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Abstract. Closure operators on a poset can be characterized by the corresponding closure
systems. It is known that in a directed complete partial order (DCPO), in particular in any
finite poset, the collection of all closure systems is closed under arbitrary intersection and
has a ‘‘detachability’’ or ‘‘anti-matroid’’ property, which implies that the collection of all
closure systems is a lower semimodular complete lattice (and dually, the closure operators
form an upper semimodular complete lattice).

After reviewing the history of the problem, we generalize these results to the case of an
infinite poset where closure systems do not necessarily constitute a complete lattice; thus the
notions of lower semimodularity and detachability are extended accordingly. We also give
several examples showing that many properties of closure systems on a complete lattice do
not extend to infinite posets.
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1. Introduction: history of the problem

Let P be a partially ordered set (from now on poset). Following [2], for any x a P,

let us write

x" ¼ fy a P j ybxg and x# ¼ fy a P j yaxg:

For X JP, we say that X is a down-set if x# JX for all x a X , [2]. Following

[14], we call an operator on P a map P ! P, and for x a P and an operator c on

P, the image of x by c is written cðxÞ; given two operators x and c on P the

operator P ! P : x 7! c
�
xðxÞ

�
is the composition of x followed by c, following

[14] we write it cx rather than the usual c � x (as in [2]).



A closure operator on P is an operator j that is isotone (xa y ) jðxÞajðyÞ),
extensive (xa jðxÞ) and idempotent (j

�
jðxÞ

�
¼ jðxÞ). Equivalently [9], [20]:

Ex; y a P; xajðyÞ () jðxÞajðyÞ:

For any closure operator j, let

InvðjÞ ¼ fx a P j jðxÞ ¼ xg ¼ fjðxÞ j x a Pg

be the invariance domain of j [14] (it is also called the range of j [12]). Let us write

FðPÞ for the set of all closure operators on P.

A closure system on P is a subset S of P such that for any x a P, x"BS is non-

void and has a least element. In [12] such a set is called a closure range. Let us

write SðPÞ for the set of closure systems on P. It has been known at least since [18]

that there is a bijection between FðPÞ and SðPÞ: to a closure operator j we asso-

ciate the closure system InvðjÞ, and conversely to a closure system S we associate

the closure operator mapping each x a P to the least element of x"BS.

Closure systems can be ordered by set inclusion, while closure operators can be

ordered elementwise: j1aj2 i¤ j1ðxÞaj2ðxÞ for all x a P. It is easily shown

(cf. [14]) that two closure operators j1 and j2 satisfy

j1aj2 () Invðj1ÞK Invðj2Þ () j2j1 ¼ j2 () j1j2 ¼ j2: ð1Þ

Thus the bijection j 7! InvðjÞ between the posets FðPÞ and SðPÞ is a dual isomor-

phism.

A classical result of Ward [24] shows that in case P is a complete lattice (whose

universal bounds are written 0 and 1), a subset S of P is a closure system i¤ it is

closed under arbitrary infima (in particular for the empty infimum, 1 a S). Fur-

thermore, FðPÞ and SðPÞ are dually isomorphic complete lattices. More precisely,

FðPÞ is closed under elementwise infimum: for ji a FðPÞ (i a I ), 5
i A I ji : x 7!

5
i A I jiðxÞ belongs to FðPÞ (in particular, for I ¼ j, x 7! 1 is the greatest closure

operator); on the other hand, SðPÞ is closed under arbitrary intersection: for

Si a SðPÞ (i a I ), 7
i A I Si a SðPÞ (in particular, for I ¼ j, P is the greatest closure

system).

Given a complete lattice P (with greatest element 1), f1g is the least element of

SðPÞ, and the f1; xg (x a Pnf1g) are the atoms of SðPÞ. Thus every S a SðPÞ is a
union of atoms, and the complete lattice SðPÞ is atomistic.

Manara [17] showed that for a complete lattice P, given two closure systems

S1 and S2 on P such that S1 HS2, in the lattice SðPÞ we have S2 � S1 (i.e., S2

covers S1) i¤ S2nS1 is a singleton. It follows then that the lattice SðPÞ is lower

semimodular:

ES;S 0 a SðPÞ; S4S 0 � S 0 ¼) S � SBS 0;
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hence dually the lattice FðPÞ is upper semimodular:

Ej; j 0 a FðPÞ; j 0 � jbj 0 ¼) j4j 0 � j:

(Here j4j 0 denotes the join in the lattice FðPÞ, not the elementwise join x 7!
jðxÞ4j 0ðxÞ). As remarked in [4], Ore [21] had shown these two results in the

case where the complete lattice P is PðEÞ, the Boolean lattice of all subsets of a

set E.

Note that [17] contains several erroneous statements, arising mainly because of

a misquote of previous results by Dwinger [10], [11]: Manara confused the notion

of a ‘‘well-ordered complete lattice’’ (i.e., a successor ordinal) with that of a ‘‘to-

tally ordered complete lattice’’ (i.e., a complete chain). For example [10] showed

that FðPÞ is distributive i¤ P is a complete chain, and that FðPÞ is Boolean i¤ P

is a successor ordinal; however Theorem 1.12 of [17] states (citing [11]) that FðPÞ
is distributive i¤ it is Boolean, i¤ P is a complete chain.

What can we say in case P is not a complete lattice? Several authors [1], [19],

[13] presented proofs that if the poset P satisfies the ACC (ascending chain condi-

tion, or equivalently, every directed subset of P has a greatest element), then SðPÞ
is closed under arbitrary intersection (and has P as greatest element), hence it is a

complete lattice. This holds in particular if P is finite. The two proofs in [13] are

correct. We have not checked the correctness of the proof in [1], but [23] showed

that the argument of [19] is flawed. The result can in fact be obtained by a simple

argument. Let ji (i a I ) be closure operators with associated closure systems Si;

let M be the monoid generated by the ji (i a I ); then for any x a P, the set of mðxÞ
for m a M is directed (for m; m 0 a M, mm 0 a M and mðxÞ; m 0ðxÞamm 0ðxÞ), hence

it has a greatest element cðxÞ; it is easily seen that cðxÞ is the least element of

x"B7
i A I Si, hence 7

i A I Si is a closure system; then c is a closure operator,

namely the supremum in FðPÞ of the ji (i a I ).

The second proof in [13] relies on a generalization of Ward’s [24] characteriza-

tion of a closure system on a complete lattice as a subset closed under arbitrary

infima (and containing the greatest element 1). A subset S of a poset P is called

MLB-closed [22] i¤ for any X JS, every maximal lower bound of X must belong

to S (in particular for X ¼ j, every maximal element of P must belong to S). It is

easily seen that every closure system is MLB-closed, and that the collection of all

MLB-closed subsets of P is closed under arbitrary intersection (in particular for

the empty intersection: P is MLB-closed). Now [13] showed that in a poset P

satisfying the ACC, a subset S of P is a closure system i¤ it is MLB-closed, hence

the collection SðPÞ of all closure systems is closed under arbitrary intersection.

In [22] the equivalence between MLB-closed sets and closure systems was ex-

tended to the case where P is a DCPO (a poset where every directed subset has a

supremum). It was then indicated that it is also possible to prove directly that

SðPÞ is closed under arbitrary intersection. Indeed, if we return to the above
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argument with the monoid M generated by the closure operators ji (i a I ), for any

x a P, the directed set of all mðxÞ, for m a M, has a supremum cðxÞ. This gives an

extensive and isotone operator c, and the least closure operator jbc can be con-

structed by several methods, see [6], in particular by transfinite induction, as did

[16] in the case where P is a complete lattice. Then we have InvðjÞ ¼ 7
i A I InvðjiÞ.

Manara’s [17] results about covers and semimodularity extend also to any

poset P where SðPÞ is closed under arbitrary intersection (in particular if P is a

DCPO). For any X JP, the set of all S a SðPÞ such that X JS, is closed under

intersection, hence there is a least closure system containing X , we write it sðXÞ
and call it the closure system generated by X . In [13] it was shown that if P has

ACC, then SðPÞ satisfies the anti-matroid exchange property:

ES a SðPÞ; Ex; y a PnS; xA y; y a sðSA fxgÞ ¼) x B sðSA fygÞ: ð2Þ

Erné [12] showed that for any poset P with SðPÞ closed under arbitrary intersec-

tion, SðPÞ is detachable:

ES a SðPÞ; Ex a PnS; sðSA fxgÞnfxg a SðPÞ: ð3Þ

This concept comes from [15] (where one says extremally detachable), and obvi-

ously detachability (3) implies the anti-matroid exchange property (2); in [15]

conditions are given under which both properties are equivalent. From any of

(2,3) follow Manara’s result stating that for S1;S2 a SðPÞ such that S1 HS2, S2

covers S1 in the lattice SðPÞ i¤ S2nS1 is a singleton, hence that SðPÞ is lower semi-

modular.

In case the poset P is not a DCPO, SðPÞ does not necessarily constitute a com-

plete lattice, and even in case SðPÞ is a complete lattice, the infimum operation in

SðPÞ is not necessarily the intersection, see Section 3.

The goal of this paper is to generalize the notions of semimodularity and de-

tachability to the case where SðPÞ is not necessarily a complete lattice, and to

prove the corresponding extensions of Manara’s [17] and Erné’s [12] results. We

obtain the following detachability property:

ES0;S1 a SðPÞ; S0HS1; Ex a S1nS0;

bS2 a SðPÞ; S0A fxgJS2 JS1; S2nfxg a SðPÞ:
ð4Þ

It is easily seen that if SðPÞ is closed under arbitrary intersection, then (4) is equi-

valent to (3). Next we show that the poset SðPÞ is lower semimodular in the fol-

lowing sense:

ES1;S2 a SðPÞ, if in SðPÞ the join S14S2 exists and S14S2 � S1, then the

meet S1bS2 exists and S2 � S1bS2.
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Note that in this case we will have S14S2 ¼ S1AS2 and S1bS2 ¼ S1BS2. By

duality, we obtain that the poset FðPÞ is upper semimodular in the following

sense:

Ej1; j2 a FðPÞ, if in FðPÞ the meet j1bj2 exists and j1 � j1bj2, then the

join j14j2 exists and j14j2 � j2.

Here we have no indication on the explicit values of ðj1bj2ÞðxÞ and ðj14j2ÞðxÞ
for x a P.

Concerning the other properties of SðPÞ in the case where P is a complete

lattice (e.g., SðPÞ is atomistic, SðPÞ is closed under arbitrary intersection, closure

systems coincide with MLB-closed sets, etc.), we will see in Section 3 that they are

generally lost in the case where P is an arbitrary infinite poset. However, some of

these properties may hold if one makes appropriate assumptions on P.

2. The main argument

In this section we shall fix a poset P. At the basis of detachability is the following

generalization of some constructions made in [19]:

Proposition 2.1. Let S0;S1 a SðPÞ such that S0 JS1, and let A be a down-set in

P. Let S2 ¼ ðS0nAÞ ] ðS1BAÞ. Then S2 ¼ S0A ðS1BAÞ ¼ ðS0AAÞBS1, S0 J
S2 JS1 and S2 a SðPÞ.

The closure operators j0, j1, j2 corresponding to S0, S1, S2 satisfy j1a j2aj0,

and for every x a P we have

j2ðxÞ ¼
j1ðxÞ if j1ðxÞ a A;

j0ðxÞ if j1ðxÞ B A:

�

Proof. As S0 JS1, we get S2 ¼ ðS0nAÞA ðS0BAÞA ðS1BAÞ ¼ S0A ðS1BAÞ;
by the modular equality, we obtain S2 ¼ ðS0AAÞBS1, and S0 JS2 JS1. For

any x a P we have two cases:

(1) j1ðxÞ a A. Then j1ðxÞ a S1BAJS2. As j1ðxÞ is the least element of x"BS1

and j1ðxÞ a x"BS2, with x"BS2 J x"BS1, we deduce that j1ðxÞ is the least

element of x"BS2. Set j2ðxÞ ¼ j1ðxÞ.
(2) j1ðxÞ B A. For any y a x"BS1, we have j1ðxÞa y, and as A is a down-

set and j1ðxÞ B A, we get y B A. Hence x"BS1BA ¼ j, and as S0 JS1,

x"BS0BA ¼ j. Hence

x"BS0 ¼ ðx"BS0nAÞA ðx"BS0BAÞ ¼ x"BS0nA

¼ ðx"BS0nAÞA ðx"BS1BAÞ ¼ x"BS2:

Now j0ðxÞ is the least element of x"BS0 ¼ x"BS2. Set j2ðxÞ ¼ j0ðxÞ.
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Thus in both cases j2ðxÞ is the least element of x"BS2, so S2 is a closure system

and j2 is a closure operator. We have j2ðxÞ ¼ j1ðxÞ for j1ðxÞ a A, and j2ðxÞ ¼
j0ðxÞ for j1ðxÞ B A. r

An interesting particular case is for S1 ¼ P (that is, j1 is the identity operator):

Corollary 2.2. Given a closure system S on P and a down-set A in P, then SAA is

a closure system. If j is the closure operator corresponding to S, then the closure

operator jA corresponding to SAA is given by

jAðxÞ ¼
x for x a A;

jðxÞ for x B A:

�

We obtain from Proposition 2.1 the detachability condition (4):

Corollary 2.3. For any S0;S1 a SðPÞ such that S0 HS1 and for any x a S1nS0,

there exists S2 a SðPÞ such that S0A fxgJS2 JS1 and S2nfxg a SðPÞ.

Proof. A ¼ x# and A 0 ¼ x#nfxg ¼ fy a P j y < xg are down-sets. Let

S2 ¼ ðS0nAÞ ] ðS1BAÞ and S 0
2 ¼ ðS0nA 0Þ ] ðS1BA 0Þ:

By Proposition 2.1, S2;S
0
2 a SðPÞ, S2 ¼ S0A ðS1BAÞ, S 0

2 ¼ S0A ðS1BA 0Þ,
S2 JS1 and S0 JS 0

2; as x a S1BA, we have x a S2, and as x B S0, S2nfxg ¼
ðS0nfxgÞA ðS1BAnfxgÞ ¼ S0A ðS1BA 0Þ ¼ S 0

2. Hence S0A fxgJS2 JS1 and

S 0
2 ¼ S2nfxg, with S2;S

0
2 a SðPÞ. r

This gives thus a generalization of Manara’s first result:

Corollary 2.4. For S0;S1 a SðPÞ such that S0 HS1, we have S1 � S0 (in SðPÞ) i¤
S1nS0 is a singleton.

Proof. Take x a S1nS0, then by Corollary 2.3 there is S2 a SðPÞ such that

S2nfxg a SðPÞ and S0 JS2nfxgHS2 JS1. If S1 covers S0 in SðPÞ, we must nec-

essarily have S2nfxg ¼ S0 and S2 ¼ S1; hence S1nS0 is a singleton. Conversely, if

S1nS0 is a singleton, then S1 covers S0 in PðEÞ, so obviously it covers S0 in the

smaller poset SðPÞ. r

It follows by induction that for S0;S1 a SðPÞ such that S0 HS1, the interval

½S0;S1� in SðPÞ has finite height i¤ S1nS0 is finite, and then the height of ½S0;S1�
in SðPÞ equals the size of S1nS0.

Returning to Corollary 2.3, writing S3 ¼ S2nfxg, we obtain thus:

ES0;S1 a SðPÞ; S0 HS1 ¼) bS2;S3 a SðPÞ; S0 JS3 0S2 JS1:
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In other words every interval in SðPÞ contains a cover; one says then that SðPÞ is
weakly atomic [6].

In order to prove the lower semimodularity of SðPÞ, previous works [17], [13],
[12] required SðPÞ to be closed under arbitrary intersection; since we do not make

this assumption, we need to show that in some particular cases the intersection of

two closure systems is a closure system:

Proposition 2.5. Let S1;S2 a SðPÞ such that S2nS1 is finite; then S1BS2 a SðPÞ.
Given j1, j2 the closure operators corresponding to S1, S2, the closure operator

corresponding to S1BS2 is ðj2j1Þ
nj2, where n ¼ jS2nS1j.

Proof. Let n ¼ jS2nS1j. For any x a P, j2ðxÞ a S2. For any y a S2, we have two

cases:

(1) If y a S1BS2, then j1ðyÞ ¼ y ¼ j2ðyÞ, so j2j1ðyÞ ¼ y.

(2) If y a S2nS1, then y B Invðj1Þ, so y < j1ðyÞ, and j1ðyÞaj2j1ðyÞ, thus y <

j2j1ðyÞ.

Let x a P; for any t a N, ðj2j1Þ
tj2ðxÞ a S2. If there is some t < n such that

ðj2j1Þ
t
j2ðxÞ a S1BS2, case 1 yields that

ðj2j1Þ
tþ1

j2ðxÞ ¼ j2j1
�
ðj2j1Þ

t
j2ðxÞ

�
¼ ðj2j1Þ

t
j2ðxÞ;

and thus ðj2j1Þ
nj2ðxÞ a S1BS2. If ðj2j1Þ

tj2ðxÞ a S2nS1 for every t < n, by case

2 we get

j2ðxÞ < � � � < ðj2j1Þ
tj2ðxÞ < � � � < ðj2j1Þ

nj2ðxÞ;

with j2ðxÞ; . . . ; ðj2j1Þ
n�1j2ðxÞ a S2nS1;

as jS2nS1j ¼ n, this means that ðj2j1Þ
nj2ðxÞ B S2nS1, that is ðj2j1Þ

nj2ðxÞ a
S1BS2. Thus we have shown that for any x a P, ðj2j1Þ

n
j2ðxÞ a S1BS2. Now

for x a S1BS2, by induction case 1 gives ðj2j1Þ
nj2ðxÞ ¼ x; hence ðj2j1Þ

nj2 is

idempotent. Clearly ðj2j1Þ
nj2 inherits the isotony and extensivity of j1 and

j2. Therefore ðj2j1Þ
n
j2 is a closure operator, with Inv

�
ðj2j1Þ

n
j2
�
¼ S1BS2, so

S1BS2 is a closure system. r

We obtain thus the lower semimodularity of SðPÞ, the following argument is

the same as in previous works [17], [13], [12]:

Corollary 2.6. For S1;S2 a SðPÞ, if in SðPÞ the join S14S2 exists and S14
S2 � S1, then the meet S1bS2 exists and S2 � S1bS2. We have then S14S2 ¼
S1AS2 and S1bS2 ¼ S1BS2.
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Proof. Suppose that S14S2 exists and S14S2 � S1; thus S1 JS1AS2 JS14S2.

We may not have S1AS2 ¼ S1, otherwise S2 JS1 and then S14S2 ¼ S1. Hence

S1 HS1AS2 JS14S2, and by Corollary 2.4, ðS14S2ÞnS1 is a singleton; thus

we get S14S2 ¼ S1AS2. Now ðS14S2ÞnS1 ¼ ðS1AS2ÞnS1 ¼ S2nS1; as this is a

singleton, Proposition 2.5 gives S1BS2 a SðPÞ. Then obviously S1BS2 is the

meet of S1 and S2 in SðPÞ. We have S2nðS1BS2Þ ¼ S2nS1; as this is a singleton,

S2 � S1BS2 by Corollary 2.4. r

By duality, FðPÞ is upper semimodular in the following sense: for j1; j2 a
FðPÞ, if in FðPÞ the meet j1bj2 exists and j1 � j1bj2, then the join j14j2
exists and j14j2 � j2.

3. Some counterexamples to other properties

We have shown that the results of Erné and Manara, namely that SðPÞ is detach-
able and lower semimodular, can be extended to the case where P is an arbitrary

poset. What about the other properties satisfied by SðPÞ in case P is a complete

lattice? It is easy to show that the following hold:

(Pa) Every closure system is MLB-closed, and the collection of all MLB-closed

sets is closed under arbitrary intersections.

(Pb) If the poset P has a greatest element 1, then SðPÞ has least element f1g and

atoms f1; xg for all x a Pnf1g, so it is atomistic.

(Pc) If P is a meet-semilattice (i.e., every two elements of P have a meet), then for

any S1;S2 a SðPÞ, the join S14S2 exists in SðPÞ, it is the set of all x1bx2 for

x1 a S1 and x2 a S2 (NB: elements of S1AS2 take this form: x1 ¼ x1bj2ðx1Þ
for all x1 a S1, where j2ðx1Þ a S2); in particular, if S1 and S2 are finite, then

S14S2 is finite.

(Pd) If P is a complete meet-semilattice (i.e., every non-void subset of P has an

infimum), then for any non-void family Si a SðPÞ (i a I ), its supremum

4
i A I Si exists in SðPÞ, it is the set of 5

i A I xi for all choices xi a Si; in partic-

ular, SðPÞ is a complete join-semilattice (i.e., every non-void subset of P has

a supremum).

(Pe) If P ¼ PðEÞ, the Boolean lattice of all subsets of a finite set E, then [5] SðPÞ
is join-semidistributive:

EX ;Y ;Z a SðPÞ; if X4Y ¼ X4Z; then X4Y ¼ X4ðYbZÞ;

hence it is join-pseudocomplemented:

EX a SðPÞ; fY a SðPÞ jX4Y ¼ Pg has a least element:
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However, we will see through counterexamples that in the general case of an arbi-

trary poset P, none of these properties can be extended. More precisely:

(F1) SðPÞ does not necessarily constitute a complete lattice, nor even a lattice.

(F2) Even in case SðPÞ is a complete lattice, the infimum operation in SðPÞ is not
necessarily the intersection.

(F3) Even in case SðPÞ is a complete lattice with the infimum operation given by

the intersection, SðPÞ can be larger than the collection of all MLB-closed

sets.

(F4) In case P does not have a greatest element, SðPÞ can have elements that are

not joins of atoms; in some cases it may have no atoms.

(F5) There can be finite S1;S2 a SðPÞ with an infinite join S14S2 in SðPÞ, or even
having no join in SðPÞ.

(F6) Even in case SðPÞ is a complete lattice, it can be neither join-semidistributive

nor join-pseudocomplemented.

These failures of expected properties are shown through several counterexamples.

The first ones are posets without greatest element:

A. Naturals: Let P ¼ N, the set of natural integers. Every subset of N (including

j) is MLB-closed; on the other hand a subset of N is a closure system if and only if

it is infinite. Then SðNÞ is closed under non-void unions and has N as greatest

element; it is thus a complete join-semilattice. However two closure systems on

N do not necessarily have a meet in SðNÞ; for example let S0 ¼ 2N (the set of

even naturals) and S1 ¼ 2Nþ 1 (the set of odd naturals), as S0BS1 ¼ j, there is

no closure system contained in both S0 and S1; seen otherwise, S0 and S1 corre-

spond to the two closure operators j0 and j1 that map every natural to the least

even (resp., odd) natural above it, and iterating j0j1 on any n a N, the sequence

ðj0j1Þ
tðnÞ (t a N) goes to infinity. Hence SðNÞ is not a lattice, cf. (F1). Further-

more, there are no atoms nor any least element in SðNÞ, cf. (F4).
B. Fence over naturals: This example comes from [19], [22]. Let P ¼ NA
fa; b; c; dg, where fa; b; c; dg is a fence (a > c, b > c, b > d) standing above N

(En a N, c; d > n), with the usual order on N; the Hasse diagram of P is shown

in Figure 1 (a). The MLB-closed subsets of P are all those containing fa; b; cg.
On the other hand, the closure systems on P can be of two forms: either

fa; b; cgAX for any X JN, or fa; b; c; dgAY for an infinite Y JN. It is

easily checked that SðPÞ is closed under non-void unions and constitutes a

complete lattice with universal bounds fa; b; cg and P. However given S0 ¼
fa; b; c; dgA 2N and S1 ¼ fa; b; c; dgA ð2Nþ 1Þ, we have S0;S1 a SðPÞ, with

S0BS1 ¼ fa; b; c; dg, but in SðPÞ we have S0bS1 ¼ fa; b; cg. Thus the infimum

operation in SðPÞ is not the intersection, cf. (F2). Moreover, as there is no least

445The poset of closure systems



closure system containing fa; b; c; dg, the operator s is not defined and the

properties (2,3) make no sense here. The atoms of SðPÞ are all fa; b; c; ng for

n a N, thus joins of atoms have the form fa; b; cgAX for X JN; hence SðPÞ
is not atomistic, cf. (F4); it is however atomic (i.e., every nonzero element of

SðPÞ contains an atom). Finally, let S2 ¼ fa; b; cgAN ¼ Pnfdg; then S2 a SðPÞ,
S24S0 ¼ S24S1 ¼ P, but S24ðS0bS1Þ ¼ S24fa; b; cg ¼ S2; in fact there is no

least element in the set of all S a SðPÞ such that S24S ¼ P. Thus SðPÞ is neither
join-semidistributive nor join-pseudocomplemented, cf. (F6).

C. 01-words: Let P be the set of words on the alphabet f0; 1g, with prefix order-

ing, see the Hasse diagram in Figure 1 (b); equivalently, P ¼ 6
n ANf0; 1g

n, where

for x ¼ ðx0; . . . ; xm�1Þ a f0; 1gm and y ¼ ðy0; . . . ; yn�1Þ a f0; 1gn we have xa y

i¤ ma n and xi ¼ yi for i ¼ 0; . . . ;m� 1. Then P is a complete meet-semilattice;

the least element is the empty word. It is easily checked that the only closure op-

erator on P is the identity, thus P is the only closure system and SðPÞ is trivially
closed under arbitrary intersection. On the other hand the MLB-closed sets are

Figure 1. Hasse diagrams of posets: (a) fence over naturals; (b) 01-words; (c) hat over nat-
urals; (d) hat over antichain.
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all sets closed under non-empty infimum, there are infinitely many such sets, cf.

(F3).

Our next counterexamples are posets having a greatest element; we will see

that this property does not bring much more than the fact that every closure sys-

tem is a join of atoms (cf. property (Pb) above):

D. Hat over naturals: This example comes from [19]. Let P ¼ NA fa; b; cg,
where fa; b; cg is a hat (a > b, a > c) standing above N (En a N, b; c > n), with

the usual order on N; the Hasse diagram of P is shown in Figure 1 (c). The

MLB-closed subsets of P are all those containing a. On the other hand, the clo-

sure systems on P are the sets fagAX , fa; bgAX and fa; cgAX for any X JN,

and the sets fa; b; cgAY for an infinite Y JN. Now given S0 ¼ fa; b; cgA 2N

and S1 ¼ fa; b; cgA ð2Nþ 1Þ, we have S0;S1 a SðPÞ, with S0BS1 ¼ fa; b; cg B
SðPÞ, so in SðPÞ the pair fS0;S1g has two maximal lower bounds fa; bg and

fa; cg. Thus SðPÞ is not a lattice, cf. (F1). Note that both fa; bg and fa; cg are

finite elements of SðPÞ, but they have no join in SðPÞ, cf. (F5).
E. Hat over antichain: Let P ¼ AA fa; b; cg, where A is an infinite antichain

(Ex; y a A, x 6< y and y 6< x) and fa; b; cg is a hat (a > b, a > c) standing above

A (Ex a A, b; c > x); the Hasse diagram of P is shown in Figure 1 (d). Since P

has finite height, it satisfies the ACC condition, thus closure systems on P coincide

with MLB-closed subsets of P [13], they are: the sets fagAX , fa; bgAX and

fa; cgAX for any X JA, and P. Note that the two pairs fa; bg and fa; cg are

atoms, with join fa; bg4fa; cg ¼ P which is infinite, cf. (F5).

F. Finite/co-finite: Let P be the collection consisting of all finite and co-finite

(complement of finite) subsets of N. Then P, ordered by the inclusion relation, is

a Boolean lattice, but not a complete lattice. Note that a subset Q of P is MLB-

closed i¤ for any family Si a Q (i a I ), either 7
i A I Si a Q or 7

i A I Si B P (i.e.,

7
i A I Si is infinite with infinite complement); in other words Q is the trace on P

of a closure system (Moore family) on PðEÞ. Now SðPÞ is not a lattice, cf. (F1).

Indeed, for any n a N, let An ¼ 2NB ½0; n� ¼ fk a 2N j ka ng, and define S0 JP

(resp., S1 JP) to be the set of all co-finite subsets B of N such that 2NJB, and of

all AnAX for n a 4N (resp., n a 4Nþ 2) and X a finite subset of 2Nþ 1; we can

check that S0;S1 a SðPÞ, but S0 and S1 have no meet in SðPÞ, because S0BS1

is the set of all co-finite subsets B of N containing 2N, and the closure systems

contained in it are its finite parts closed under intersection, and none of them is

maximal.

4. Discussion and conclusion

Our counter-examples in Section 3 indicate that in the general case, one probably

cannot obtain more than the results given in Section 2. Nevertheless, in view of
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previous works [17], [13], [22], [12], [5], we can inquire about the most general

properties that a poset P should satisfy in order to guarantee some properties for

SðPÞ; thus we can raise the following questions:

• What are the conditions for SðPÞ to be a complete lattice? to be closed under

arbitrary intersection? to coincide with the collection of all MLB-closed sub-

sets of P?

• If P does not have a greatest element, when is SðPÞ an atomistic complete

lattice?

• We showed that for S1;S2 a SðPÞ such that S2nS1 is finite, S1BS2 a SðPÞ.
What are then the conditions for the join S14S2 to exist in SðPÞ?

• What are the conditions for SðPÞ to be join-semidistributive? to be join-

pseudocomplemented?

Another interesting question is the analysis of the properties of SðPÞ in case P has

a greatest element (cf. property (Pb) at the beginning of Section 3). It seems that

adding a greatest element to a poset increases considerably the collection of all clo-

sure systems.

Let us now briefly discuss some related questions concerning closure operators

and systems, in particular their characterizations.

If P ¼ PðEÞ, the Boolean lattice of all subsets of a finite set E, the fact that

SðPÞ is join-semidistributive and join-pseudocomplemented (cf. property (Pe) at

the beginning of the previous section) follows from the fact that SðPÞ is lower

bounded, that is, the image of a free lattice under a homomorphism h such that

for every S a SðPÞ, h�1ðSÞ has a least element. The latter property was obtained

in [5] by showing that SðPÞ satisfies a property on join-irreducible elements that

was given in [7] as a necessary and su‰cient condition for the lower boundedness

of a finite lattice. It seems thus illusory to extend this result to the infinite case, but

for a finite poset P, it is possible to investigate under what conditions SðPÞ is lower
bounded.

The first proof in [13] shows that in a poset P satisfying the ACC, if we associ-

ate to each closure operator j the equivalence relationC on P defined by xC y

i¤ jðxÞ ¼ jðyÞ, given a family ji (i a I ) of closure operators with corresponding

equivalence relationsCi, then the supremum of theCi (i a I ) in the complete lat-

tice of equivalence relations on P will correspond to the supremum in FðPÞ of the
ji (i a I ). Now this supremum of theCi (i a I ) is the transitive closure of their

union, so the result in [13] means that ð4
i A I jiÞðxÞ ¼ ð4

i A I jiÞðyÞ i¤ there is a

sequence x ¼ z0; . . . ; zn ¼ y such that for t ¼ 0; . . . ; n� 1 there is some iðtÞ a I

with jiðtÞðziÞ ¼ jiðtÞðziþ1Þ. It can be seen that this holds because for every x a P,

the set of ji1 . . . jinðxÞ (i1; . . . ; in a I ) has a greatest element. However, in case P

does not have ACC, this result does not hold anymore (even if P is a DCPO).
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Nevertheless there is a related result in case P is a complete lattice. Given a

closure operator j on P, since we have jð4
i A I xiÞ ¼ j

�
4

i A I jðxiÞ
�
, the relation

C on P defined by xC y i¤ jðxÞ ¼ jðyÞ, is an equivalence relation closed under

supremum: xi C yi (i a I ) implies 4
i A I xi C4

i A I yi; such a relation is called

a complete join-congruence [3]. Conversely, given a complete join-congruence

C, the operator j defined by jðxÞ ¼ 4 fy a P j xC yg (in fact, the greatest y a P

such that xC y) is a closure operator, and we obtain in this way a bijection be-

tween closure operators on P and complete join-congruences on P. Considering

the inclusion order on complete join-congruences, by (1) we obtain that this bijec-

tion is an isomorphism between the complete lattice FðPÞ of closure operators on
P, and the one of complete join-congruences on P [3]. This result appeared also in

[8], where several lattice-theoretical properties of complete join-congruences are

presented. The same reference gives also an isomorphism between complete join-

congruences and quotient systems: a quotient system is a binary relation r on P

that is contained in the relation a, reflexive, transitive, compatible with the su-

premum, and such that for aa ca da b with a r b, we must have c r d; here

the quotient system corresponding to C is given by a r b i¤ aa bC a, that is,

aa bajðaÞ.
In case SðPÞ is closed under arbitrary intersection, it is interesting to consider

the decomposition of a closure system as an intersections of some ‘‘elementary’’

closure systems. Let P be a join-semilattice (i.e., every two elements of P have a

join). For any a; b a P, b" is a closure system (corresponding to the closure oper-

ator x 7! x4b), and Pna" is a down-set; by Corollary 2.2, their union

Fa;b ¼ b"A ðPna"Þ ¼ fx a P j aE x or baxg ¼ fx a P j aax ) baxg; ð5Þ

is a closure system. The closure systems Fa;b (for all a; b a P) have been studied

in depth in the particular case where P is PðEÞ for a finite set E [5], where they

are called implicational closure systems. Given a closure system S correspond-

ing to a closure operator j, for any a; b a P we have SJFa;b , bajðaÞ (i.e.,

jðbÞajðaÞ), while for any x B S we have x B Fx;jðxÞ; hence [5]

S ¼ 7fFa;b j a; b a P; bajðaÞg ¼ 7
a AP

Fa;jðaÞ:

Now if SðPÞ is closed under arbitrary intersection (for example, if P is a complete

lattice), it follows that a subset S of P is a closure system i¤ it is an intersection of

implicational closure systems Fa;b. In the case where P ¼ PðEÞ for a finite set E,

for any A;B a PðEÞ, FA;B is meet-irreducible i¤ AHS and B is a singleton dis-

joint from A [5].

The lattice of closure operators on a complete lattice is isomorphic to that of

implication systems [8] (also called Armstrong systems, FD-systems [8], or full im-
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plicational systems [5]). This isomorphism extends to the case of a poset, provided

that we modify the definition of an implication system:

Let P be a poset. An implication system on P is a binary relation s on P (i.e., a

subset of P2) that:

(1) is transitive: for all a; b; c a P, if ða; bÞ; ðb; cÞ a s, then ða; cÞ a s;

(2) contains the relationb: for all a; b a P, if ab b, then ða; bÞ a s;

(3) is upper bounded on the right: for all a a P, the set fb a P j ða; bÞ a sg has a

greatest element.

Note that if P is a complete lattice, condition (3) can be replaced by the following,

which is the original condition (3) from [8]:

ð3 0Þ given fðai; biÞ j i a IgJ s, we have ð4
i A I ai;4i A I biÞ a s.

Write ISðPÞ for the poset of implication systems on P (ordered by inclusion).

Then it is easily shown that there is an isomorphism between the two posets FðPÞ
and ISðPÞ, where:

• to every closure operator j corresponds the implication system sj ¼
fða; bÞ a P2 j bajðaÞg;

• to every implication system s corresponds the closure operator js given

by setting, for all a a P, jsðaÞ equal to the greatest element of the set

fb a P j ða; bÞ a sg.

Note that [8] gave also, in case P is a complete lattice, an isomorphism between

ISðPÞ and the complete lattice of complete join-congruences on P: aC b i¤

ða; bÞ; ðb; aÞ a s, and conversely ða; bÞ a s i¤ aC a4b. Composed with the

isomorphism between FðPÞ and ISðPÞ, we obtain the isomorphism given above

between closure operators and complete join-congruences, namely aC b i¤

jðaÞ ¼ jðbÞ.
In [5] this isomorphism between FðPÞ and ISðPÞ is obtained, for P ¼ PðEÞ,

through a Galois connection between P and P2. We show here how it can be

generalized. We define the binary relationP between P2 and P by ða; bÞP f i¤

aE f or ba f . We obtain thus a Galois connection made of the two maps:

a : PðP2Þ ! PðPÞ : s 7! f f a P j ða; bÞP f for all ða; bÞ a sg;

b : PðPÞ ! PðP2Þ : S 7! fða; bÞ a P2 j ða; bÞP f for all f a Sg:

From (5) we see that for any ða; bÞ a P2, a
�
fða; bÞg

�
¼ Fa;b, hence for any

s a PðP2Þ we have aðsÞ ¼ 7ða;bÞ A s Fa;b. Thus if P is a join-semilattice and SðPÞ
is closed under arbitrary intersection (for example, if P is a complete lattice), it

follows that SðPÞ ¼ a
�
PðP2Þ

�
, the image of a. By the Galois connection, the re-

striction of b to SðPÞ constitutes a dual isomorphism between SðPÞ and b
�
PðPÞ

�
,
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the image of b. Now for a closure system S corresponding to a closure operator j,

ða; bÞ a bðSÞ , SJ a
�
fða; bÞg

�
¼ Fa;b, hence

bðSÞ ¼ fða; bÞ a P2 jSJFa;bg ¼ fða; bÞ a P2 j bajðaÞg ¼ sj;

the implication system corresponding to j.

Let us conclude. In Section 2 we proved that for a poset P, SðPÞ is detachable
and lower semimodular. Then Section 3 showed that many related properties,

given in case P is a complete lattice, do not hold in general. In this section we

have raised the question of the level of generality of these properties, namely of

the minimal conditions on the poset P that guarantee such properties. We have

also considered alternative characterizations of closure operators and systems,

given in case P is a complete lattice: complete join-congruences, quotient systems

and implication systems. Although the characterization by implication systems

extends to the general case of an arbitrary poset P, we do not know if this can

also be done for complete join-congruences and quotient systems. Thus further

research on the above problems is amply justified.
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