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Abstract. We consider nonclassical entropy solutions to hyperbolic conservation laws with
concave-convex flux functions, whose undercompressive shocks are selected by a kinetic
function j[. Extending earlier work of Baiti, LeFloch and Piccoli, we reinterpret their con-
struction of the (generalized) strength of classical and nonclassical shocks, allowing us to
simplify it, highlight its true nature and identify new degrees of freedom. Relying mainly
upon the natural assumption that the composite function j[ � j[ is uniformly contracting,
we establish that the generalized total variation of front-tracking approximations is non-in-
creasing in time, and we conclude with the existence of nonclassical solutions to the initial
value problem. We also propose a definition of a generalized interaction potential, and in-
vestigate its monotonicity properties. In particular, we established that the interaction
functional is globally non-increasing along a splitting-merging interaction pattern.
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1. Introduction

Consider the following initial value problem associated with a conservation law in

one-space variable:

ut þ f ðuÞx ¼ 0;

uð0; �Þ ¼ u0;
ð1:1Þ

where u0 : R ! R is a function with bounded variation (BV) on R, and the

(smooth) flux f : R ! R is a concave-convex function in the sense that

u f 00ðuÞ > 0 ðuA 0Þ; f 000ð0ÞA 0;

lim
juj!þl

f 0ðuÞ ¼ þl:
ð1:2Þ



Following LeFloch [13], we consider nonclassical entropy solutions to this

problem. Recall that, in many applications, only a single entropy inequality can

be imposed on the solutions, i.e.,

UðuÞt þ FðuÞxa 0; ð1:3Þ

where the so-called entropy U is a given, strictly convex function and the entropy

flux F ðuÞ :¼
Ð u

U 0ðvÞ f 0ðvÞ dv is determined by U . It is not di‰cult to construct

multiple weak solutions to the initial value problem (1.1)–(1.3), so that one real-

izes that the single entropy inequality is too lax to determine a unique weak

solution. In fact, for initial data restricted to lie in one region of concavity or con-

vexity, the classical theory applies and leads to a unique entropy solution. Non-

uniqueness arises when weak solutions contain transitions from positive to nega-

tive values, or vice-versa.

The above non-uniqueness property is closely related to the fact that discontin-

uous solutions, in general, depend upon their regularization, that is, di¤erent reg-

ularizations or approximations to the conservation law (1.1) may lead to di¤erent

solutions in the limit. This, in particular, is true for solutions to the Riemann

problem, corresponding to the initial data

u0ðxÞ ¼
ul ; x < 0;

ur; x > 0;

�
ð1:4Þ

where ul , ur are constant states. Indeed, for a wide class of regularizations, includ-

ing regularizations by nonlinear di¤usion-dispersion terms, there exist nonclassical

shocks which satisfy (1.3) yet violate Oleinik’s entropy inequalities. The selection

of nonclassical solutions is based on a kinetic function j[ : R ! R which, by defi-

nition, provides a characterization of admissible nonclassical shocks connecting

two states u�, uþ, that is,

uþ ¼ j[ðu�Þ: ð1:5Þ

For scalar conservation laws and, more generally, nonlinear hyperbolic sys-

tems, LeFloch and co-authors initiated the development of a theory of nonclassi-

cal entropy solutions selected by the kinetic relation (1.5); many analytical and nu-

merical issues have been covered. We refer to [12], [13], [14] for a review of the

theory and to [16] for recent developments on the numerical approximation. On

the other hand, the kinetic relation was originally introduced in the context of a

hyperbolic-elliptic model describing the dynamics of phase transitions in liquids

or solids, for which we refer the reader to Slemrod [20], Truskinovsky [21],

Abeyaratne and Knowles [1], and LeFloch [11]. In particular, in [11] an existence

theorem based on the Glimm scheme was established for a class of kinetic rela-
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tions arising in phase dynamics. This subject has developed extensively since then,

and we will not try to review this literature here.

Our objective in the present paper is to design functionals measuring the (gen-

eralized) total variation and wave interaction potential of nonclassical entropy

solutions, in light of the earlier works [11], [2], [3], [4], [13], [17]. We consider solu-

tions generated by Dafermos’ front-tracking method [7], [8], when the local Rie-

mann solutions are nonclassical and are determined by a given kinetic relation.

We are interested in deriving uniform estimates for the total variation of solutions

and showing that the scheme converges to global-in-time, nonclassical entropy so-

lutions to the initial value problem (1.1).

This paper can be interpreted, in part, as a re-examination of the general defi-

nition of wave strength introduced by Baiti, LeFloch, and Piccoli [3]. The defini-

tion proposed there was somehow too abstract to be usable for systems of conser-

vation laws while other simpler and more explicit definitions, such as those in [2],

[4], [17] were somehow too simple to extend to systems of conservation laws.

Therefore, in the present paper, we re-interpret the general definition of wave

strength given in [3] as a straightforward change of variable in the u-variable.

We then show that the change of variable can be constructed so as to satisfy addi-

tional identities and certain Lipschitz bounds. These results considerably clarify

the analysis of BV bounds for solutions to conservation laws in that the arguments

are simpler and allow the kinetic function to appear explicitly in the functionals.

Most importantly, it appears that our new arguments are robust and may be gen-

eralized to tackle systems of equations. Yet, the notion of generalized wave

strength under consideration possesses the same weaknesses as the one in [3] since

it does not appear to be of use for kinetic functions defined by degenerate regular-

izations [3], [6]; see Example 2.3 below.

An outline of this paper follows. In Section 2, we begin with a brief review of

the theory of kinetic relations and emphasize what we will need in the rest of this

paper. We then introduce the definition of generalized wave strength from [3] and

show that it can be constructed so as to satisfy two new properties. In Section

3, we establish that the proposed generalized total variation functional is non-

increasing along a sequence of Dafermos’ front-tracking solutions; cf. Theorem

3.1. In Section 4, we turn to the construction of an interaction functional based

on Glimm’s original construction. In Theorem 4.2 we show that Glimm’s defini-

tion leads to an interaction functional which is non-increasing in all but four inter-

action patterns. Next, in Section 5 we establish that, despite the caveats of Theo-

rem 4.2, the proposed interaction functional is actually globally non-increasing, at

least in the significant case of merging-splitting wave patterns originally intro-

duced by LeFloch and Shearer [17]. Hence, Theorem 5.1 below demonstrates the

relevance of the proposed interaction functional to handle nonclassical entropy

solutions.
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2. Kinetic functions and generalized wave strength

2.1. Assumptions on the kinetic function. We begin by discussing some aspects

of the theory of kinetic functions j[ for nonclassical entropy solutions to (1.1).

This theory provides a synthetic description of the class of solutions generated by

regularizations.

As a starting point, we consider the problem of describing the set of solutions u

to the Riemann problem (1.4) that can be realized as limits ûu ! u of solutions to

the regularized conservation law

ûut þ f ðûuÞx ¼ b
�
bðûu; ûuxÞûux

�
x
þ g

�
c1ðûuÞ

�
c2ðûuÞûux

�
x

�
x
; ð2:1Þ

where ûu ! u as b; g ! 0; with a :¼ b2=g fixed. The purpose of the kinetic function

j[ is to describe this class of solutions u without requiring the explicit evaluation

of the limit (2.1). The general theory [13] shows that for each conservation law

(1.1), each entropy condition (1.3), and each regularization (including but not lim-

ited to those of the form (2.1)), the admissible undercompressive shocks are those

whose right- and left- and hand states satisfy uþ ¼ j[ðu�Þ, for some function

j[ : R ! R.

The fundamental conditions required on the kinetic function are the following

ones:

(A1) The map j[ : R ! R is Lipschitz continuous and one-to-one.

(A2) j[ð0Þ ¼ 0 and j[ is monotone decreasing.

(A3) There exists a compact neighborhood I1 of the origin in which LipI1ðj[Þ < 1.

(A4) The second iterate j[ � j[ is a strict contraction, i.e., for some C1 a ð0; 1Þ,

jj[ � j[ðuÞjaC1juj; u a R: ð2:2Þ

These assumptions do hold for a large class of (non-degenerate) regularizations,

two of which are discussed in Examples 2.1 and 2.2, below. Natural analogues

of the properties (A1), (A2), (A3) and (A4) are known to hold for systems, when

j[ is properly defined in this more general setting. The same conditions were as-

sumed in [3], and we refer the reader to the monograph [13] and the references

cited therein for more detailed information.

We now proceed to describe, with the help of the kinetic function, the set of

admissible states u�, uþ arising on the left- and the right-hand sides of a dis-

continuity. When u� > 0 (u� < 0, respectively), nonclassical shocks are required

when the amplitude of the shock is large enough and the threshold uþ < j]ðu�Þ
(j]ðu�Þ < uþ, resp.) is reached. This threshold function j] : R ! R is defined

from j[ as the unique value j]ðu�Þ B fu�; j[ðu�Þg such that

f ðu�Þ � f
�
j[ðu�Þ

�
u� � j[ðu�Þ

¼
f ðu�Þ � f

�
j]ðu�Þ

�
u� � j]ðu�Þ

: ð2:3Þ
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Geometrically,
�
j]ðu�Þ; f

�
j]ðu�Þ

��
is the point at which the line connecting the

points
�
u�; f ðu�Þ

�
and

�
j[ðu�Þ; f

�
j[ðu�Þ

��
crosses the graph of f and, therefore,

for instance when u� > 0 the following inequalities must hold

j[ðu�Þaj]ðu�Þa u�: ð2:4Þ

For concave-convex flux (1.2), the nonclassical entropy solution to the Rie-

mann problem with data (1.4) and ul > 0, is

i) a shock if j]ðulÞa ur, or

ii) a nonclassical shock connecting ul to j[ðulÞ followed by a classical shock con-

necting j[ðulÞ to ur if j
[ðulÞ < ur < j]ðulÞ, or else

iii) a nonclassical shock connecting ul to j[ðulÞ followed by a rarefaction connect-

ing j[ðulÞ to ur if uraj[ðulÞ.

When ul < 0, the nonclassical Riemann solver is similar.

Given two states u� and uþ separating a discontinuity, the rate of entropy pro-

duction, say Dðu�; uþÞ (associated with a given entropy) can be used to character-

ize nonclassical solutions. It is proven in [13] that, say for u� > 0, D admits two

distinct roots j[
0ðu�Þ and u�, between which D is negative, and admits a unique

global minimum at j\ðu�Þ, where j\ðuÞ is the function defined by the tangency

condition

f 0�j\ðuÞ
�
¼

f
�
j\ðuÞ

�
� f ðuÞ

j\ðuÞ � u
: ð2:5Þ

Given that all shocks with j\ðu�Þa uþa u� are classical (i.e., would satisfy Olei-

nik’s entropy conditions), the nonclassical entropy admissible shocks are those

corresponding to j[
0ðu�Þa uþaj\ðu�Þ. In fact, for all uA 0 one can check that

jj\ðuÞja jj[ðuÞj < jj[
0ðuÞj: ð2:6Þ

Our assumptions on f and U (and independently of the chosen regularization)

imply that j[
0 satisfies (A1) and (A2) as well as the stronger condition

j[
0 � j[

0ðuÞ ¼ u: ð2:7Þ

A key point here is that these properties of j\ and j[
0 are independent of the regu-

larization which defines j[. One may also show that j\ and j[
0 are piecewise C1

[13].

We conclude the discussion of kinetic functions with the description of three

important regularizations, defined in terms of the functions b, c1 and c2 appearing

in (2.1).
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Example 2.1 (Linear di¤usion and dispersion). As shown in [17] for the flux

f ðuÞ ¼ u3, the entropy UðuÞ ¼ u2=2, and the regularization b ¼ c1 ¼ c2C 1, the

zero dissipation kinetic function is j[
0ðuÞ ¼ �u while j\ðuÞ ¼ �u=2 and

j[ðuÞ ¼
�uþ 1

2AðaÞ; ubAðaÞ;
j\ðuÞ; jujaAðaÞ;
�u� 1

2AðaÞ; ua�AðaÞ;

8><
>: ð2:8Þ

where a :¼ b2=g in (2.1) and AðaÞ ¼ 2a
ffiffiffi
2

p
=3.

Example 2.2 (General non-degenerate di¤usion and dispersion). Bedjaoui and

LeFloch [5] considered f satisfying (1.2), bðu; vÞ ¼ bðuÞ smooth and bounded

0 < Ba bðu; vÞaB and the entropy U 00 ¼ c1=c2. For each value of a :¼ b=g,

they showed that there exists thresholds A�ðaÞ and AþðaÞ such that j[
a satisfies

either

j[
aðuÞ ¼ j\ðuÞ for A�ðaÞa uaAþðaÞ; ð2:9Þ

or, the inequalities

0 < jj\ðuÞj < jj[
aðuÞj < jj[

0ðuÞj; ð2:10Þ

when either u < A�ðaÞ or AþðaÞ < u. The thresholds vanish only if a vanishes.

Moreover, for any fixed uA 0, j[
aðuÞ ! j[

0ðuÞ as a ! 0.

Example 2.3 (Degenerate di¤usion-dispersion model). Bedjaoui and LeFloch [6]

also analyzed regularizations of the form (2.1) where b vanished nonlinearly as

ux ! 0, namely c1 ¼ c2 ¼ 1 and bðu; vÞ ¼ jvjpv in (2.1). Such nonlinear di¤usion-

dispersion models occurs in certain models of fluids and in particular when using

Von Neumann-Richtmyer artificial viscocity. For f ðuÞ ¼ u3 and UðuÞ ¼ u2=2,

then we again have j[
0ðuÞ ¼ �u and j\ðuÞ ¼ �u=2. The kinetic function depends

strongly on both a and the exponent p. It was shown that there still exists thresh-

olds A� and Aþ such that both (2.9) and (2.10) hold. However, these thresholds

may degenerate in the following manner:

(i) For 0 < pa 1
3 , we have

ðj[
p;aÞ

0ð0Þ ¼ � 1

2
; Aeð0Þ ¼ 0; A 0

eð0eÞ ¼el:

(ii) For 1
3 < p < 1

2 , we have ðj[
p;aÞ

0ð0Þ ¼ � 1
2 and AeðaÞ ¼ 0:

(iii) For 1
2 < p, we have ðj[

p;aÞ
0ð0Þ ¼ �1 and AeðaÞ ¼ 0:
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This description provides a portrait of the complexity that may be found in degen-

erate regularizations. We note that when p > 1=2 the kinetic function fails to sat-

isfy assumption (A4). See Theorems 2.2 and 2.3 in [6] for more detailed state-

ments.

2.2. Generalized wave strength. Building on the pioneering work by Baiti, Le-

Floch, and Piccoli [3], we simplify here the original notion of generalized wave

strength introduced therein, and we relate it directly to the fundamental contrac-

tion property (A4) of the kinetic function. Whereas the definition of wave strength

in [3] was the most general possible, we show that a specialization of their argu-

ment allows one to recover an explicit and rather natural form of the wave

strength. We begin by taking a fresh look at the results in [3] using a slightly dif-

ferent notation.

Consider a general change of variable defined by

~uu ¼ cðuÞ :¼ cþðuÞ; 0a u;

c�ðuÞ; u < 0;

�
ð2:11Þ

in which (to begin with) we assume only that c is monotone increasing. Given

any function g ¼ gðuÞ we write ~ggð~uuÞ ¼ c � g � c�1ð~uuÞ to distinguish its equivalent

in the variables ~uu from the original mapping g in the variables u. In [3], the au-

thors essentially established the following result.

Lemma 2.4. For j[ satisfying (A1)–(A4) and M :¼ ku0kLl (u0 being the initial

data in (1.1)), there exists a change of variable (2.11) for which

~uuþ ~jj[ð~uuÞ ð2:12Þ

is monotone increasing for all ~uu a ½�M;M �. Moreover, ~jj[ satisfies (A1)–(A4) with

respect to ~uu, and the change of variable c can be chosen to satisfy the following four

properties:

(B1) c is Lipschitz continuous and one-to-one.

(B2) cð0Þ ¼ 0 and c is monotone increasing.

(B3) There exists a Lipschitz constant such that

0 < LipðcÞ :¼ inf
uAv

cðuÞ � cðvÞ
u� v

����
����: ð2:13Þ

(B4) Moreover, (2.12) is uniformly increasing in the sense that, for some constants

0 < a1 < a2,

a1 < Lip
�
~uuþ ~jj[ð~uuÞ

�
aLip

�
~uuþ ~jj[ð~uuÞ

�
< a2: ð2:14Þ
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Proof. In fact, [3] proves that there exists a Lipschitz continuous and monotone

increasing change of variable (2.11) such that

cþðuÞ � ð�c� � j[ÞðuÞ ð2:15Þ

is monotone increasing for ub 0, while

�c�ðuÞ � ðcþ � j[ÞðuÞ ð2:16Þ

is monotone decreasing for u < 0. Writing ~uu ¼ cðuÞ, then for ub 0 expression

(2.15) becomes

cþðuÞ þ c� � j[ � c�1
þ � cþðuÞ ¼ ~uuþ ~jj[ð~uuÞ;

while for u < 0, expression (2.16) becomes

�c�ðuÞ � cþ � j[ � c�1
� � c�ðuÞ ¼ �

�
~uuþ ~jj[ð~uuÞ

�
:

Therefore the fact that functions (2.15) and (2.16) are respectively monotone in-

creasing and decreasing is equivalent to the fact that (2.12) is monotone in-

creasing.

The properties (B1)–(B4) are consequences of the construction described in [3]

although (B3) and (B4) are somewhat hidden in the proof. Equation (5.11) in [3]

implies property (B3), while equation (5.6) states that

cðuÞ þ c � j[ðuÞ ¼ u; u a R:

To check (B4), we use the previous identity to compute, for every ~uuA ~vv,

~uuþ ~jj[ð~uuÞ � ~vv� ~jj[ð~vvÞ
~uu� ~vv

����
���� ¼ u� v

cðuÞ � cðvÞ

����
����:

Therefore, it is easy to see that

Lip
�
~uuþ ~jj[ð~uuÞ

�
¼ 1=LipðcÞ > 0;

Lip
�
~uuþ ~jj[ð~uuÞ

�
¼ 1=LipðcÞ < l:

This completes the proof of Lemma 2.4. r

Relying on the previous lemma, the authors in [3] proposed a definition of

wave strength and showed that the resulting total variation functional is strictly

decreasing at interactions in front-tracking approximations; see Section 3 below.

We state here the definition from [3].
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Definition 2.5 (Notion of generalized wave strength). For each choice of change

of variable ~uu ¼ cðuÞ, one defines the generalized strength sðu�; uþÞ of a classical

or nonclassical wave ðu�; uþÞ as follows:

sðu�; uþÞ ¼
j~uu� � ~uuþj; u�uþb 0;

j~uu� þ ~uuþj; u�uþ < 0:

�
ð2:17Þ

We note immediately that the change of variable c and its properties (B1)–

(B4) guarantee that s has two important properties.

• The proposed generalized strength is continuous when uþ crosses j]ðu�Þ and

the solution of the Riemann problem goes from a single crossing shock (i.e.,

u�uþ < 0) to a nonclassical shock followed by a classical shock.

For u� > 0, this follows from inequalities j[ðu�Þ < j]ðu�Þ < 0 and as-

sumption (B3)

s
�
u�; j

]ðu�Þ
�
¼ j~uu� � ~jj]ð~uu�Þj

¼ j~uu� � ~jj[ð~uu�Þj þ j~jj[ð~uu�Þ � ~jj]ð~uu�Þj

¼ s
�
u�; j

[ðu�Þ
�
þ s

�
j[ðu�Þ; j]ðu�Þ

�
:

In fact, if j]ðu�Þ were positive then the monotonicity of c would imply that
~jj]ð~uu�Þ < ~jj[ � ~jj[ð~uu�Þ < ~jj[ð~uu�Þ and a similar computation would show that

continuity still holds.

• The generalized strength is its equivalence with the usual notion of strength.

When the rarefaction and the non-crossing shocks have two neighboring

states of the same sign, then assumption (B3) implies

sðu�; uþÞ ¼ j~uu� � ~uuþjbLipðcÞju� � uþj: ð2:18Þ

For crossing shocks, it su‰ces to use assumptions (A4), (B4), and the prop-

erty (2.6) to show that the definition is equivalent to the usual notion of

strength

s
�
u�; j

[ðu�Þ
�
¼ j~uu� þ ~jj[ð~uu�Þj > a1

LipðcÞ
1þ Lipðj[Þ ju� � j[ðu�Þj: ð2:19Þ

In view of the presentation in the previous section, the results in [3] already

provides a generalization of the contraction property (A4) of the kinetic function.

Since j[ð0Þ ¼ 0 and cð0Þ ¼ 0, then the positivity of (2.12) implies that j~jj[ð~uuÞj < j~uuj
for all uA 0 and the strict positivity of Lip

�
~uuþ ~jj[ð~uuÞ

�
implies that the kinetic

function satisfies

max
½�M;M �

g
d ~jj[

d~uu
g

����
���� < 1: ð2:20Þ
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In fact, the existence of the lower Lipschitz constant for ~uuþ ~jj[ð~uuÞ is equivalent to
the above result. As a matter of fact, this simple observation was not mentioned

explicitly in [3]. In this vein, we will now show that even the Lipschitz constant of

the kinetic function can be manipulated with the help of a well-chosen change of

variable. This will be particularly important in Section 5 when we study splitting-

merging solutions.

Proposition 2.6 (General class of changes of variable). Consider a kinetic function

that satisfies (A1)–(A4) and the condition

0 < Lipðj[Þ: ð2:21Þ

Then, for any e > 0 and M ¼ ku0kLl , there exists a change of variable ~uu ¼ cðuÞ for
which ~uuþ ~jj[ð~uuÞ is monotone increasing, (B1)–(B4) are satisfied, and, moreover,

Lipð~jj[Þ a ð1=2; 1Þ in ½�M;M �n½�e; e�: ð2:22Þ

Proof. We start with a change of variable provided by Lemma 2.4. To simplify

the notation, this new variable is simply denoted as u. From any fixed e > 0 and

any parameters l; p > 0, we construct a new (smooth) change of variable

~uu ¼ cðuÞ :¼ signðuÞljujp; ð2:23Þ

which we consider away from ½�e; e�. Near the origin, it is always possible to

modify the above expression of c so that condition (B3) is satisfied.

The kinetic function j[ is Lipschitz continuous, only. Away from the origin,

we can compute the new Lipschitz constant

d ~jj[

d~uu
¼ d

d~uu

�
c � j[ � c�1ð~uuÞ

�
¼ ðc � j[Þ0ðuÞ

c 0ðuÞ

¼
sign

�
j[ðuÞ

�2
lpjj[ðuÞjp�1ðj[Þ0ðuÞ

signðuÞ2lpjujp�1
¼ g

j[ðuÞ
u

g

����
����
p�1

dj[

du
ðuÞ:

Given that j[ satisfies (2.20) and (2.21), there exist positive constants e0 and e1
such that

�1þ e1 < ðj[Þ0ðuÞ < �e0:

Then, picking p > 0 su‰ciently small so that

1=2 < e
p
0 ;
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we get

g
d ~jj[

d~uu
g

����
���� > jðj[Þ0ðxuÞjp�1ðj[Þ0ðuÞ > e

p
0 > 1=2

for some xu. On the other hand, the supremum of the Lipschitz constant is

g
d ~jj[

d~uu
g

����
���� < jðj[Þ0ðxuÞjp�1ðj[Þ0ðuÞ < ð1� e1Þp < 1;

which implies that ~uuþ ~jj[ð~uuÞ is monotone increasing. The other conditions (B1),

(B2) and (B4) follow easily from the fact that the change of variable is smooth.

r

The main di‰culty within the previous lemma was not to decrease the (ab-

solute) value of the derivative of j[ but to increase it and guarantee that it falls

within a given interval. For example, it is an easy exercise to show using a

change of variable of the form c ¼ uþ lmðuÞ, with m odd and concave-convex,

that the (absolute) value of the derivative can be decreased arbitrarily close to

zero.

Example 2.7 (Cubic flux with linear di¤usion and linear dispersion). Given the

importance of the analysis of the kinetic function for a hyperbolic conservation

law with a constant ratio of linear di¤usion and dispersion (Example 2.1), we pres-

ent an explicit example of a change of variable satisfying (2.22). At the moment,

the derivative of j[ is either �1=2 or �1 and therefore the Lipschitz constant is

just outside the interval ð1=2; 1Þ. Recall that for each value of a :¼ b2=g in (2.1),

there exists a threshold A ¼ AðaÞ on the strength of waves below which all waves

are classical.

For a fixed a, we consider the piecewise smooth change of variable

cðuÞ :¼
u; juj < A=2;

ðuþ A=2Þ=2þ hðu� A=2Þ2; A=2a u;

ðu� A=2Þ=2� hðuþ A=2Þ2; ua�A=2:

8><
>: ð2:24Þ

Simple calculations show that

c � j[ðuÞ ¼
�u=2; juj < A;

�u=2� hð�uþ AÞ2; Aa u;

�u=2þ hð�u� AÞ2; ua�A;

8><
>:
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and

ðc � j[Þ0ðuÞ ¼
�1=2; juj < A;

�1=2þ 2hð�uþ AÞ; Aa u;

�1=2� 2hð�u� AÞ; ua�A:

8><
>:

Therefore

d ~jj[

d~uu
ðuÞ ¼ ðc � j[Þ0ðuÞ

c 0ðuÞ

¼

�1=2; juj < A=2;

�
�
1þ 2hð2u� AÞ

��1
; A=2a u < A;

�
�
1� 2hð2uþ AÞ

��1
; �A < ua�A=2;

�
�
1þ 4hðu� AÞ

�
=
�
1þ 2hð2u� AÞ

�
; Aa u;

�
�
1� 4hðuþ AÞ

�
=
�
1� 2hð2uþ AÞ

�
; ua�A:

8>>>>>><
>>>>>>:

When nonclassical shocks appear, the derivative is jð~jj[Þ0ðe ~AAÞj ¼ j�1=ð1þ 2hAÞj
< 1. In fact, if hA < 1=2 the absolute value of this derivative is superior to 1=2.

Since the derivative is increasing with respect to u, for any bound on the size of the

initial data u0 in (1.1), the condition (2.22) will be satisfied if it is satisfied when

u ¼ A. For any fixed a, it su‰ces to take h su‰ciently small to guarantee that

the kinetic function uniformly satisfies (2.22).

2.3. Specific choice of interest. We now introduce an explicit and natural

change of variable that one might want to consider. The purpose of the following

change of variable would be to remove any asymmetry present in j[
0 due to the

flux or the entropy. Define the Lipschitz continuous change of variable

c0ðuÞ :¼
u; ub 0;

�j[
0ðuÞ; u < 0:

�
ð2:25Þ

Although this explicit change of variable will not be required in Sections 3, 4 and

5, we have included a discussion of it because it is an obvious candidate and much

of this work was initially motivated by the desire to understand to what extent the

choice c0 was valid.

We begin by looking at j[
0 in the new coordinates (2.25). With respect to

~uu ¼ c0ðuÞ, we have when ~uub 0

~jj[
0ð~uuÞ ¼ c� � j[

0 � c�1
þ ð~uuÞ ¼ �j[

0 � j[
0ðuÞ ¼ �c0ðuÞ ¼ �~uu;

and

~jj[
0ð~uuÞ ¼ cþ � j[

0 � c�1
� ð~uuÞ ¼ j[

0 � j[
0ð�~uuÞ ¼ �~uu:
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Rather than looking directly at the change of variable (2.25), we will construct a

change of variable satisfying (2.22) and ~jj[
0ð~uuÞ ¼ �~uu.

Proposition 2.8. Assume that the kinetic function j[ and the zero-dissipation func-

tion j[
0 satisfy

0 < min
�
Lipðj[Þ;Lipðj[

0Þ
�
; max

�
Lipðj[

0 � j[Þ;Lipðj[ � j[
0Þ
�
< 1: ð2:26Þ

There exists a change of variable ~uu ¼ cðuÞ satisfying (B1)–(B4) and (2.22), for

which ~uuþ ~jj[ð~uuÞ is monotone increasing and such that the identity

~jj[
0ð~uuÞ ¼ �~uu: ð2:27Þ

holds.

Proof. We begin by studying the change of variable c0 before showing that the

technique in Proposition 2.6 can also be used to satisfy (2.22).

Using the Lipschitz change of variable c, (B1)–(B2) hold because of the equiv-

alent to (A1)–(A2) holds for j[
0. The property (B3) holds because of our assump-

tion (2.26). To check (B4), we begin by assuming that ~uu ¼ c0ðuÞ ¼ u > 0 and

compute

~uuþ ~jj[ð~uuÞ ¼ ~uuþ c� � j[c�1
þ ð~uuÞ ¼ ~uu� j[

0 � j[ð~uuÞ;

while for ~uu ¼ c0ðuÞ ¼ �j[
0ðuÞ < 0 we find

~uuþ ~jj[ð~uuÞ ¼ ~uuþ cþ � j[c�1
� ð~uuÞ ¼ ~uuþ j[ � j[

0ð�~uuÞ:

We can now see that for Rþ

Lip
�
~uuþ ~jj[ð~uuÞ

�
a 1� Lipðj[

0 � j[Þ;

and for R�

Lip
�
~uuþ ~jj[ð~uuÞ

�
a 1� Lipðj[ � j[

0Þ:

Since ~uuþ ~jj[ð~uuÞ is already Lipschitz continuous, we have proved (B4).

In the proof of Proposition 2.6, we introduced a change of variable of the form

cðuÞ ¼ signðuÞljujp, at least away from the origin. Assume that the correction

near the origin is such that c becomes an odd function. Then for ~~uu~uu ¼ c � c0ðuÞ
> 0,

~~jj~jj[ ¼ c� � ~jj[
0 � c�1

þ ð~~uu~uuÞ ¼ c� � ~jj[
0ð~uuÞ ¼ c�ð�~uuÞ ¼ �cþð~uuÞ ¼ �~~uu~uu;
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and for ~~uu~uu ¼ c � j[
0ðuÞ < 0, we find

~~jj~jj[ ¼ cþ � ~jj[
0 � c�1

� ð~~uu~uuÞ ¼ cþ � ~jj[
0ð~uuÞ ¼ cþð�~uuÞ ¼ �c�ð~uuÞ ¼ �~~uu~uu:

Therefore, the technique used in Proposition 2.6 preserves the property (2.27).

r

Remark 2.9. In the case of a regularization defined by linear di¤usion and disper-

sion, Example 2.1, j[
0ðuÞ ¼ �u is already equal to the condition (2.27). However,

j[ and j[
0 do not satisfy conditions (2.26). Moreover, for ~uu > 0

~uuþ ~jj[ð~uuÞ ¼ uþ �uþ 1

2
AðaÞ

� �
¼ 1

2
AðaÞ ð2:28Þ

is not monotone increasing.

Nonetheless, there could be cases where such a change of variable might be

convenient. In fact, Proposition 2.8 can be interpreted as saying that in some vari-

able ~uu, the correct way to measure the strength of nonclassical waves is with the

quantities u� j[
0 � j[ðuÞ when ub 0 and j[

0ðuÞ � j[ðuÞ when u < 0.

Example 2.10. For a kinetic function corresponding to a regularization with lin-

ear di¤usion and dispersion, as in Example 2.1, property (2.27) is already satisfied

but conditions (2.26) are not, and neither are (B4). We propose to look at a slight

perturbation of c ¼ j[
0 which will asymptotically satisfy condition (2.27). In this

example, the change of variable will be a smooth and arbitrarily small perturba-

tion of j[
0 near the origin. (This example suggests that a theory exists for changes

of variable based on higher-order perturbations of the zero di¤usion kinetic func-

tion j[
0. Such a theory will not be necessary in this paper.) Consider

cðuÞ ¼
cþðuÞ :¼ uþ 1

l
Dðe�lu � 1Þ; ub 0;

c�ðuÞ :¼ u� 1
l
Dðelu � 1Þ; ua 0;

(
ð2:29Þ

where l > 0 and D a ð0; 1=2Þ. Using (2.8), we find

ðcþÞ
0ðuÞ ¼ 1� De�lu; ðc�Þ

0ðuÞ ¼ 1� Delu;

ðc� � j[Þ0ðuÞ ¼ � 1
2 þ D

2 e
�lu=2; 0 < u < A;

�1þ De�luþlA=2; Aa u:

(

For simplicity, we will only show that ~uuþ ~jj[ð~uuÞ is monotone increasing for ~uu > 0.

We begin by computing the quantity
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d

d~uu

�
~jj[ð~uuÞ

�
¼ d

d~uu

�
c� � j[ � ðcþÞ

�1ð~uuÞ
�

¼ ðc� � j[Þ0ðuÞ � ½ðcþÞ
0ðuÞ��1

¼ � 1
2 � ð1� De�lu=2Þ=ð1� De�luÞ for 0 < u < A;

�ð1� DelA=2e�luÞ=ð1� De�luÞ for Aa u:

(

When u < A, 1 > e�lu=2 > e�lu and therefore the quotient is always positive and

less than 1 and the derivative of the kinetic function is greater than �1=2. When

u > A, then the quotient is again less than one and the derivative is greater than

�1. By taking l positive and large, one may make this derivative less than �1=2

over any compact interval. This change of variable therefore satisfies (2.27)

asymptotically and properties (2.22) and (B4) exactly.

3. Diminishing total variation functional

In this section, we establish that the total variation functional associated with the

generalized wave strengths (cf. Definition 2.5) is non-increasing in time for solu-

tions generated by front-tracking approximations. Although a proof of such a re-

sult was already provided in [3], we establish here more detailed estimates of the

decrease of the total variation and, in this manner, provide basic estimates re-

quired later in Sections 4 and 5. In particular, we measure the change in the total

variation functional associated with the wave strength (2.5), and show that at in-

teractions involving rarefactions the change is proportional to the strength of the

incoming rarefaction and, if required, involves the Lipschitz constant of ~uuþ ~jj[ð~uuÞ.
These estimates are new, easy to interpretn and will be important for the analysis

of systems.

We now introduce front-tracking approximate solutions to (1.1) based on a

nonclassical Riemann solver, following Dafermos [7] in the classical setting.

These approximations are piecewise constant in space and are determined from

the nonclassical Riemann solver described in the previous section.

The first step of the construction is to build a piecewise constant approx-

imation of the initial data u0 which admits finitely many discontinuities and

approaches u0 in the L1 norm with an error e, for some small e. The Rankine–

Hugoniot condition can be used to propagate, in a conservative manner, the dis-

continuities of the initial data. When the Riemann solver calls for continuous

waves, one replaces them by a sequence of small discontinuities ðu�; uþÞ whose

strength satisfy sðu�; uþÞ < e.

When two discontinuities meet, the nonclassical Riemann solver is used, but

we continue to enforce that all outgoing waves be discontinuities. One can check
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(see [13] for details) that for a kinetic function satisfying (A1)–(A4), the total num-

ber of discontinuities remains bounded for all times, so that the front-tracking ap-

proximation can be defined for all times.

For a front-tracking approximation u : Rþ � R ! R, formed entirely of prop-

agating discontinuities (each denoted by a), the inequalities (2.18) and (2.19), as

well as the fact that j[ and c are Lipschitz continuous, imply that

V
�
uðtÞ

�
:¼

X
a

sðua
�; u

a
þÞ ð3:1Þ

is equivalent to the total variation norm

TV
�
uðtÞ

�
:¼

X
a

jua
� � ua

þj; ð3:2Þ

where ua
e denote the left- and right-hand states of the discontinuity a.

As described in Section 4.3 of [13], when the kinetic function satisfies (A1)–

(A4) then the set of wave interactions appearing in front-tracking approximations

can be classified in 16 di¤erent categories, depending on the type and strength of

the incoming and outgoing waves. Classical shocks and rarefactions joining two

positive states are denoted by C
#
þ and R

"
þ, respectively. Similarly, when both

neighboring states are negative, we write C"
� and R#

�. When a shock joins a posi-

tive state with a negative state, we write C
#
e or N #

e depending on whether or not

the shock is classical or nonclassical, respectively. When the signs of the neighbor-

ing states are reversed, we simply write C"
H and N "

H.

Theorem 3.1 (Diminishing total variation functional; see also [3], [4]). Let j[ be a

kinetic function satisfying the properties (A1)–(A4) and let c be a change of variable

satisfying (B1)–(B4) and used to define the wave strength in Definition 2.5. Then,

for every front-tracking approximation u : Rþ � R ! R to the conservation law

(1.1) based on the nonclassical Riemann solver associated with j[, the generalized

total variation functional V
�
uðtÞ

�
is non-increasing. Precisely, the change in V

during an interaction is given by

½V �a

�2sðR inÞ; cases RC-1; RC-3; CR-1; CR-2; CR-4;

�2Lip
�
~uuþ ~jj[ð~uuÞ

�
sðR inÞ; cases RC-2; RN;

�2
�
sðR inÞ � sðRoutÞ

�
; case CR-3;

0; all other cases:

8>>><
>>>:

ð3:3Þ

Here, R in and Rout denote the incoming and outgoing rarefactions at an interaction,

respectively. (The list of interactions is specified in the proof below.)
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From this theorem, standard techniques allow one to deduce the following ex-

istence result.

Corollary 3.2 ([3], [4] Existence of nonclassical entropy solutions). For any

initial data u0 a LlðRÞBBVðRÞ of (1.1) and any sequence of front-tracking ap-

proximations ue such that ueð�; 0Þ converges to u0ð�Þ in L1ðRÞ, there exists a sub-

sequence of front-tracking approximations that converge in Lip
�
½0;TÞ;L1ðRÞ

�
B

Ll
�
½0;TÞ;BVðRÞ

�
to a solution of the initial value problem (1.1).

Proof of Theorem 3.1. We need here to compute the variation of our functional

V by distinguishing between 16 possible interactions, after assuming ul > 0 for

definiteness. We will assume that the change of variable c has been applied, all

quantities are to be considered in the coordinates ~uu and therefore it will be conve-

nient to omit the tilde superscripts.

The subscript 0 is used to indicate that a wave is outgoing and with some abuse

of notation for the wave strength we write, for example, sðN #
eÞ for the shock

strength of a nonclassical wave. During a generic interaction between two waves,

we denote the states on both sides of the left-hand wave by ul and um while those

associated with the right-hand wave are denoted by um and ur. Finally, the bounds

on the change of V depend only on the properties (2.4) and (2.12) which are there-

fore used freely throughout.

Case RC-1: (R"
þC

#)-(C#0). This case is determined by the constraints

max
�
j]ðulÞ; j]ðumÞ

�
< ur < ul ; 0 < ul < um:

This is further subdivided into two subcases depending on the sign of ur. When

ur > 0, then the interactions are entirely classical (R"
þC

#
þ)-(C

#0
þ ) and the inequal-

ities 0 < ur < ul < um su‰ce to check that

½V � ¼ sðC#0
þ Þ � sðR"

þÞ � sðC#
þÞ

¼ jul � urj � jum � ul j � jum � urj ¼ �2sðR"
þÞ:

When ur < 0, then the interaction involves crossing shocks (R"
þC

#
e)-(C

#0
e ) and the

states involved in measuring the strengths of the waves are

0 < �ur < ul < um; ð3:4Þ

since �ur < �j[ðulÞ < ul . The conclusion is therefore the same.

Case RC-2: (R"
þC

#
e)-(N

#0
eR#0

� ). This case is defined by

j]ðumÞ < uraj[ðulÞ < 0 < ul < um:
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In the first subcase, we assume that �ur < ul and use the previous conditions to

deduce

�j[ðulÞ < �ur < ul < um: ð3:5Þ

The analysis when ul < �ur will not be treated since �ur < um continues to hold

and the conclusions remain the same.

½V � ¼ sðN #0
e Þ þ sðR#0

� Þ � sðR"
þÞ � sðC#

eÞ

¼ jul þ j[ðulÞj þ jj[ðulÞ � urj � jum � ul j � jum þ urj

¼ 2jj[ðulÞ � urj � 2jum � ul j:

Since j]ðumÞ < ur < 0, from properties (2.4) and (2.12) we deduce 0 < �ur <

�j]ðumÞ < j[ðumÞ. Combining this with (3.5), we find

½V �a 2jj[ðulÞ � j[ðumÞj � 2jum � ul j ¼ �2Lipðuþ j[ÞsðR"
þÞ:

Case RC-3: (R"
þC

#)-(N #0
eC"0). The conditions initially satisfied by the neighboring

states of the incoming waves are

max
�
j[ðulÞ; j]ðumÞ

�
< ur < j]ðulÞ; 0 < ul < um:

In the first subcase, we assume ur < 0 and the interaction is (R"
þC

#
e)-(N

#0
eC"0

� ) with

the following states appearing in the strength of the waves

�ur < �j[ðulÞ < ul < um: ð3:6Þ

Therefore, the change in V is

½V � ¼ sðN #0
e Þ þ sðC"0

� Þ � sðR"
þÞ � sðC#

eÞ

¼ jul þ j[ðulÞj þ jj[ðulÞ � urj � jum � ul j � jum þ urj

¼ �2jum � ul j ¼ �2sðR"
þÞ:

In the second subcase with 0 < ur, we have ur < j]ðulÞ < j[ � j[ðulÞ < �j[ðulÞ
(because given two successive nonclassical shocks, the speed of the second must

be less than the first) and therefore

ur < �j[ðulÞ < ul < um: ð3:7Þ
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The change in V is then

½V � ¼ sðN #0
e Þ þ sðC"0

HÞ � sðR"
þÞ � sðC#

þÞ

¼ jul þ j[ðulÞj þ j�j[ðulÞ � urj � jum � ul j � jum � urj

¼ �2jum � ul j ¼ �2sðR"
þÞ:

Case RN: (R"
þN

#
e)-(N

#0
eR#0

� ). The states on both sides of the waves satisfy

0 < ul < um and ur ¼ j[ðumÞ:

Two cases again occur depending on the relative order of ul with respect to �ur ¼
�j[ðumÞ. We consider only the case where

�j[ðulÞ < �j[ðumÞ < ul < um; ð3:8Þ

the other, �j[ðulÞ < ul < �j[ðumÞ < um, being similar. In this case, the change in

V is

½V � ¼ sðN #0
e Þ þ sðR#0

� Þ � sðR"
þÞ � sðN #

eÞ

¼ jul þ j[ðulÞj þ jj[ðulÞ � j[ðumÞj � jum � ul j � jum þ j[ðumÞj

¼ 2jj[ðulÞ � j[ðumÞj � 2jum � ul j

a�2Lipðuþ j[Þjum � ul ja�2Lipðuþ j[ÞsðR"
þÞ:

Case CR-1: (C#
eR

#
�)-(C

#0
e ). This is a simple case where the states are initially or-

dered as

j]ðulÞ < ur < uma 0 < ul :

This provides �um < �ur < �j]ðulÞ < �j[ðulÞ < ul , and we get

½V � ¼ sðC#0
e Þ � sðC#

eÞ � sðR#
�Þ

¼ jul þ urj � jul þ umj � jum � urj ¼ �2jum � urj ¼ �2sðR#
�Þ:

Case CR-2: (C#
þR

"
þ)-(C

#0
þ ). The waves are entirely classical since 0a um < ur < ul .

There is nothing new to check and the change in V is immediately found to be

½V � ¼ �2jur � umj ¼ �2sðR"
þÞ:

Case CR-3: (C#
eR

#
�)-(N

#0
eR#0

� ). The states begin in the order

uraj[ðulÞ < j]ðulÞ < uma 0 < ul :
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One subcase is obtained when we assume that ul < �ur. The important states ap-

pearing in the definition of the strength of waves are then ordered as

�um < �j[ðulÞ < ul < �ur: ð3:9Þ

The change in V is then found to be

½V � ¼ sðN #0
e Þ þ sðR#0

� Þ � sðC#
eÞ � sðR#

�Þ

¼ jul þ j[ðulÞj þ jj[ðulÞ � urj � jul þ umj � jum � urj

¼ �2jum � j[ðulÞj:

In the second subcase, when �ur < ul , we use

�um < �j[ðulÞ < �ur < ul ð3:10Þ

to deduce the same equality:

½V � ¼ jul þ j[ðulÞj þ jj[ðulÞ � urj � jul þ umj � jum � urj ¼ �2jum � j[ðulÞj:

We now observe that in both subcases, the change is equal to a physically relevant

quantity

½V � ¼ �2
�
sðR#

�Þ � sðR#0
� Þ

�
:

Case CR-4: (C#
eR

#
�)-(N

#0
eC"0

� ). The states of the incoming waves satisfy

j[ðulÞ < ur < j]ðulÞ < uma 0 < ul : ð3:11Þ

This leads us to the inequalities

�um < �ur < �j[ðulÞ < ul : ð3:12Þ

The change in our functional is therefore

½V � ¼ sðN #0
e Þ þ sðC"0

� Þ � sðC#
eÞ � sðR#

�Þ

¼ jul þ j[ðulÞj þ jur � j[ðulÞj � jul þ umj � jum � urj

¼ �2jum � urj ¼ �2sðR#
�Þ:

Case CC-1: (C#
þC

#)-(C#0). This is another simple case. We begin with

max
�
j]ðulÞ; j]ðumÞ

�
< ur < um < ul ; and 0a um:
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When 0a ur, all the waves are classical and it is easy to show that ½V � ¼ 0. When

ur < 0, we still have j[ðumÞ < ur and therefore the important states are ordered

�ur < �j[ðumÞ < um < ul :

It then easy to check that even in this case, ½V � ¼ 0.

Case CC-2: (C#
eC

")-(C#0). This interaction is constrained by the initial states such

that

j]ðulÞ < um < ur < j]ðumÞ < ul ; and um < 0:

Two subcases appear depending on the sign of ur. When ur > 0, the interaction is

(C#
eC

"
H)-(C

#0
þ ). Since j[ðulÞ < um, we have �um < �j[ðulÞ < ul . Combining this

with the fact that ur < j]ðumÞ < j[ðumÞ < �um, we deduce that the states appear-

ing in ½V � are ordered,

ur < �um < ul :

The change in V is then

½V � ¼ sðC#0
þ Þ � sðC#

eÞ � sðC"
HÞ ¼ jul � urj � jul þ umj � jur þ umj ¼ 0:

The second subcase treats ur < 0 and interactions (C#
eC

"
�)-(C

#0
e ). The states used

in our definition of the strength of the waves are

�ur < �um < ul :

A short computation shows that

½V � ¼ sðC#0
e Þ � sðC#

eÞ � sðC"
�Þ ¼ 0:

Case CC-3: (C#
þC

#)-(N #0
eC"0). This interaction represents a typical transition from

one crossing shock to a nonclassical shock. The states are

j[ðulÞ < j]ðumÞ < ur < j]ðulÞ < um < ul ; 0a um:

The first (and most common) subcase occurs when ur < 0 and the interaction is

(C#
þC

#
e)-(N

#0
eC"0

� ). The first subcase needs to further subdivided into two cases.

Assuming um < �j[ðulÞ, and observing that �ur < �j[ðumÞ < um, we find that

the important states can be ordered

�ur < um < �j[ðulÞ < ul : ð3:13Þ
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Under these circumstances, the functional V does not change.

½V � ¼ sðN #0
e Þ þ sðC"0

� Þ � sðC#
þÞ � sðC#

eÞ

¼ jul þ j[ðulÞj þ jur � j[ðulÞj � jul � umj � jum þ urj ¼ 0:

On the other hand, when ur < 0 and �j[ðulÞ < um, we have

�ur < �j[ðulÞ < um < ul : ð3:14Þ

It is easy to see that we again have ½V � ¼ 0.

In the second subcase, 0 < ur, we again need to introduce two additional sub-

cases to handle the interactions (C#
þC

#
þ)-(N

#0
eC

"0
H). When um < �j[ðulÞ, then the

states used in the definition of wave strengths are

ur < um < �j[ðulÞ < ul :

The change in ½V � is

½V � ¼ sðN #0
e Þ þ sðC"0

HÞ � sðC#
þÞ � sðC#

þÞ

¼ jul þ j[ðulÞj þ j�j[ðulÞ � urj � jul � umj � jum � urj ¼ 0:

When 0 < ur and �j[ðulÞ < um, we obtain the same result.

Case CN-1: (C#
þN

#
e)-(C

#0
e ). The states defining the waves are characterized by the

inequalities

0 < um < ul and j]ðulÞa ur ¼ j[ðumÞ:

This implies that

�j[ðumÞ < um < ul :

We deduce

½V � ¼ sðC#0
e Þ � sðC#

þÞ � sðN #
eÞ ¼ jul þ j[ðumÞj � jul � umj � jum þ j[ðumÞj ¼ 0:

Case CN-2: (C#
eN

"
H)-(C

#0
þ ). We begin with states satisfying

j]ðulÞ < um < 0 and ur ¼ j[ðumÞ:

To measure the wave strengths, we observe that j[ðulÞ < um implies �um <

�j[ðulÞ < ul and therefore

ur ¼ j[ðumÞ < �um < ul :
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The jump in V is now

½V � ¼ sðC#0
þ Þ � sðC#

eÞ � sðN "
HÞ

¼ jul � j[ðumÞj � jul þ umj � j�um � j[ðumÞj ¼ 0:

Case CN-3: (C#
þN

#
e)-(N

#0
eC"0

� ). The states are initially ordered as

0 < um < ul and ur ¼ j[ðumÞ < j]ðulÞ:

A first subcase occurs when um < �j[ðulÞ. To compute the change in V , we can

then use the inequalities

�j[ðumÞ < um < �j[ðulÞ < ul ; ð3:15Þ

to deduce that

½V � ¼ sðN #0
e Þ þ sðC"0

� Þ � sðC#
þÞ � sðN #

eÞ

¼ jul þ j[ðulÞj þ jj[ðulÞ � j[ðumÞj � jul � umj � jum þ j[ðumÞj ¼ 0:

Similarly, if �j[ðulÞ < um, then the important inequalities become

�j[ðumÞ < �j[ðulÞ < um < ul ; ð3:16Þ

and ½V � ¼ 0.

Case NC: (N #
eC

")-(C#0). This interaction is constrained by the states

um ¼ j[ðulÞ and j]ðulÞ < ur < j]ðumÞ < ul :

The first subcase occurs when ur < 0 and the interaction is precisely (N #
eC

"
�)-(C

#0
e ).

The important states are then ordered as

�ur < �j[ðulÞ < ul :

With these observations, we find that

½V � ¼ sðC#0
e Þ � sðN #

eÞ � sðC"
�Þ ¼ jul þ urj � jul þ j[ðulÞj � jj[ðulÞ � urj ¼ 0:

In the second subcase, ur > 0, it is easy to check that

ur < �j]ðulÞ < �j[ðulÞ < ul ;

and ½V � ¼ 0.
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Case NN: (N #
eN

"
H)-(C

#0
þ ). This interaction is the limiting case ur ! j[ðumÞ of Case

NC. By continuity of wave strengths, we must also have ½V � ¼ 0. r

4. Quadratic interaction potential

In the rest of this paper, we investigate Glimm’s quadratic interaction potentials,

keeping in mind from experience with classical shock waves, that di¤erent func-

tionals may be of particular interest in di¤erent circumstances. We begin by

searching for a functional of the form

Q
�
uðtÞ

�
:¼

X
a approaches b

sðua
l ; u

a
r Þsðu

b
l ; u

b
r Þ; ð4:1Þ

where the proper definition of ‘‘pairs of approaching waves’’ is essential and is

now specified.

In Glimm’s original paper [9] for systems of conservation laws, a definition is

proposed which, in the scalar case, imposes that two waves are always approach-

ing unless both are rarefactions. The purpose of this section is to investigate the

original definition of Glimm in the context of nonclassical shocks.

Definition 4.1. A wave a is said to weakly approach a wave b, unless both are rar-

efaction waves. As far as this definition is concerned, waves R"
þ, R

#
� are both to

be considered as rarefaction waves and C
#
þ, C

#
e, N

#
e, C

"
�, C

"
H, N

"
H are all to be con-

sidered as shock waves.

Our main result in the present section is as follows.

Theorem 4.2 (‘‘Weak interaction’’ potential for nonclassical shocks). Let j[ be

a kinetic function satisfying the properties (A1)–(A4) and a change of variable c

satisfying (B1)–(B4). Consider the functional Qweak defined by (4.1) where the sum-

mation is made over all weakly interacting waves in the sense of Definition 4.1.

Then, when evaluated on a sequence of front-tracking solutions, Qweak is strictly de-

creasing during all interactions except in the cases RC-3, CR-4, CC-3 and CN-3. In

fact, for each of these exceptional interactions, there exist initial data for which

V þ C0Qweak is increasing during the interaction for every positive C0.

We will actually show below that the potential decreases even in Case CN-3

provided the incoming wave is su‰ciently small, so that in this regime our interac-

tion potential increases only when a nonclassical shock is generated at an interac-

tion between classical waves.
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In contrast, in Chapter 8 of [13] di¤erent definitions of wave strengths and ap-

proaching waves are used and the resulting Glimm functional V þ KQ is strictly

decreasing for some K . In this sense, the interaction functional Qweak above may

appear to be less satisfactory. However, our assumptions on the kinetic func-

tion are completely natural—a major advantage toward a future extension to

systems—and, furthermore, an analysis of ‘‘splitting/merging’’ solutions (in the

following section) will show that globally in time the functional Qweak does de-

crease.

Several justifications for our definition of potential are now provided, the

strongest argument being the requirement of continuity:

1. Given that V is continuous in BVðRÞ (endowed with its usual total variation

semi-norm), it is tempting to assume that any reasonable interaction potential

Q should also be continuous in BVðRÞ. We observe that any shock C
#
þ can be

continuously deformed (as measured by Definition 2.5) into, first, a crossing

shock C#
e and, then, a pair of shocks N #

eC
"
�. It is easy to see that imposing con-

tinuity and an interaction potential of the form (4.1) would imply Definition

4.1.

2. Another argument can be found by looking at a class of solutions called

splitting/merging solutions, introduced in [17] and discussed further in Sec-

tion 5. These solutions illustrate that some initial data can go through a

nearly periodic process of creation and cancellation of nonclassical shocks. In

particular, nonclassical shocks can indirectly have non-trivial interactions with

shocks on their right-hand side and such interactions cannot be excluded a

priori.

3. In [13], nonclassical shocks are precluded from interacting with their right-hand

neighbours, and it is argued that nonclassical shocks are (slow) undercompres-

sive and, thus, move away from their right-hand neighbors. However, this def-

inition of approaching waves ignores the above-mentioned possibility of non-

classical shocks having indirect interactions with shocks on their right-hand

side. In any case, such an interaction functional would not be continuous in

BVðRÞ.

Proof of Theorem 4.2. During any isolated interaction between two waves in an

approximation, the change in Q ¼ Qweak is of two types

½Q� ¼ ½Q�1 þ ½Q�2: ð4:2Þ

In this decomposition, ½Q�1 denotes the change in the products of the strengths

of waves either incoming or exiting the interaction and ½Q�2 denotes the change

in products of strengths of waves where only one of the waves was directly in-
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volved in the interaction. Moreover, if a wave C is involved in an interaction, we

define

W ðCÞ :¼
X

B approaches C
B did not interact

sðBÞ:

According to Definition 4.1, if the incoming wave Cin and the outgoing wave Cout

are of the same type (i.e. both of rarefaction or shock type), then WðCinÞ ¼
W ðCoutÞ. Throughout the proof, we use liberally the estimates derived in the

proof of Theorem 3.1 and omit the superscripts tilde since the change of variable

c will be assumed to have been to every quantity and function.

Case RC-1: (R"
þC

#)-(C#0). After examining (3.4), it is immediate that sðC#Þ >
sðC#0Þ and W ðC#Þ ¼ W ðC#0Þ. Therefore,

½Q�1 ¼ �sðR"
þÞsðC#Þ < 0

and

½Q�2 ¼ W ðC#0ÞsðC#0Þ �W ðR"
þÞsðR"

þÞ �W ðC#ÞsðC#Þ

¼ �W ðR"
þÞsðR"

þÞ �W ðC#Þ
�
sðC#Þ � sðC#0Þ

�
< 0:

Case RC-2: (R"
þC

#
e)-(N

#0
eR#0

� ). The conditions defining this case imply two sub-

cases:

either �j[ðulÞ < �ur < ul < um; or �j[ðulÞ < ul < �ur < um:

Given that j]ðumÞ < ur < 0, then property (2.12) leads to

0 < �ur < �j]ðumÞ < �j[ðumÞ < um:

This means that in the first subcase,

sðR#0
� Þ ¼

���ur �
�
�j[ðulÞ

��� < ���j[ðumÞ �
�
�j[ðulÞ

��� < jum � ul j ¼ sðR"
þÞ:

In that subcase, we also have

sðC#
eÞ ¼ sðR"

þÞ þ jul þ urj; sðN #0
e Þ ¼ sðR#0

� Þ þ jul þ urj;

so sðN #0
e Þ < sðC#

eÞ. Similar arguments imply the same inequalities in the second

case. These inequalities therefore imply that

½Q�1 ¼ sðN #0
e ÞsðR#0

� Þ � sðC#
eÞsðR

"
þÞ < 0:
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Using the proposed definition of weakly approaching waves, we also deduce

½Q�2 ¼ W ðN #0
e ÞsðN #0

e Þ þW ðR#0
� ÞsðR#0

� Þ �W ðR"
þÞsðR"

þÞ �W ðC#
eÞsðC

#
eÞ

¼ �W ðR#0
� Þ

�
sðR"

þÞ � sðR#0
� Þ

�
�W ðN #0

e Þ
�
sðC#

eÞ � sðN #0
e Þ

�
< 0:

Case RC-3: (R"
þC

#)-(N #0
eC"0). Two subcases occur depending on the sign of ur. If

ur < 0, then (3.6) holds and when ur > 0, then (3.7) holds. In both of these cases

sðC#Þ � sðR"
þÞ ¼ sðC"0Þ þ sðN #0

e Þ: ð4:3Þ

The change in ½Q�1 is

½Q�1ðul ; um; urÞ ¼ sðN #0
e ÞsðC"0Þ � sðR"

þÞsðC#
eÞ:

Clearly, the RC-3 interaction can still occur even as the strength sðR"
þÞ ! 0 and

the strengths sðN #0
e Þ, sðC"0Þ approach non-zero values. These observations imply

that ½Q�1 > 0 in that limiting case. For the other interaction term, we use (4.3) to

check that

½Q�2 ¼ W ðN #0
e ÞsðN #0

e Þ þW ðC"0ÞsðC"0Þ �W ðR"
þÞsðR"

þÞ �W ðC#ÞsðC#Þ

¼ �W ðN #0
e Þ

�
sðC#Þ � sðN #0

e Þ � sðC"0Þ
�
�W ðR"

þÞsðR"
þÞ < 0:

Case RN: (R"
þN

#
e)-(N

#0
eR#0

� ). The states appearing in the shock strengths describe

two subcases:

either �j[ðulÞ < �j[ðumÞ < ul < um; or �j[ðulÞ < ul < �j[ðumÞ < um:

For both sets of inequalities sðR#0
� Þ < sðR"

þÞ and sðN #0
e Þ < sðN #

eÞ. As a result,

½Q�1 ¼ sðN #0
e ÞsðR#0

� Þ � sðR"
þÞsðN #

eÞ < 0:

For the second term, using the bounds on the wave strengths given in the previous

lemma, we again have a negative contribution

½Q�2 ¼ W ðN #0
e ÞsðN #0

e Þ þW ðR#0
� ÞsðR#0

� Þ �W ðR"
þÞsðR"

þÞ �W ðN #
eÞsðN

#
eÞ

¼ �W ðN #
eÞ

�
sðN #

eÞ � sðN #0
e Þ

�
�WðR"

þÞ
�
sðR"

þÞ � sðR#0
� Þ

�
< 0:

Case CR-1: (C#
eR

#
�)-(C

#0
e ). In this case, the states satisfy �um < �ur < �j]ðulÞ <

ul and the wave strengths satisfy sðC#0
e Þ < sðC#

eÞ. Since only one wave is outgo-

ing, ½Q�1 ¼ �sðC#
eÞsðR#

�Þ < 0. On the other hand, it is easy to check that

½Q�2 ¼ W ðC#0
e ÞsðC#0

e Þ �W ðC#
eÞsðC

#
eÞ �W ðR#

�ÞsðR#
�Þ

¼ �WðC#
eÞ

�
sðC#

eÞ � sðC#0
e Þ

�
�W ðR#

�ÞsðR#
�Þ < 0:
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Case CR-2: (C#
þR

"
þ)-(C

#0
þ ). This case is entirely classical, so it is easy to check

that

½Q�1 ¼ �sðC#
þÞsðR"

þÞ < 0;

½Q�2 ¼ �W ðC#
þÞ
�
sðC#

þÞ � sðC#0
þ Þ

�
�W ðR"

þÞsðR"
þÞ < 0:

Case CR-3: (C#
eR

#
�)-(N

#0
eR#0

� ). A first subcase is defined by the additional condi-

tion ul < j[ðurÞ which provides (3.9). The relative strengths of the waves are

then seen to be sðR#0
� Þ < sðR#

�Þ and sðN #0
e Þ < sðC#

eÞ. In the second subcase, given

by (3.10), these two inequalities still hold. It is now easy to conclude

½Q�1 ¼ sðN #0
e ÞsðR#0

� Þ � sðC#
eÞsðR#

�Þ < 0;

½Q�2 ¼ �WðC#
eÞ

�
sðC#

eÞ � sðN #0
e Þ

�
�W ðR#

�Þ
�
sðR#

�Þ � sðR#0
� Þ

�
< 0:

Case CR-4: (C#
eR

#
�)-(N

#0
eC"0

� ). The states satisfy (3.12),

�um < �ur < �j[ðulÞ < ul ;

and therefore

½Q�1ðul ; um; urÞ ¼ sðN #0
e ÞsðC"0

� Þ � sðC#
eÞsðR#

�Þ

¼
�
ul þ j[ðulÞ

��
�j[ðulÞ þ ur

�
� ðul þ umÞð�ur þ umÞ:

If ur and um approach each other while maintaining the condition

ur < j]ðulÞ < um;

then �ur þ um ! 0 while ul þ um remains bounded. Upon inspection, it is clear

that in this limit ½Q�1 ! sðN #0
e ÞsðC"0

� Þ > 0. The inequalities defining this case suf-

fice to show that sðN #0
e Þ þ sðC"0

� ÞasðC#
eÞ, and therefore that the second term is

negative

½Q�2 ¼ �W ðC#
eÞ

�
sðC#

eÞ � sðN #0
e Þ � sðC"0

� Þ
�
�W ðR#

�ÞsðR#
�Þ < 0:

Case CC-1: (C#
þC

#)-(C#0). When ur is positive, all waves are classical and it is easy

to show that ½Q�1 < 0 and ½Q�2 ¼ 0. It is an exercise to see that when ur < 0, then

½Q�1 < 0 is still negative and ½Q�2 vanishes.

Case CC-2: (C#
eC

")-(C#0). Two subcases appear depending on the sign of ur, but

each time we have

½V � ¼ sðC#0Þ � sðC#
eÞ � sðC"Þ ¼ 0:
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Only one wave is outgoing, so ½Q�1 < 0 and the previous identity implies that

½Q�2 ¼ 0.

Case CC-3: (C#
þC

#)-(N #0
eC"0). As mentioned in the proof of Theorem 3.1, the set

of states are subdivided into two subcases depending on the sign of ur. When

ur < 0, we identify two possibilities (3.13) and (3.14), namely,

either �ur < um < �j[ðulÞ < ul ; or �ur < �j[ðulÞ < um < ul ;

where the second set of inequalities corresponds to a weak C
#
þ. The change in ½Q�1

is then

½Q�1ðul ; um; urÞ ¼ sðN #0
e ÞsðC"0

� Þ � sðC#
þÞsðC#

eÞ

¼
�
ul �

�
�j[ðulÞ

���
�j[ðulÞ � ð�urÞ

�
� ðul � umÞ

�
um � ð�urÞ

�
:

Consider the function BðlÞ :¼ lð1� lÞ which is symmetric about its maximum at

l ¼ 1=2. There exists constants l; l 0 a ½0; 1� such that the change can be rewritten

as

½Q�1 ¼ ðul þ urÞ2
�
BðlÞ � Bðl 0Þ

�
:

It is therefore clear that ½Q�1 will be negative if and only if jl 0 � 1=2j < jl� 1=2j.
As far as ½Q�2 is concerned, since all waves are shocks, then ½V � ¼ 0 and

½Q�2 ¼ 0.

Case CN-1: (C#
þN

#
e)-(C

#0
e ). This is another simple case where the fact that ½V � ¼ 0

and that Wð�Þ is equal for all waves involved implies that ½Q�2 ¼ 0.

Case CN-2: (C#
eN

"
H)-(C

#0
þ ). Same as Case CN-1.

Case CN-3: (C#
þN

#
e)-(N

#0
eC"0

� ). We identify two subcases:

either �j[ðumÞ < um < �j[ðulÞ < ul ; or �j[ðumÞ < �j[ðulÞ < um < ul ;

where the second one occurs when the incoming shock C
#
þ is weak. The change

can be written as

½Q�1ðul ; um; urÞ ¼ sðN #0
e ÞsðC"0

� Þ � sðC#
þÞsðN #

eÞ

¼
�
ul þ j[ðulÞ

��
�j[ðulÞ þ j[ðumÞ

�
� ðul � umÞ

�
um þ j[ðumÞ

�
:
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Using a bit of algebra, we rewrite the change as

½Q�1 ¼
�
ul þ j[ðulÞ

��
�j[ðulÞ þ j[ðumÞ

�
�
�
ul þ j[ðulÞ � j[ðulÞ � um

��
um þ j[ðumÞ

�
¼

�
ul þ j[ðulÞ

��
�j[ðulÞ � um

�
þ
�
um þ j[ðulÞ

��
um þ j[ðumÞ

�
¼ �

�
um þ j[ðulÞ

��
ðul � umÞ þ

�
j[ðulÞ � j[ðumÞ

��
; ð4:4Þ

thus concluding that ½Q�1 < 0 as long as C#
þ is weak. Clearly, ½Q�1 will be positive

when C
#
þ is strong. To show that ½Q�2 ¼ 0, it su‰ces to observe that ½V � ¼ 0.

Case NC: (N #
eC

")-(C#0). Same as Case CN-1.

Case NN: (N #
eN

"
H)-(C

#0
þ ). Same as Case CN-1. r

5. Global diminishing property for splitting-merging patterns

We will now show that, despite the fact that the quadratic interaction potential

Qweak increases at interactions CR-3, RC-4, CN-3 and CC-3, this potential is in-

deed strictly decreasing globally in time for a large class of perturbations of cross-

ing shocks. Hence, with the bound we describe below, we provide the first step

towards an analysis of the global-in-time change of Qweak for arbitrary nonclassi-

cal entropy solutions. This section, therefore, provides a strong justification for

the potential proposed in the previous section.

The splitting-merging solutions considered now were introduced in LeFloch

and Shearer [17], where a modification of the total variation functional [13] was

shown to be strictly decreasing along the evolution of such splitting-merging solu-

tions. The total variation functional V presented in Section 3 also accomplishes

this, but here we improve on those results by establishing a similar monotonicity

result for the quadratic functional Qweak. Our analysis also brings to light some

interesting aspects of splitting-merging solutions that were not seen in [17].

Splitting-merging solutions are, roughly speaking, perturbations of crossing

shocks that lead to the creation and cancellation of a nonclassical shock. Such

solutions contain two (classical and nonclassical) big waves that may merge to-

gether (as a classical shock) and also interact with (classical) small waves. A typ-

ical initial data for splitting-merging patterns is formed of

(i) an isolated crossing shock with left- and right-hand states u�, uþ satisfying

u� > 0 and j]ðu�Þ < uþ, but uþ � j]ðu�Þ small,

(ii) followed, on the right-hand side, by a small rarefaction and a small shock.
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The rarefaction is su‰ciently strong that it has an interaction of type CR-4 with

the crossing shock, thereby leading to the creation of a pair of shock waves N #
e,

C". If the right-most shock is su‰ciently strong, then when it eventually interacts

with C" and the resulting shock will begin to approach N
#
e. The final interaction

of type NC will involve N
#
e and the shock just described, thereby eliminating the

nonclassical N #
e. By adding more waves to the left and the right, this process of

creation and cancellation of N #
e can be repeated indefinitely.

We consider a slightly more general configuration in the sense that we do not

explicitly demand that a small shock on the right be responsible for the penulti-

mate NC interaction. Fix some value u� > 0 and define

u�
0 ðxÞ ¼

u�; x < 0;

j]ðu�Þ; x > 0:

�
ð5:1Þ

Let ye be some function of locally bounded total variation and of oscillation

bounded by some small positive e, i.e.,

s
�
yeðxÞ; 0

�
< e; x a R:

Furthermore, assume that e is small with respect to the quantities

ju� þ j]ðu�Þj and jj]ðu�Þ � j[ðu�Þj; ð5:2Þ

which will be the generic strength of a nonclassical and classical shock to be de-

fined below. Without loss of generality, we may assume that ye is piecewise

constant. Let ue be the nonclassical solution to the conservation law (1.1) with ini-

tial data u�
0 þ ye, as generated by the front-tracking method. Assuming the solu-

tion initially possesses a single isolated crossing shock located at the origin x ¼ 0,

that is, assuming that j]
�
ueð0�Þ

�
< ueð0þÞ, we see that the crossing shock will be

adjacent to many small classical shocks and rarefactions. After an interaction of

type RC-3, CR-4, or CC-3, the small waves neighboring C
#
e may lead to the cre-

ation of a pair of waves, a nonclassical shock N
#
e and a classical shock C". After

the creation of N #
e, the only types of interaction involving small waves incoming

from the left of N #
e are RN and CN-3. The only types of interaction involving

small waves and the shock C", coming from either the left or the right, are entirely

classical (CC-1, RC-1 or CR-1). Moreover, no waves can cross C" from the right

or the left although the small waves that reach N
#
e from the left, will cross and

eventually reach C". Therefore, the only way that the nonclassical shock N
#
e can

be destroyed is if the shocks N #
e and C" change their speeds and eventually inter-

act back together, leading us back to (a perturbation of ) the original crossing

shock.
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These observations imply, among other things, that no waves can exit the do-

main W bounded by the trajectories of N #
e and C". Our goal, in the present sec-

tion, is to obtain a local bound on the change of the potential Qweak relative only

to the waves entering the domain W. It should already be clear that the key here is

to compare the total strength of the waves crossing N
#
e to the total strength of the

waves terminating at C".
Before stating our main result, we introduce some additional notation. Let t0

be a time of creation of a nonclassical wave N
#
e and denote by t1; t2; . . . ; tm the

times of the next m interactions between N
#
e and small waves Wi on the left, and

let tmþ1 be the time at which N
#
e is destroyed from an interaction with the shock

C". Similarly, let ~tti and ti be the times at which an interaction occurs between C"

and left-incoming waves ~WWi or right-incoming waves Wi, respectively. We define

the total variation along the trajectory N
#
e to be

TVðN #
eÞ :¼

Xm
i¼1

��s�N #
eðtiþÞ

�
� s

�
N

#
eðti�Þ

���; ð5:3Þ

and its signed variation

SVðN #
eÞ :¼ s

�
N #
eðtmþ1�Þ

�
� s

�
N #
eðt0þÞ

�
: ð5:4Þ

Completely similar definitions also apply to the wave C", but an additional de-

composition is introduced by separating the contributions from the left- and the

right-hand sides:

SVðC"Þ ¼ g
�X~mm

i¼1

~ssisð ~WWiÞg
	
þ g

�Xm
i¼1

sisðWiÞg
	
¼: SVLðC"Þ þ SVRðC"Þ;

where ~ssi (si) is þ1 if ~WWi (Wi) is a shock and �1 otherwise. For convenience, the

strengths of the small wave Wi, before and after it has crossed N
#
e at some time ti,

are denoted by W�
i and Wþ

i , respectively.

Theorem 5.1 (Global diminishing property for splitting-merging patterns).

Suppose that j[ is a kinetic function satisfying conditions (A1)–(A4) and prop-

erty (2.22). Moreover, assume that j[ is a C1 function over the open interval

fu j j[ðuÞAj\g, that is, for the set of u for which nonclassical shocks exist.

Let ue be the nonclassical solution to the conservation law (1.1) with initial

data u�
0 þ ye, where u�

0 is defined in (5.1) and the perturbation ye is of locally

bounded variation, of small amplitude and satisfies (5.2). Suppose that ue exhibits

a splitting-merging pattern on the time interval ½t0; tmþ1� along successive interac-
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tions with small waves (cf. the notation above). If e is su‰ciently small and the total

e¤ect of all waves on the classical shock C" increases its total strength, that is,

SVðC"Þ > 0; ð5:5Þ

then the variation of the interaction potential (4.1) is negative,

½Qweak�j½t0; tmþ1� < 0:

Our main assumption SVðC"Þ > 0 requires that the total e¤ect of the interac-

tion of all waves on C" is to increase its strength. In fact, this is always the case

for the perturbations of splitting-merging solutions within the setting [17]. In our

slightly more general setting though, waves crossing through N #
e will change the

critical state j]ðulÞ and therefore could conceivably lead to an NC interaction

even if C" interacted only with rarefactions on the right (SVðC"Þ < 0). A precise

statement can be found in the following.

Lemma 5.2 (Necessary condition for merging). Consider a splitting-merging solu-

tion under the same assumptions as Theorem 5.1. Let ul be the left-hand state of the

nonclassical shock N #
e and define the strength of the splitting to be

g0 :¼
��~uulðt0þÞ þ ~jj]

�
~uulðt0þÞ

���� s
�
N

#
eðt0þÞ

�
� s

�
C"ðt0þÞ

�
:

Under these conditions,

g0 þ ~jj]ð~uu�Þ
Xm
i¼1

sisðW�
i Þ < SVRðC"Þ ð5:6Þ

up to a constant of order OðeÞTVðN #
eÞ.

Proof. Throughout, we will assume that the wave strength and the states are mea-

sured in the variables ~uu ¼ cðuÞ, if such a change of variable was necessary, and we

will therefore omit the tilde superscript. If the waves N #
eðtmþ1�Þ and C"ðtmþ1�Þ

meet at time tmþ1, then there are no waves between them and the speed of N #
e

must be greater than the speed of C". Graphically, if the states are ulðtmþ1�Þ,
umðtmþ1�Þ and urðtmþ1�Þ then we have

j]
�
ulðtmþ1�Þ

�
< urðtmþ1�Þ:

Note that j[ is C1 in a neighborhood of u� and therefore j], which satisfies (2.3),

must also be C1. Exploiting the smoothness of j] and the identity urðt0þÞ þ g0 ¼
j]
�
ulðt0þÞ

�
, we can therefore deduce that, for some x,

g0 þ ðj]Þ0ðxÞ
�
ulðtmþ1�Þ � ulðt0þÞ

�
< urðtmþ1�Þ � urðt0þÞ:
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The right-hand side is clearly SVRðC"Þ and

ulðtmþ1�Þ � ulðt0þÞ ¼
Xm
i¼1

sisðW�
i Þ:

To complete the proof, it su‰ces to observe that, because x a
�
ulðtmþ1�Þ; ulðt0þÞ

�
is within e of u�, the continuity of the derivative of j] and the fact that

ðj[Þ0ðu�Þ < 1 together imply that

ðj]Þ0ðxÞ
�Xm

i¼1

sisðW�
i Þ

	
¼ ðj]Þ0ðu�Þ

�Xm
i¼1

sisðW�
i Þ

	
þ OðeÞTVðN #

eÞ: r

Example 5.3. Despite the conclusion of Lemma 5.2 that condition (5.5) is not

optimal, it is interesting to study the application of condition (5.6) in the case

of a simple interaction. Quite surprisingly, the bound (5.6) is too tight to imply

½Q� < 0. The analysis will show that the speed at which the interactions occur

(i.e., whether tmþ1 � t0 is large or small) plays a role in ultimately making Qweak

globally decreasing. This should not come entirely as a shock since it is well

known that in the presence of nonclassical shocks, the asymptotic profile is not en-

tirely determined by the BV structure of the initial data but also by the relative

positions of these waves.

We consider initial data involving a single rarefaction R crossing the nonclas-

sical shock N
#
e and we assume that j] is monotonically increasing (or else a single

rarefaction would be insu‰cient). Suppose that the strength of the rarefaction

wave after crossing N #
e is nR and that the change in N #

e during this interaction is

�nL. In Lemma 5.5 below, we will check that nL < nR and that nL þ nR is the

strength of the original rarefaction. Suppose the initial splitting is created by a

CR-4 interaction, where the incoming waves are

C#
e¼

�
ulðt0�Þ; urðt0�Þ

�
; R#

� ¼
�
urðt0�Þ; urðt0þÞ

�
;

and the outgoing waves are

N
#
e ¼

�
ulðt0�Þ; j[

�
ulðt0�Þ

��
; C" ¼

�
j[
�
ulðt0�Þ

�
; urðt0þÞ

�
:

The strength of the splitting is, as defined in the statement of Lemma 5.2,

g0 ¼ j]
�
ulðt0�Þ

�
� urðt0þÞ:

The change in Qweak during the first interaction CR-4 is therefore

½Q�1ðt0Þ ¼ sðN #
eÞsðC"Þ � sðC#

eÞsðR#
�ÞasðN #

eÞsðC"Þ �
�
sðN #

eÞ þ sðC"Þ
�
g0:
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The above bound is optimal in the sense that if the rarefaction R#
� in the front-

tracking approximation splits into two rarefactions
�
urðt0�Þ; j]

�
ulðt0�Þ

��
and�

j]
�
ulðt0�Þ

�
; urðt0þÞ

�
just prior to the interaction at time t0, then this is exactly

the change which would be computed (and also the largest possible).

Assuming that the interactions are CR-4, to create N
#
e and C", followed by

RN when the rarefaction crosses N #
e, RC-1 when the rarefaction reaches C" and

finally NC that returns a crossing shock, we have

½Q�1jW ¼ sðN #
eÞsðC"Þ ðdue to CR-4Þ

� nL
�
sðN #

eÞ þ nR
�

ðdue to RNÞ

� sðC"ÞnR ðdue to RC-1Þ

�
�
sðN #

eÞ � nL
��
sðC"Þ � nR

�
ðdue to NCÞ

¼ �2nLnR þ sðN #
eÞðnR � nL þ g0Þ þ sðC"Þð�nR þ nL � g0Þ:

We immediately note that condition (5.6) is now written as

g0 < ðj]Þ0ðxÞðnL þ nRÞ; ð5:7Þ

and that nL, nR and g0 are small with respect to sðN #
eÞ and sðC"Þ. Generically, the

only way ½Q�1 can be negative is if nR � nL < g0. Moreover, Proposition 2.6 allows

us to make nL arbitrarily small, so that the true condition is nR < g0.

In the best possible scenario, jðj]Þ0ðxÞj < 1 (geometrically we expect something

like jðj]Þ0j < jðj[Þ0j) and (5.7) becomes an equality. In other words, the rarefac-

tion is just strong enough to bring N #
e and C" back together. This would imply

that ½Q�1 < 0. However, if the interaction period is large then the waves N #
e and

C" can move arbitrarily far apart and the total strength of the rarefactions enter-

ing W can be made much larger than g0. In conclusion, the condition (5.6) is in-

su‰cient to prove that the interaction potential is globally decreasing.

Remark 5.4. We make two observations concerning Theorem 5.1.

1. Although the condition (5.5) is stronger than (5.6), in contrast to the later,

it appears to be su‰cient to prove that the weak interaction potential is globally

decreasing.

2. We have assumed that j[ is C1 away from the threshold where only classical

shocks exist. This rather strong assumption is verified in the examples presented

in Section 2 but does not appear naturally as a result of the general theory [13].

Nonetheless, it is used often in the proof and appears to be necessary, at least to

the analysis in this section.

For the proof of Theorem 5.1 we will need the following two lemmas. The in-

terest of the first lemma is to make more precise the (mainly linear) dependence of
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the change ½Q�1 in terms of the incoming wave sðW�
i Þ. The second lemma pro-

vides an estimate which closely relates the signed variations of C" and N #
e.

Lemma 5.5 (Interactions with the nonclassical shock). Consider interactions RN

and CN-3 at the time ti involving a left-incoming weak wave Wi and the nonclassical

shock N
#
e. Then there exists a positive constant Li < 1 such that

sðWþ
i Þ ¼ LisðW�

i Þ;

s
�
N

#
eðtiþÞ

�
¼ s

�
N

#
eðti�Þ

�
þ sið1� LiÞsðW�

i Þ;

½Q�1 ¼ �ð1� LiÞsðW�
i Þ

�
s
�
N #
eðti�Þ

�
� siLisðW�

i Þ
�
< 0;

where si is þ1 if Wi is a shock and �1 otherwise. Moreover, one has

Li ¼ ðj[Þ0ðu�Þ þ OðeÞ: ð5:8Þ

Proof. We consider only an RN interaction, since the calculations for an incom-

ing shock are similar and have been essentially treated in Theorem 4.2; see equa-

tion (4.4). When Wi is small, then the states are ordered as in (3.8), namely,

�j[ðui
l Þ < �j[ðui

mÞ < ui
l < ui

m:

Then we have

sðWþ
i Þ ¼ j�j[ðui

l Þ þ j[ðui
mÞj ¼: Lijui

l � ui
mj ¼ LisðW�

i Þ;

with Li < 1 since j[ is a strict contraction with a Lipschitz constant uniformly

below 1. On the other hand, relation (5.8) is obvious since j[ is C1 in a neighbor-

hood of u�.
Finally, the outgoing nonclassical shock has strength

s
�
N

#
eðtiþÞ

�
¼ jui

l þ j[ðui
l Þj

¼ �jui
l � ui

mj þ jui
m þ j[ðui

mÞj þ jj[ðui
mÞ � j[ðui

l Þj

¼ s
�
N

#
eðti�Þ

�
� ð1� LiÞsðW�

i Þ;

while the change ½Q�1 takes the form

½Q�1 ¼ s
�
N

#
eðtiþÞ

�
sðWþ

i Þ � s
�
N

#
eðti�Þ

�
sðW�

i Þ

¼
�
s
�
N

#
eðti�Þ

�
� ð1� LiÞsðW�

i Þ
�
LisðW�

i Þ � s
�
N

#
eðti�Þ

�
sðW�

i Þ

¼ �ð1� LiÞsðW�
i Þ

�
s
�
N #
eðti�Þ

�
þ LisðW�

i Þ
�
< 0: r
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Lemma 5.6 (Property of the signed variations). If L� :¼ ðj[Þ0ðu�Þ a ð1=2; 1Þ, then
l� :¼ ð1� L�Þ=L� a ð0; 1Þ and one has

jl� SVLðC"Þ � SVðN #
eÞjaOðeÞTVðN #

eÞ: ð5:9Þ

Proof. Using Lemma 5.5, we compute

SVðN #
eÞ ¼

Xm
i¼1

sið1� LiÞsðW�
i Þ

¼
Xm
i¼1

sið1� L�ÞsðW�
i Þ þ

Xm
i¼1

siðL� � LiÞsðW�
i Þ

¼ l� Xm
i¼1

siL
�sðW�

i Þ þ
Xm
i¼1

siðL� � LiÞsðW�
i Þ

¼ l� Xm
i¼1

siLisðW�
i Þ þ ð1þ l�Þ

Xm
i¼1

siðL� � LiÞsðW�
i Þ: ð5:10Þ

Observe that the waves Wþ
i which crossed N #

e, but have yet to reach C", may in-

teract in W. All these waves are weak and therefore the potential interactions are

all classical and will preserve the signed variation. This provides the identity

Xm
i¼1

siLisðW�
i Þ ¼

Xm
i¼1

sisðWþ
i Þ ¼

X~mm

i¼1

~ssisð ~WWiÞ ¼ SVLðC"Þ;

which, when substituted into (5.10), proves

SVðN #
eÞ ¼ l� SVLðC"Þ þ ð1þ l�Þ

Xm
i¼1

siðL� � LiÞsðW�
i Þ:

If L� < 1, a di‰culty appears because the signs of L� � Li are uncorrelated to the

signs si. On the other hand, because the kinetic function is smooth in a neighbor-

hood of u�, for each index i, L� � Li ¼ OiðeÞ. If we take OðeÞ ¼ maxi OiðeÞ and

use L :¼ maxi Li, then the di¤erence is

jl� SVLðC"Þ � SVðN #
eÞja 2OðeÞ

Xm
i¼1

jsðW�
i Þj

a
2

1� L
OðeÞTVðN #

eÞ ¼ OðeÞTVðN #
eÞ: r
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Proof of Theorem 5.1. To help the reader understand the wave interactions (and

cancellations) in this proof, we begin with a few preliminary comments. Simply

put, the final NC interaction should provide a quadratic term which is, later, can-

celled by a similar quadratic term when the two waves merge. One may naı̈vely

expect the sum

�s
�
N #
eðtmþ1�Þ

�
s
�
C"ðtmþ1�Þ

�
þ s

�
N #
eðt0þÞ

�
s
�
C"ðt0þÞ

�
to be negative. Of course, the cumulative strength of the changes during the inter-

actions with the small waves must also be taken into account. The di¤erence be-

tween the strength of the initial and final waves N #
e, C

" is measured by the signed

variation SV along those two shocks. Our proof below shows that, along the tra-

jectories N #
e and C", the change ½Q�1 is negative and proportional to the total vari-

ation TVðN #
eÞ þ TVðC"Þ. The total variation being larger than the signed varia-

tion, after further analysis one can conclude that ½Q�1jW < 0. Given that only

classical shocks exist away from W, the change ½Q�2, and therefore ½Q�, is globally
negative over the time interval ½t0; tmþ1�.

The key technical information is provided by Lemma 5.6, which implies that,

up to a quantity of order OðeÞTVðN #
eÞ, we have SVðN #

eÞ ¼ l� SVLðC"Þ and, in

particular, that the signed variations have the same sign. We now have all the

tools necessary to proceed with the proof of Theorem 5.1.

The perturbation ye has bounded oscillation and therefore it can only alter the

right-hand state of C" by an amount e. The small waves entering W through N #
e

only alter its strength by jð1� LiÞsðW�
i Þj < e. In both cases, we expect that every-

where along their trajectories,

s
�
N

#
eðtÞ

�
> s

�
N

#
eðt0þÞ

�
� 2e; s

�
C"ðtÞ

�
> s

�
C"ðt0þÞ

�
� 2e:

Ignoring the negative contribution to ½Q�1 coming from the interaction that

generated N #
e (which, anyway, can be arbitrarily small), and neglecting also all

classical interactions inside W (for which ½Q�1a 0 and possibly 0), we have

½Q�1jWaþs
�
N

#
eðt0þÞ

�
s
�
C"ðt0þÞ

�
�
Xm
i¼1

ð1� LiÞsðW�
i Þ

�
s
�
N

#
eðti�Þ

�
� siLisðW�

i Þ
�

�
X~mm

i¼1

sð ~WWiÞs
�
C"ð~tti�Þ

�
�
Xm
i¼1

sðWiÞs
�
C"ðti�Þ

�
� s

�
N

#
eðtmþ1�Þ

�
s
�
C"ðtmþ1�Þ

�
: ð5:11Þ
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Using the previous bounds on the strength of shocks bounding W, we rewrite the

previous expression as

½Q�1jWaþs
�
N #
eðt0þÞ

�
s
�
C"ðt0þÞ

�
�
�
s
�
N

#
eðt0þÞ

�
� 3e

�
TVðN #

eÞ �
�
s
�
C"ðt0þÞ

�
� 2e

�
TVðC"Þ

�
�
s
�
N

#
eðt0þÞ

�
þ SVðN #

eÞ
��
s
�
C"ðt0þÞ

�
þ SVðC"Þ

�
¼ �

�
s
�
N

#
eðt0þÞ

�
� 3e

�
TVðN #

eÞ �
�
s
�
C"ðt0þÞ

�
� 2e

�
TVðC"Þ

� s
�
N

#
eðt0þÞ

�
SVðC"Þ � s

�
C"ðt0þÞ

�
SVðN #

eÞ � SVðN #
eÞ SVðC"Þ: ð5:12Þ

Clearly, the main di‰culty now lies in the sign of SVðN #
eÞ and SVðC"Þ. If both are

positive, then all the terms are negative and the proof is completed. Recall that

SVðC"Þb 0, by assumption, so that it su‰ces to consider the (only possibly un-

favorable) case SVðN #
eÞ < 0 which makes the fourth and fifth terms negative.

We immediately note that any correction terms of order OðeÞTVðN #
eÞ can be

included into the first term of the decomposition (5.12) and, therefore, taking a

smaller e if necessary, we can make the new term negative:

�
�
s
�
N

#
eðt0þÞ

�
� OðeÞ

�
TVðN #

eÞ < 0:

This fact is used below without further comment.

Using Lemma 5.6 we have jSVðN #
eÞjQl�jSVLðC"Þja l� TVðC"Þ, and the

fourth term in (5.12) can be written as

�s
�
C"ðt0þÞ

�
SVðN #

eÞa�l�s
�
C"ðt0þÞ

�
TVðC"Þ þ OðeÞTVðN #

eÞ: ð5:13Þ

Taking hC ¼ l� su‰ces to guarantee that the term vanishes.

The fifth term in (5.12) can be bounded as follows

�SVðN #
eÞ SVðC"ÞaSVðC"ÞTVðN #

eÞa eTVðN #
eÞ: ð5:14Þ

To conclude, we remark that the last term in (5.13) can be included in the first

term of (5.12) while the upper bound (5.14) can be included in the second term of

(5.12). This completes the proof of Theorem 5.1. r
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