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1. Introduction

The investigation of dual theory of polynomials in Banach spaces plays an impor-
tant role in Functional Analysis (for example, characterizations of the duals of
approximable n-homogeneous polynomials and nuclear n-homogeneous polyno-
mials can be found in [6], [12], respectively). In this paper we introduce the notion
of Lorentz nuclear homogeneous polynomials and characterize the dual of these
classes, extending results from [20]. Besides its own interest, we believe that our
results can contribute to the investigation of convolution equations, as it will be
explained in the next paragraph.

The study of polynomial and holomorphic nuclear mappings between Banach
spaces appears in 1966 with Gupta’s work [12] on an infinite-dimensional exten-
sion of a theorem due to Malgrange on the existence and approximation of con-
volution equations (see [13]). One year later, Martineau [14] investigated partial
differential equations (of order infinity) from the point of view of convolution
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equations in certain spaces of entire functions. About ten years later, the second
named author, in [16], [18], [19] extended [13], [14] for nuclear entire mappings and
a decisive role is played in [16], [18], [19] by the characterizations of the duals of
some classes of nuclear mappings. Recent works [9], [21] in the same direction
also reinforce the importance played by the characterization of duals of spaces
of mappings of nuclear type. We believe that the duality results obtained in the
present article can lead to more general extensions of Gupta’s and Malgrange’s
results, following the lines of [9], [21].

2. Lorentz sequence spaces

Henceforth, N represents the set of positive integers and if me N, [, :=
{1,...,m}. The letters E and F will always denote Banach spaces over K = R
or C. As usual, E’ represents the topological dual of E and Bg: denotes its unit
ball. We denote by cy(E) the sequence space (with the sup norm ||.||,) composed
by the sequences (xj)jlil in E so that lim,_,,, x, = 0 and ¢oo(E) is the subspace
of ¢y(E) formed by the sequences (x;) jil for which there is a Ny such that x, =0
for all n > Ny. When E = K we write ¢y and ¢go instead of ¢o(IK) and cgo(K),
respectively. If u = (1) € coo(E), the symbol card(«) denotes the cardinality of
the set {j;u; # 0}.

As usual /., (E) represents the vector space of bounded sequences in E, with the
sup norm and /o, := 1, (K). If me N, (xj);il denotes (xi,...,X,,0,0,...), and
when (x;) ;Zl is a sequence of non-negative real numbers, we say that (x;) Jil ad-
mits a non-increasing rearrangement if there is an injection 7 : N — N such that
Xn(1) = Xg(2) = --- =0 and 7 '(j) # 0 whenever x; # 0. If p > 1, then p’ denotes
the conjugate of p, i.e., %‘f“ # =1
Definition 2.1. Let E be a Banach space, x = (x;),2, € /,,(E) and

ag n(x) = inf{||x —ul| ,; u € coo(E) and card(u) < n}.

For 0 < r,q < +0o0, the Lorentz sequence space /., (E) consists of all sequences
x = (x));2) € I (E) such that

(nl/rfl/an‘n(X)) 3’3:1

1 €Ly

For x € [ 4 (E) we define the quasi-norm
¥l = (7 0a2.0()), 24

It is well known that /. ,)(E) = co(E) and it is also easy to prove that if
x = (x));Z; € co(E), then the sequence (||x;]|);Z; admits a non-increasing rear-
rangement.
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2.1. Estimates for Lorentz sequence spaces. Usually, we are investigating the
space [, ,(E) with the quasi-norm

I¥ll.gy = [[ (07 ag (), |,
However,if l <r< wand 1 < ¢ < oo,
norm - l/r 1/ l/q
1 = [0 (> et
n=1

defines an equivalent norm on [, ,(E). This result, for the case E = [K, appears
in [27], 13.9.5. The general case is a simple consequence; in fact, if x = (xj)ﬁl €
l(,.7 ) (E), then

aE,n(x) - aK,n(Z)a

where

= (lalls fleff - )-

From now on, will write a,(x) instead of ag ,(x).
Proposition 2.2. Let | <r< o and 1 <g< . If x= (xj) Z1 €l g(E) and
y= (yj)j:1 € ly,¢)(E), then z = (z‘,)]:1 € ly,q)(E), where zy1 = Xy and zo = Yy,
fork e N, and
(zllgrg ) < 271l ) =+ yllingy ) -
Proof. 1t is enough to show that
(i) I < 27011 (0) 1y 1 + (i) 1] (1)

for all n € N.
In fact, if we prove (1) we can conclude that

N )
S| (mrn) ()

n=1

||
Ms

(l2l1ggy )

3
8 i
-

n

[t () )]

n=1 k=1
= 27[(IxlIZ)  + Ul g -
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So, let us prove (1).

Since ;. (E) = co(E), we have x € ¢o(E) and y € ¢o(E). So, z € co(E) and
there is an injection 7 such that (||zn(.,->|\);il is non-increasing. We denote by o
and J the injections such that (||x,(,[),2; and (|| vs(;l),2; are non-increasing. We
know that

aj(z) = llzz(pll,  @(x) = lIxopll  and  a;(y) = [[yspll,
for every positive integer j. We define

Lo ={je{l,....n};|zz |l = [[Xo@x)|| for some k =1,...,n}
Ls={je{l,...,n}k ||zn(j)\| = ||y(5(k)|| for some k = 1,...,n}.

Now we have

Sz ) = (3 T l)' = (> i)+ (3 oo )’
j=1 Jj=1 j=1

/EIVKU
and
q 1 q 1 q 1 q
(D= tzel)” < (ol = (O Iain )+ (- Ivan )
J€lns j=1 Jj=1 Jj=1
Then
n q L a11/q
S lzell + D2 Nzl < 2[ (D0 Iwainl]) + (- Ivanl)]
jeln.a jEIn.é ]:1 ]:1
and hence

(an lzenll)” < (30 lzmiall + 32 Nzrnll)

J€h s J€ls

<2[(Sreanl)"+ (o) ]

O

The following proposition appears, in essence, in [27], Remark 13.9.5:
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Proposition 2.3 ([27], Remark 13.9.5). If | <r < oo and 1 < g < oo, then

norm

-
¥l gy < Mgy < = 1%l

(r.q)

for all x € [, ,(E).

Proof. In[27], Remark 13.9.5, the result appears for £ = K. The extension to the
general case is straightforward. O

We end this section with an useful inequality for the quasi-norm ||. |, ,

Proposition 2.4. Let 1 <r< o and 1 <g< 0. If x= (x,) "1 €y g (E) and
y= (y/)],l € ly.¢)(E) then z = (zj)] \» defined by zy_1 = xi and Zok = Vi, IS In
l(,._’q)(E) and

r

(lle)* 20 (725 ) 1l ) + Ul )

Proof. Using Propositions 2.2 and 2.3, we get

Nzl ) < Nzl )® < 290l G ) + Uy llirgy )]
<29 Kr_rl ||x||(,’q>>q + (r_rl ||y||<r,q)>q]
_ q(rrl)qwxn,q) (EE O

3. Lorentz summing polynomials—preparatory results

The concept of Lorentz summing polynomials was recently introduced and ex-
plored in [23]; in this section, for the sake of completeness, we will recall the results
concerning Lorentz summing polynomials that will be needed in the present paper.

The space of continuous linear operators from E to F will be denoted by
Z(E; F) and the space of continuous n-homogeneous polynomials from E to F
will be represented by 2("E; F). In both classes, we consider the sup norm. We
also represent the space of finite type polynomials from E to F by #,("E; F). For
the theory of polynomials and multilinear mappings in Banach spaces we refer to
(5], [24].

Let p>0. Recall that l];V(E) denotes the vector space composed by the
sequences (x;)/”, in E such that ((p(xj));il el, for all p € E’. We define, for
0<s,g<oo, )

(sg(E) as the space of the sequences (xj) ~, in E such that
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H((p(xn))ilﬂ(s g <@ for every ¢ € E’.  An application of the Closed Graph
Theorem assures that

sup | (¢(xn)),y [l 0y < 0 (2)
||(,,HS1H( )zl

and one can verify that

H(xn);il Hw‘(s‘z]) = Sup || (¢(X”))Zo:1 H(sq)
ol <1 '

defines a quasi-norm on l("iq)(E ).

Definition 3.1. If 0 < p, ¢,r,s < oo, an n-homogeneous polynomial P € Z("E; F)
is Lorentz ((s,p);(r,q))-summing if (P(xj))‘;il € lisp)(F) for each (x))”, e
l(‘,1 9 (E).

The vector space composed by the Lorentz ((s, p); (7, q))-summing n-
homogeneous polynomials from E to F is denoted by 2. p); (r.q)) ("E; F). When
n =1 we write gas((s7p);(r,q))(E; F).

When s = p, we write &, (1, ¢)) Instead of L5, g): (r,q))s When r = ¢, we denote
Las((s.p):) Tnstead of L5, p); (g.4))-

Note that when n = 1, s = p and r = ¢ we have the usual concept of absolutely
(p; ¢)-summing operator. The space of absolutely (p; ¢)-summing operators from
E to F is represented by L. (E;F). When p = ¢, we simply write % , in-
stead of Z();4). For the theory of absolutely summing linear operators we refer
to [4].

The next characterization of Lorentz summing mappings was proved in [23]:

Theorem 3.2. For P € #("E; F), the following conditions are equivalent:
(1) P is Lorentz ((s, p); (r,q))-summing.
(2) There is C > 0 such that

n
w, (r.q)

H(P(xj));ilu(y_,p) < CH(Xj);il

forallme N and xy,...,x, € E.
(3) There is C > 0 such that

H(P(Xj));ilu(s,p) < CICG) 2, g

for all (x;)2, € £} ) (E).

The infimum of the constants C for which the above inequalities hold is a quasi-
norm (denoted by ||.{| u5((s p): (r.g))) SO Pas((s.p); (r.)) ("E; F) and under this quasi-norm,
Pas((s.p); (r.q)) ("E; F) is complete.
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4. Lorentz nuclear polynomials
The following lemma is simple but useful, and appears in [28], p. 111:
Lemma 4.1. Ifr,q,p,s € [1, oo are such that r < q, s < p, then
legy <l with |, < g Loy S with |1, < 1l 3)

Let E and F be Banach spaces, n € N and r,¢q,s, p € ]1, o[ such that r < ¢,
s’ < p’ and

=
we have

If (7)) € lrg), (9),21 € 1,0 (E") and (37) 2, € Lo (F), note that for every x € E

(Hlj((pj(x))n)ﬂ )f:l el.

Thus, denoting by J the canonical inclusion of E into E”, we have

S 1) 5 < 10020 S (o))
J=1 j=1

< N2l (i) 2 G

L 4.1 .
NN @) 1) g

= 1Dl (Ix(ep) 2,

< Il )2 e )24

n 17 O
(s'.p") ” (A/)/il H (r,q)

()‘T/)jil ||(r,q)‘

|Z (s",p") |

We conclude that the map P : E — F given by

P(x) = 4(p(x)"y; “4)

J=1

is a well-defined n-homogeneous polynomial. Besides, P is also continuous, since

PN < X2l 1) 21 e, (5 o 1224 - ()
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So, we have
1P < 1) 2l (o) 20 1 o o 12D - (6)

Definition 4.2. Let E and F be Banach spaces, n € N and r,¢, s, p € |1, co[ such
that r < ¢, s’ < p’ and

_.
IA
SRR

+

"B\|:

An n-homogeneous polynomial P : E — F is Lorentz ((r,q); (s, p))-nuclear if

9= 4oy, @

J=1

with ()2 € L), (97);21 € [, (E') and ()2 € Lo (F).
We denote by 2y ((+,¢): (s,p)) ("E; ') the subset of Z("E; F) composed by the
n-homogeneous polynomials which are Lorentz ((r,q); (s, p))-nuclear. We define

HP”N ((r,q); (s,0)) *lan( )} IH (r,q) ||(g0j)] 1||n (s',p") ||(y]) 00 (8>

where the infimum is considered for all representations of P € 2y ((.¢): (s,p)) ("E; F)

of the form (7).
Note that from (6) and (8) we have

1P < 1PNy, (. )s (5.p))- ®)

From now on, unless stated otherwise, r,q,s, p €]1,0[, with r <¢ and
s'<p.

Proposition 4.3. The space (2. ((r.q):(5.0)"E F)s Iy (g sp) 8 @ quasi-
normed space. Besides, for t, given by

there is a M > 0 so that

||P+ QHIH qp)) < (HPth 1 q qp + ||Q|| r q (yp))) (10)

For this reason we call this quasi-norm by “quasi t,-norm’.
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Proof. If P =0 it is clear that ||[P||y (.., = 0- Conversely, if [Py (.. s.0)
=0, then (9) implies that P = 0.

It is routine to verify that [|AP(ly (. o). s = A I PlN, ((r.0): 5.))-

The triangular inequality is the property that needs Justlﬁcatlon.

We consider P, Q € Py ((r,q): (s.p))("E; F) of the form

ji:z, 9;(x and  Q(x) = ,ml n;(9(x))"z; (11)
Define
R() = il 3 0,0) ™,
with

V2j-1 = 4j  and V2 = W) Iij—l =0 and lij =9,

wy—1=y; and  wy =z
Note that

2m—1

lim | ; 2 (15(0) "y | = lim [z'_":
P(x) + O(x),
2m
J%Eww%dﬂﬂi

= P(x) + Q(x),

m—1
()25 + 2o (%) "]

m

()" + Doy (%)
=1

and hence R 1s well defined and

= [Zl: 2 (0(x)) "wi] = P() + Q(x).

It follows (from Proposition 2.4) that there are o > 0 and § > 0 such that

{I( -)3°31||". < afll(2) 21016 q) + 101211 )

N : (12)
WD oy < Bl 9)7 1||’ (S,,,,g+||(9.f)_,-:1||fi,(sf,pq]~
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For a given ¢ > 0 we choose representations of P and Q as in (11) in such a way
that

1) 21 L, (57,7
|| "9/)1 1||n (s,p")

From (12) and (13) we get

IO = 1), =1,

1D Zll g < L+ DIPl (. g0: 5] ™

)2 gy < [+l (00 5.0 ™ (13)
( ) <

(

(1 +e>||P||N ™
<[(1+&)1Clx. (rogrespn]) ™ -

1) E g < A+ UPIR (oo + 1IN g s
H( )} IHII/ (s",p") < [ﬂ<1+8> ( j\nl((rq) (s,p)) +||Q||t" p)))]l/pl7
H(Wj)jzluoo = 1.

It follows that for M = max{«, f}, we have (since 1y = Ly

tﬂ >
n 1 n
||P+ QHN ((r,q); (s,p)) < Ml/tn(l +6)(||P|| ((r,q); (s,p)) + ||Q||t sp))) &
and
1P+ O (.o < M+ WPIY (1.0 o0 T NI (0.0 (00
Since ¢ > 0 is arbitrary, we conclude that
1P+ 0% (oo < MUPUR, (g 5.0 + 1IN, (6. 00: 5.0)-

A standard argument provides
1P+l (g1 < @M UPlLx 135500+ 120, 1 6.0
and so |||y ((.): (s, 1S @ quasi-norm. 0
The proof of the next result is standard.

Proposition 4.4. 2y (. o). (5.p))("E; F) with the metrizable topology defined by
-3, ((r,q): (5,py) 1S complete.

Example 4.5. It is clear that 2("E; F) is contained in 2y (¢ ¢).(s,p) ("E; F) and

19" bllx, (r,9): 5,0 = l0"DI-
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In fact,

19" b, ((r.q): (5.00) = llooll” IIbH—Ilsﬂ”bll II(/)"bIIN ((r, ) 5.0))"

The following result (ideal property) has a straightforward proof.

Proposition 4.6. IfP € PN, (rnq):s.p)("E;F), T € L(F,G)and S € (D, E), then
ToPoSePyrq):isp)"D;G) and

”ToPoSHN.((ng);(s,p)) =< HSHn”P“N((I,q)(sp))HT”

The following definition will be useful for technical reasons:

Definition 4.7. If P € 2/("E; F) we set

||P‘|Nf,((r,q);(3p ll'lfH( )j 1” [H((o]) ||w J’)}n”(y_/)jnllnxa

where the infimum is taken for all finite representations of P of the form

= 4i(0;(0)"y;
=1

Remark 4.8. As in Proposition 4.3, we can prove that [|.[[y, (. ¢);(s.,)) 18 @ quasi f,-
norm. In this case we see that the constant that appears on the triangular inequal-
ity is the same for both quasi z,-norms. We denote by M as we have done before.
It is clear that

HP”N ((ryq); (s,p)) = HP”N/,((r,q):(s,p))? (14)

for all P € #;("E;F). The natural question is to know if these quasi #,-norms are
equivalent for some choices of £ and F.

Since (24("E;F),||.|ly) and (Jf(”E F),||-Ily,) are not complete, we cannot
use the Open Mapping Theorem in addition to (14) to conclude that these quasi-
norms are equivalent.

The next lemmata are easy, but useful. We omit their proofs:

Lemma 4.9. If (/;).2, € Iy, then

lim [ (75)

j=t [ (r,q)

=0.
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Lemma 4.10. 2/("E; F) is dense in (2. ((r.q):(5.0)"E; F)s - Iw (0 sp))- PP
cisely, if

P=> Ji0)"v; € Pn.(r.q): .00 ("E; F),

o0
=1

j
then Qn := 32", 2i(9;)"y; converges to P in |||y ((.q): (s.p))-

From now on, the symbols M and ¢, will be the same as in Proposition 4.3.
Proposition 4.11. If E is finite-dimensional, then

N, ((r,q); (s, p)) Ve N, ( i (s,p))
1Pl ,, < M'"||p| (15)

for all P e ?("E; F).

Proof. In this case we know that 2,("E; F) = Z("E; F) is complete for the quasi

trnorms |y, gy s A0 Ll (r,g): s.p)- BY the Open Mapping Theorem,

these quasi #,-norms are equivalent. Hence, there is C > 0 such that

||P||N/,((r,q);(s,11)) < CHPHN,((r,q);(s,p))
for each P. For ¢ > 0 we choose a representation

x) = Zj'/ ((”j(x)) Vi

=1
such that

1D Z il 121 1 o 1) 20 e < X+ Py gpes - (16)

From Lemma 4.10, there is a m € N such that
DI NIINEY Lo SR W

< E||P||N,((r.q);(s,p)>'
We thus have

m
1 n m m n m
D40y SNl b NN

<|

()V)](X:)l|‘(1q)[||(gp])/oil Hlv,(s’,p’)]n||(yj)"oi
< (T + Py, ((r.9): (5.0))-
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Now, from Remark 4.8 we get
Iy
P11, .03 (5.

m
< MHZ%‘(%)"M
=

Iy

Nr, ((r,9); (s, p

Iy

Ny, ((r,q); (s,p))

Iy

N, ((r,9); (s,p))

+ MHZA}‘(%)"J&'
) j>m

> hi(0)"y;

j>m

< M(l +g)tn||P||le,((r,q):(s7p)) + M‘L"IHHPHR?’,((
<M

<M(1+e)"

1, 1,
PlIR (1) (50 T MC

1,q):(s:p))

[(E2)" + & TIPIY (10

Since ¢ > 0 is arbitrary, this proves our result. O

Using Proposition 4.6 and Proposition 4.11 we easily prove the following
lemma:

Lemma 4.12. If P € Py ((y.q);(s.p)("E; F) and S € Z;(D, E), then

1/ty

||PO SHN/,((V,q);(s,p)) <M & ||P||N‘((1q),(\‘p))”SHn (17)

Proposition 4.13. If E’ has the bounded approximation property, then

1/t

1Pl apstsn < MNPl gt

for every P € Z/("E; F).
Proof. We know that there is a symmetric n-linear mapping 7" of finite type

on E x --- x E, with values in F such that P(x) = T'(x,...,x) forall x e E. Itis
not difficult to see that 7} € £ (E; Z("'E; F)) given by

Ti(x1)(x2, ooy xn) = T(x1,. .., Xn)
belongs to %5 (E; & ("'E:F )). Since E’ has the bounded approximation prop-

erty (and hence the A-approximation property for some 4 > 0), from an adaptation
of [27], 10.2.6, for each ¢ > 0 we can find S € % (E; E) such that 77 o S = T} and

[IS] < (1 +¢)A. (18)
We have

T(S(xl)7x27"'axn) = T(X],...,Xn)
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for all xq,...,x, € E. In fact,

T(x1,..., %) = T1(x1)(x2,...,Xp)
= (T108)(x1)(x2, - ., %) (19)
= T1(Sx1)(x2, ..., Xn)
= T(Sx1,x2,...,Xy).

Since 7 is symmetric, by repeating the argument of (19), we can easily con-
clude that

PoS(x)=T(Sx,...,8x)=T(x,...,x) = P(x)
for all x € E. We thus have

IPlny. (r.0): .00 = P © Sl (0. 0): 5.0

(17)
< Ml/tn||P||N7((r7q);(x7p))||SHn

s e
< MU 46) 2Pl () 5.0))-

Now, making ¢ — 0, we get

1Py, g 5.00 < M2 WP, (03 500 (20)

for every P € #¢("E; F).
Let C = M/t
For ¢ > 0 we choose a representation

P(x)=> Ji(p;(x)"y;
j=1
such that
1Dl g 1) 2 1 o O 2 e < L+ DIy, (g sy (21)
So, since

using Lemma 4.9 we know that there exists an integer m € N such that

()2l 1@ 20 I, o 1) 2 e < 00,

5 &
||()bj)‘];'\:)l7‘l+l”(l‘,q)||(¢j)]\?(:)m+l||ﬁ77(_§'/,pl)||(yj)]\'in1+1||OC = GHPHN,((r,q);(S,p))'
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Hence

CHZ 2i(0)"y;

j>m

<¢|P ) (s p)) - 22
Ly e = NP a5 (22)

On the other hand, note that

m

lH < 1) N 1@ I o 1)
; A]((ﬂj) Vi Ny (1, 9); (50) = ||( ./)_1:1H(i,q)”(q).})_]fl||w,(s 7p)”(yj)_],l

[ve]

21
< (L +Ply, (.00 5.0 (23)

Now, from the triangular inequality, we get

Z i.f((”j) nyj
=

+ MHZ ()" y;
j>m
(20) and (23)
<

n

Nr, ((r.q); (s.p)

PR, ;o) < M

Iy

Ny, ((r,9); (s,p))

ML+ 2)"PIR. (. g1: ()

Z ’li(?”j)nyj
j>m

In

N, ((r.q); (s.p))

+MC"

(22)

< M[(1+8)" +&"PIN (g (000

and, since ¢ > 0 is arbitrary, the proof is done. O

5. The topological dual of 2y, (., ); (s, p))("E5 F)

In this section, we will show that the topological dual of 2y ((.q): (s,p)) ("E; F) is
isomorphic to the space 2y, ¢1): (s, p)) ("E'; F') provided that E has the bounded
approximation property.

The following intuitive lemma, which is proved in [23], will be needed in the
next results.

Lemma 5.1. Let (c,),-, be a decreasing sequence of non-negative real numbers. If

(bj);il is a sequence of non-negative real numbers so that there exists a bijection

n: N — N such that (bn(n))f: | Is a non-increasing rearrangement, then

0 0
Z Cjbj < Z Cjbn(j).
Jj=1 j=1

The same holds for injection instead of bijection.
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Theorem 5.2. If E' has the bounded approximation property then, for each P €
Pas(r,q): (s'.p") ("E's '), we can associate a well defined continuous linear functional
Tp on Py ((r.q):(s.p) ("E; ) given by

Tp (i ij(o}’yj) = Zx;ijp((ﬂj)(yj),

and

||TP|| < Ml/tn“P”as((r q'):(s",p"))"

Proof. Let P € Pyyrr.q1y:(s',pry) ("E'; F'). Define

T1(>'f) : (2/("E; F), ||'||N,((r,q):,(3-,lf))) - K
by

(0) =3 AP0 ()

for Q = Z’” 4j¢'y;. One can show, using tensor products, that T,g'f ')(Q) does not
depend on the particular representation of Q.

Since r < ¢, we have 1’ > ¢’ and (j7'/" _1)’”1 is non-increasing. Let us choose
a bijection 0 : I, — L, such that (|[P(gs)|),-, is non-increasing.

Let 7 : I, — I,, denote a bijection such that (|4,(;[);Z; is non-increasing. We
have

75(0)|
< STIHP@) L < S 14T Lyl
J=1 j=1
=Z\ W IP@ ) IH Y2l

<~
Il
_

jl/rfl/qM |]1/’ -1/q' HP((P,Z )H ||y7z H

I
-Mi

Jj=1

Holder Ineq

. Ry u ol el ’ 1/‘1/
< NG D (D2 7 NP )1 ) T M)
J=1

Lemma 5.1

A/ TN N
1G4 2 Dl (32 77 1P Cos )1 ) I L
Jj=1

= ||(j’f)]"il||(r,q)||P||as((r q');(s'.p") “((oj) Hu (s".p") H(yj) H
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This implies that

IT5(0)] < [Pl o |l (0 5.0

for all Q € Z7("E; F). Hence, if we consider E’ with the bounded approximation
property, we use Proposition 4.13 in order to obtain

| ( )l <M1/Z’IHPHas ((r",q"); (s",p") HQHN ((r,q); (s,p)) (24)

for all Q € 2#,("E; F).We conclude that T ,(,f ) is continuous.
From Lemma 4.10, we define (in the obvious way)

Tr - (2N, (0,0 600 C"E F), Ll (i) — I

by

Tp(Q) = lim T (Z lj(p] yj)

m— oo

when Q = Zj 1 ](”j Y-
From (24) we have

m
75 (X 2w ) | < MY Pl "l ny
- ((r,q); (s,p))

and from the definition of 7 we get (making m — o0)

|TP( )| <M1/[ﬂ||P||m (r',q");(s',p") HQHN ((r,q); (s,p))

for cvery Q € yN,((r,q);(s,p))(nE; F) O

Theorem 5.3. For each T e ﬂN,(<,7q);(S,p))(”E;F)/, the map Pt : E' — F' given
by

Pr(p)(y) =T(p"y)
belongs 10 Py, 4y (s.p) ("E's F') and satisfies

1P las(rr,g1): (57, o) < I I- (25)
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Proof. Let T € 2y, ((r,q); (s.p)) (" E; F). IfmeN and ¢,,...,p, are in E', we con-
sider a bijection 7 : I, — I,,, such that

(”PT((pn )”)m

is non-increasing.
For & > 0 we can find y,;) € F, with ||y, 5|l =1, j=1,...,m, such that

11PN

. /_ 'Nqg' '—1 4
<&+ Z[(]l/r YO Pr(@a )1 ) T (0l jy72)] = (5),

=
where we choose the A, € IS, with [A,;)| =1, j = 1,...,m, in a convenient way.
Hence
() = [T (30U Y 1Py a3 )|
=1
<e+ TN Cmlln, (. q): 5.0,
where
m , , , , 1
O = > (G MOV UP (@ )17 Ay 0y Y )
=1
Note that, since ||yl =1, j=1,...,m, we have

HQm”N ((r,q); (s,p))
! ~1
< (GNP L@y () i 1@ Dt s 57 ) | Dt N

1/r'—1 '—1 J) n
= ||( /= /q ¢ ||PT(¢TE )Hq (‘))/‘:1H(r,q)”((”n(j))jyil||w,(s’,p’)'
Now we want to evaluate

#) = [ (GNP @ap) | 2 ) 4

We recall that |4, ;)| =1, j = 1,...,m and that (||Pr(gon )||) is non-increasing.
Since r < ¢, we have r>q and ( A/r=1/g’ ) ", is non- 1ncreasmg In this case we
have (using that ¢ + ¢’ = qq’ and (¢’ — 1)qg = ¢’)
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1 /r— A/ — NP ’_ 1/(1
(jl/r=Vaya(;V/ l/q)qq”PT(%(j))”(q 1)!1)

*

Il
—
iNgE

1

-
Il

=

1 /r— r—1/g 1/q
(Va1 D Py ) )

<
-

Now we replace this equality in the above inequalities in order to have

1

-
Il

A/ — ’ ! / l/l]
GNP a7 )

-

1

J

H(”PT (ﬂﬂ ||)] 1”
A/ —1/a'\q' N 1/a m oun
<e+||T) (Z(ﬂ Y1) ) N a0
j=1

Since ¢ > 0 is arbitrary, we get

H('lPT((ﬂn )H),m] (r'.q")

- r— 1/a m n
<TG U ) 1)l

J=1

= ITUIPT @ ) D) 216 gy I @) I )

and hence

H(HPT(%)H)m: = [ (IPr( Pr()) ||), 1||

<17l II(cﬂnm),-:lIIMy,p/) =TI .-

So, we conclude that Pr € 2y, ¢);(s',p7y) ("E'; F') and
HPT”as((r’,q’);(s’,p’)) = ||T|| O

Theorem 5.4. If E' has the bounded approximation property, then the linear
mapping

Y 2N (g 5.0) "Es F) = Pas(r gy 5r,p) ("E' F)

given by W(T) = Py is a topological isomorphism.
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Proof. Note thatifx € I, p € E' and y € F, we have

V(T +aT2)(9)(¥) = Priom () (1)
= (T1 +aT2)(9"y)
= Ti(p"y) + oT2(p"y)
=Y (T1)(9)(y) + 0¥ (T2)(0) ()

and so ¥ is linear. Theorem 5.3 asserts that
H\P(T)Has((r/,q/);(s’,p’)) = ”PTHas((r’.q’);(s’,p’)) = ”TH

and hence W is continuous.
Note that ¥ is onto. In fact, if P € Py, ¢1); (s, p1) ("E'; F'), consider

Tp 2N (. 5.0 ("E F) — K
as defined in Theorem 5.2. So,
¥(Tp) = Pr,
and
Pr,(p)(y) = Tp(9"y) = P(p) ().
We conclude that
Pr,
and hence
Y(Tp) = P.
Note that W in injective. In fact,
Y(T) =0 = ¥Y(T)p)(y) =0 = T("y) =0

for all pe E' and ye F. So, T is null in #;("E;F) and since the space
(2/("E; F), ||.|\N,((,’q);<s,p))) is dense in 2y (. ); (s,p)) ("E; F) it follows that 7' = 0.
We conclude (using Theorem 5.2) that ¥~! is continuous and ||¥~!|| < M/,

|

A natural continuation of this paper leads us to introduce the spaces of entire
scalar-valued functions of Lorentz ((r,q); (s, p))-nuclear bounded type defined on
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a Banach space E (following the works of Nachbin [25], Gupta [12] and Matos
[21]). Then it seems reasonable to study duality results between the dual of this
space of entire functions and a suitable space of entire functions, following the
lines of Gupta [12], Malgrange [13] and Matos [21]). So, it is possible to try to
investigate existence and approximation results for convolution equations on the
spaces of entire functions of Lorentz ((r,q); (s, p))-nuclear bounded type (for re-
lated results we mention [1], [2], [3], [8], [7], [9], [10], [15], [16], [17], [18], [19], [21]).
The main obstacle in introducing the space of entire functions of Lorentz
((r,q); (s, p))-nuclear bounded type is that the topology defined on the space
PN ((r.q): (s,p)) (" E) fails to be a locally convex topology and thus does not generate
a locally convex topology on the spaces of entire functions of this type. We believe
that it is possible follow Matos [21] to by-pass this obstacle by considering a suitable
Banach space of n-homogeneous polynomials that contains Zy (., ¢ (s,p))("E) and
that shares the same dual with 2y (¢ ¢).(s.p))("E). In this new context the related
space of entire functions will be a Fréchet space; so a friendly environment to
study existence and approximation results for convolution equations comes out.
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