

fine a certain subcategory2 SYMP 0 of SYMP whose objects are ‘‘admissible’’ sym-

plectic manifolds and whose morphisms are generated by ‘‘admissible’’ canonical

relations. For each admissible manifold X , they construct a Donaldson-Fukaya

category Don]ðXÞ whose objects are generalized lagrangian submanifolds in X

and whose morphism spaces are Floer cohomology groups. Composition of

morphisms involves counting pseudoholomorphic curves. For each admissible

relation f to X from Y , they construct a functor Don]ð f Þ to Don]ðXÞ from

2Actually, there are two categories, one for exact symplectic manifolds and one for monotone ones.
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Don]ðYÞ such that, when ð f ; gÞ is a strongly transversal pair, the functors

Don]ð f � gÞ and Don]ð f Þ �Don]ðgÞ are naturally equivalent. Don] then extends

to a functor from SYMP 0 to the category whose objects are categories and whose

morphisms are natural equivalence classes of functors. Since the target category

of this functor has an additive structure, we may view Don] as a kind of ‘‘quanti-

zation’’ of SYMP 0.
We will continue our discussion of SYMP 0 and its quantization in Section 6.

5. Cotangent lifts and symplectic micromorphisms

This section summarizes some results from [3].

There is a natural but quite limited collection of symplectic manifolds and ca-

nonical relations which form a subcategory of SYMP. It is the image of a contra-

variant functor T � from the category MAN of smooth manifolds and smooth

maps. Namely, for every smooth manifold A, T �A is its cotangent bundle with

the canonical symplectic structure, and for every smooth map3 f : A! B, T �f
is its cotangent lift, defined as the canonical relation

���
x; ðTfÞ�ðhÞ

�
;
�
fðxÞ; h

��
j

x a A and h a T �fðxÞB
�
to T �A from T �B. As a manifold, T �f may be identified

with the pulled back vector bundle f�ðT �BÞ over A. It is also the image of the

conormal bundle to the graph of f under the symplectomorphism from T �ðA� BÞ
to T �A� T �B given by reversing the sign of cotangent vectors to B. (A slightly

di¤erent version of this map is called the Schwartz transform in [1].) It is easy to

check that T � embeds MAN as a subcategory T �MAN of SYMP (in particular,

that composition of cotangent lifts is always strongly transversal).

It turns out that we can isolate a property of cotangent lifts which makes their

compositions strongly transversal, and then we can look for more general situa-

tions where this property is satisfied. Remembering that the pair ðT �A;ZAÞ,
with ZA the zero section, is the local model for any pair consisting of a symplectic

manifold and its lagrangian submanifold, we make the following definition.

Definition 5.1. Let ðX ;AÞ and ðY ;BÞ be pairs consisting of a symplectic manifold

and a lagrangian submanifold. A canonical relation f to X from Y is liftlike with

respect to A and B if there is a smooth map f : A! B such that

f ðbÞ ¼ f�1ðbÞ for all b a B;

Tf ðvÞ ¼ ðTfÞ�1ðvÞ for all v a TbB;

where Tf is the tangent bundle of f considered as a submanifold of TX � TY ,

hence a relation to TX from TY .

3Note that the arrow here goes from left to right.
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Every cotangent lift is liftlike with respect to the zero sections, and the compo-

sition of liftlike relations is always transversal near the graph of the underlying

map between lagrangian submanifolds, but in order to get a category we must lo-

calize around those submanifolds. (The use of the prefix ‘‘micro’’ below is meant

to correspond to its use by Milnor [18] in the term ‘‘microbundle’’.)

Definition 5.2. A manifold pair consists of a manifold M and a closed submani-

fold AJM. Two manifold pairs ðM;AÞ and ðN;BÞ will be considered equivalent

if A ¼ B and if there is a manifold pair ðU ;AÞ such that U is an open subset in

both M and N simultaneously. A microfold is an equivalence class ½M;A� of man-

ifold pairs ðM;AÞ. The (well defined) submanifold A is the core of ½M;A�.

Note that we require equality of neighborhoods and not merely di¤eomor-

phism for two manifold pairs to be equivalent.

Most of the standard constructions on manifolds carry over to microfolds. In

particular, a submicrofold of a microfold ½M;A� is a microfold ½N;B� such that

NJM and BJA, and the product ½M;A� � ½N;B� is ½M �N;A� B�. A rela-

tion between two microfolds is just a submicrofold of their product. It is (the

graph of ) a map ½M;A�  ½N;B� if it has a representative which is a map. This

makes the microfolds into a category MIC. There is a natural forgetful core func-

tor ½M;A� 7! A and a cross section thereof A 7! ½A;A� (with the obvious actions

on morphisms).

Definition 5.3. A symplectic microfold is a microfold ½M;A� together with a germ

around A of symplectic structure on M for which A is lagrangian. ½T �A;A� with
the canonical symplectic structure on T �A is the cotangent microbundle of A. A

symplectic micromorphism to ½M;A� from ½N;B� is a lagrangian submicrofold of

½M;A� � ½N;B� having a representative which is liftlike with respect to A and B.

The associated map f : A! B is the core map of the micromorphism.

By design, any composition of symplectic micromorphisms is strongly trans-

versal. Furthermore, these morphisms are closed under composition, so the sym-

plectic microfolds and micromorphisms form a category MICSYMP. A symplec-

tic micromorphism is a map if and only it is invertible; these maps are just the

symplectomorphisms in the micro world. A basic result in [27] is (without the mi-

crofold terminology) that every symplectic microfold is symplectomorphic to the

cotangent microbundle of its core. Thus, the restriction of MICSYMP to the co-

tangent microbundles is a full subcategory containing the image of the functor

T � : MAN!MICSYMP, but with many more morphisms. There is also a for-

getful functor CORE : MICSYMP!MAN.

The category MICSYMP, or rather its extension by a category of enhanced

micromorphisms, carrying half-densities, should be quantized by a functor to a
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category of semiclassical Fourier integral operators. What we have so far [4] is a

category FOUR whose objects are manifolds and whose morphisms are certain

operators between smooth half-densities on these manifolds which are formal se-

ries in a parameter �h. There is a ‘‘wavefront’’ functor from FOUR to MICSYMP

(in fact, to the subcategory whose objects are cotangent microbundles) for which

the inverse image of the identity morphism over the cotangent microbundle of a

manifold A is an algebra of semiclassical pseudodi¤erential operators on A. This

functor lifts to a principal symbol functor which attaches a half density to the

wavefront of any operator. What is missing is a total symbol calculus which can

make a symbol functor injective. Also missing is a construction of operators from

general symplectic micromorphisms which are not acting on cotangent bundles.

Even for cotangent bundles, the total symbol construction and its inverse appear

to depend on extra structure, such as connections or local coordinates. The latter

allows one to represent symplectic micromorphisms by generating families which

serve as phase functions for the explicit construction of the kernels of operators as

oscillatory integrals. The general problem is reminiscent of that of passing from

local deformation quantizations of Poisson manifolds [15] to global ones, as in [5].

Perhaps some of the methods of the latter paper will be helpful.

Finally, we note that monoidal objects in the category MICSYMP are essen-

tially local symplectic groupoids in the sense of [30] and correspond to Poisson

manifolds. The construction of such objects in the formal and analytic categories

was carried out in [2] and [6] using the ‘‘tree-level’’ part of the Kontsevich star

product. A good quantization theory for MICSYMP should produce algebras

from these monoidal objects.

6. The Wehrheim–Woodward 2-category

In the remaining sections, rather than restricting the nature of our canonical rela-

tions, we extend the notion of what a category should be. We begin by returning

to the linear case.

The second version of Wehrheim and Woodward’s quantization follows the

‘‘groupoid philosophy’’ that, given an equivalence relation on a set S, one should

always try to replace it by the finer structure of a category whose objects are

the elements of S and whose isomorphism classes are the equivalence classes.

SYMP 0 thus becomes a 2-category. In fact, recalling that any morphism f in

SYMP 0ðX ;YÞ is a generalized lagrangian submanifold in X � Y , we may define

the 2-morphism space SYMP 0ð f ; gÞ to be the Floer cohomology group which

comprises the morphism space to f from g in Don]ðX � YÞ.
Similarly, for the category of categories which is the target of Don], rather

than simply identifying natural equivalence classes of functors, it is appropriate
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to introduce the 2-category structure in which the natural equivalences become

2-morphisms. Wehrheim and Woodward now assign to each Floer cohomology

class in SYMP 0ð f ; gÞ a natural transformation to Don]ð f Þ from Don]ðgÞ in such

a way that they obtain a 2-functor from the 2-category SYMP 0 of (admissible)

symplectic manifolds, generalized canonical relations, and Floer cohomology

classes, to the 2-category of categories, functors, and natural transformations.

The paragraphs above are merely a schematic description of a tour de force of

symplectic topology using the authors’ theory (see [25] and [26]) of ‘‘quilted pseu-

doholomorphic curves’’. These are, roughly speaking, piecewise pseudoholomor-

phic curves satisfying ‘‘seam’’ conditions along smooth (real) curves separating the

smooth pieces of the domain. But each piece of the curve maps to a di¤erent man-

ifold, with the seams constrained by canonical relations.

7. Composition of linear canonical relations as a rational map

As we observed the end of Section 3.1, the composition of linear canonical rela-

tions is not continuous. In a paper about spectral analysis on fractal graphs,

Sabot [19] introduced, in the special case of the composition of linear symplectic

reductions with lagrangian subspaces, a construction which ‘‘fills in’’ the disconti-

nuities of the composition operation on linear canonical relations. Composition

now becomes multiple valued, just as a discontinuous step function on the line

becomes multiple valued if the gaps in its graph are filled in with vertical line

segments.

What follows below comes from Sabot’s construction applied to general com-

positions, using the fact (see Section 3) that composition is also a special case of

reduction. (We save the details for a future article.) Although we mostly have the

case of vector spaces over R in mind, Sabot works over C. In view of the possible

more general applications to finite fields suggested by [11] and [12], we will carry

out as much as possible of the construction over an arbitrary field k.

For symplectic vector spaces X and Y over k, let SXY denote the grassmannian

(a manifold when k is R or C) of all lagrangian subspaces of X � Y . For three

spaces, X , Y , and Z (not necessarily distinct), composition of linear canonical re-

lations is a mapping MXYZ : SXY � SYZ ! SXZ. The restriction of this mapping

to the transversal pairs is continuous, with graph

TXYZ ¼def fð fXY ; fYZ; fXZÞ j fXY t fYZ and fXY � fYZ ¼ fXZgHSXY � SYZ � SXZ:

TXYZ is dense in the graph of MXYZ, but its closure TXYZ in SXY � SYZ � SXZ

contains more. Sabot’s description of TXYZ in the case of symplectic reduction

extends to general compositions as follows.
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For a composable pair ð fXY ; fYZÞ, we measure their failure to be transversal by

the deficiency dð fXY ; fYZÞ, defined as the codimension of ð fXY � fYZÞa ðX �
DY � ZÞ in X � Y � Y � Z, which is also the dimension of the intersection

ð fXY � fYZÞB ðf0Xg � DY � f0ZgÞ.

Theorem 7.1. When k is R or C, TXYZ is an algebraic variety consisting of all

triples ð fXY ; fYZ; fXZÞ for which the codimension of fXZ B ð fXY � fYZÞ in fXY � fYZ
is at most dð fXY ; fYZÞ. TXYZ is the set of its regular points.

We may think of TXYZ as the graph of a ‘‘continuous multiple valued func-

tion’’ MXYZ whose value on ð fXY ; fYZÞ is a subvariety fXY � fYZ of SXZ contain-

ing the usual composition fXY � fYZ. It is perhaps worth noting that the subvari-

ety fXY � fYZ is a higher Maslov cycle in the sense of [7]. When k is an arbitrary

field, we may take Theorem 7.1 as a definition of TXYZ and this multiple valued

composition operation

Functions like MXYZ given by relations which are the closure of graphs of

smooth maps are known as ‘‘rational maps’’ [8]. The next step (work in prog-

ress) is to make the operation � into the composition operation in a category

LINSYMP whose objects are symplectic vector spaces, but which is ‘‘enriched

over’’ a category RAT whose objects are algebraic varieties and whose morphisms

are rational maps. In other words, the morphism spaces in LINSYMP will be the

grassmannians of canonical relations, but the composition operations will be ra-

tional maps.

Remark 7.2. Although the morphisms in RAT itself are relations, the composi-

tion operation there is not that of REL, but rather the operation which assigns to

rational maps f and g the closure of their set theoretic product. To have the com-

position defined at all, one needs to assume that the rational maps are ‘‘dominant’’

in the sense of having dense range. This raises the further complication that cer-

tain parts of the structure, in particular the inclusion of the units, cannot be

dominant. It begins to appear that making RAT into a category suitable for defin-

ing internal categories involves issues similar the ones we have been dealing with

for symplectic categories. The only way out may be the simplicial approach de-

scribed in Section 8.

As noted in the introduction, quantization of linear symplectomorphisms is not

without its problems. Although Guillemin and Sternberg [10] show how to quan-

tize symplectic vector spaces and to associate operators to canonical relations

carrying half-densities, these operators may be unbounded and cannot always be

composed. In fact, the undefined compositions of operators correspond precisely

to nontransversal compositions of canonical relations. A simple example is the

operator on ‘‘functions’’ on R which assigns to each u the product of uð0Þ with a
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delta function at 0. This operator, which is a quantization of L� L, where L is

the fibre over 0 in T �R, cannot be composed with itself.

The discussion above suggests that we should try to modify the target category

for the usual quantization, either by introducing a composition of operators which

is multiple valued, or by looking at a category whose morphism spaces, while

identified with spaces of linear operators, themselves admit ‘‘rational maps’’ which

may not be defined (or may be multiply-defined) on individual operators.

Remark 7.3. The ‘‘completion’’ of the composition of canonical relations to

something larger also occurs in the microlocal theory of sheaves [14].

Remark 7.4. Segal [21] suggests another approach to building and quantizing a

well-behaved category of linear canonical relations. For any symplectic vector

space ðX ;oÞ (which could be a product Y � ZÞ, the positive lagrangian subspaces

L of the complexification VC (with symplectic structure extend from V by complex

bilinearity) are those for which ioðv; vÞ > 0 for all nonzero v a V . Positive ca-

nonical relations are always transversally composable, and their composition is

smooth. They do not quite form a category, since the identities are missing, but

they may be added ‘‘by hand’’. Quantization of this category (with the objects

enhanced by metaplectic structure and the morphisms enhanced by half-forms)

may be done without any obstructions. Taking the real limit remains a problem,

though.

Remark 7.5. It would be interesting to see how the linear theory extends to la-

grangian a‰ne subspaces of symplectic a‰ne spaces. The hermitian line bundles

of geometric quantization may play a more important role here.

8. The simplicial picture

The structure of a category C can be encoded in that of a simplicial object NðCÞ
called its nerve. We recall (see for example [20], [32], or any book on homological

algebra) that a simplicial object is a collection of objects Sk (k ¼ 0; 1; 2; . . .) in

some base category (such as sets, topological spaces, or manifolds) together with,

for each k, k þ 1 face morphisms Sk ! Sk�1 and k þ 1 degeneracy morphisms

Sk ! Skþ1 satisfying the composition laws of the generators of the category of

order-preserving mappings among the sets Sn ¼ f0; 1; . . . ; ng. The elements of

S0 are sometimes called vertices and those of S1 edges. In NðCÞ, the vertices are

the objects of C and the edges are the morphisms, with the faces of a morphism

being its target and source, and the degeneracy operator taking each object to its

identity morphism. It is convenient to write C½k� for NkðCÞ. The composition

of morphisms is encoded in C½2�, whose elements are the composable pairs ð f ; gÞ,
with the face operators taking each such pair to f , fg, and g, while the degeneracy
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operators take f to pairs with an identity morphism appended to one side or the

other. The rest of the structure is determined by this part, with C½k� being the com-

posable k-tuples, face operators given by the composition of pairs of adjacent en-

tries or elimination of the entry on one end or the other, and degeneracy operators

by the insertion of identities. The associative and identity axioms are equivalent

to the compatibility conditions.

A simplicial topological (possibly discrete) space S has a geometric realization

jSj which is obtained from the disjoint union of Sk � Dk for all k, where Dk is the

usual k-simplex, by gluing them together using rules derived from the face and de-

generacy operators. The usual cohomology of jSj is called the cohomology of the

simplicial space. For instance, if S is the nerve NðGÞ of a group G, jNðGÞj is a
model for the classifying space BG, and its cohomology is the group cohomology

of G.

Not every simplicial object comes from a category or groupoid. The ones that

do are characterized by so-called ‘‘horn-filling conditions’’, the simplest of which

require that a pair of edges with a common vertex be fillable (perhaps in a unique

way) by a 2-simplex of which they are faces. By weakening these conditions, one

arrives at generalizations of the notions of category and groupoid, as in [32].

Let us now apply this idea to the composition of linear canonical relations.

For simplicity, we limit our attention to linear canonical relations from a fixed

symplectic vector space X to itself. These form a monoid, i.e., a category EðXÞ
with one object, and we form the usual nerve in which E½k�ðXÞ is the cartesian

power LagðX � XÞk. Although each E½k�ðXÞ is a topological space, and even a

smooth manifold, E�ðXÞ is not a simplicial topological space because the bound-

ary operators are discontinuous.

The first way to build a simplicial space out of this one is based on the con-

struction of Wehrheim and Woodward described in Section 4. Within each

E½k�ðXÞ, there is an open dense subset E
½k�
t
ðXÞ of ‘‘completely transversal’’ se-

quences, namely those for which the composition f1 � � � � � fk is transversal in

the sense that L1 � � � � � Lk is transversal in ðX � XÞk to the multidiagonal

X � ðDX Þk�1 � X : It is not hard to show that this collection of subsets is invariant

under the boundary and degeneracy operators, and that the restricted operators

are smooth, making of E�
t
ðXÞ a simplicial manifold.

Other constructions might be based on Sabot’s multiple-valued composition.

The simplest one would be to take the closures of the graphs of composition on

the E
½k�
t
ðXÞ defined in Section 7 above, but it is not clear that these form a simpli-

cial object. It may also be useful to consider structures in which there is a whole

family of 2-simplices whose edges are a pair ðL1;L2Þ of nontransversely compos-

able relations and an element of L1 � L2. In any case, it should be possible to have

the face and degeneracy operators be ordinary mappings of varieties rather than

rational maps, since the multiple-valuedness of composition is incorporated in
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the definition of the spaces of simplices. Associativity may be taken into account

through identification of some simplices, or through the introduction of extra

higher simplices.

To quantize these simplicial versions of the symplectic category (more pre-

cisely, enhancements thereof ), one will need to look for similar simplicial struc-

tures derived from the composition of unbounded operators on function spaces.

This is essentially the point of view taken in [17]. Since the Floer cohomology

classes which give 2-morphisms in the 2-category described in Section 6 are them-

selves equivalence classes of cochains, Mau, Wehrheim, and Woodward replace

the Donaldson category attached to any admissible symplectic manifold by a Fu-

kaya-type Al category. To any admissible canonical relation they attach an Al

functor, and to any Floer cocycle between such relations a natural transformation

of Al functors, in a way which is compatible with composition of strongly trans-

versal pairs, up to homotopy of Al functors.
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