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Abstract. In this paper we provide an overview of some basic topics in interest rate theory
from the point of view of arbitrage free pricing. We cover short rate models, a‰ne term
structure models, inversion of the yield curve and the Musiela parameterization. We treat
geometric interest rate theory in some detail, and we also review the potential approach to
positive interest rates. The text is essentially self-contained, and references to the literature
can be found in Section 6.
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1. General background

In this paper we give an overview of some basic topics in interest rate theory from

the point of view of arbitrage free pricing. Not all proofs are given, but the inter-

ested reader can find the relevant references to the literature in Section 6.

We consider a financial market model on a finite time interval ½0; T̂T � living on

a filtered probability space ðW;F;F ;PÞ where F ¼ fFtgtb0 and P is interpreted as

the ‘‘objective’’ or ‘‘physical’’ probability measure. The basis is assumed to carry

a standard m-dimensional Wiener process W , and we also assume that the filtra-

tion F is the internal one generated by W . The choice of a Wiener filtration is

made for convenience, and the theory below can be extended to a general semi-

martingale framework.
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authors are much indebted to an anonymous referee for a number of very helpful comments.

**Financial support of XXX and of the Portuguese Science Foundation—FCT—under grant PTDC/
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We assume that there exist N þ 1 non-dividend-paying assets on the market,

and the prices at time t of these assets are denoted by S0ðtÞ;S1ðtÞ; . . . ;SNðtÞ. We

assume that the price processes are Itô processes and that S0ðtÞ > 0 with probabil-

ity one. We view the price vector process S ¼ ðS0;S1; . . .SNÞ� as a column vector

process, where � denotes transpose.
A portfolio is any adapted (row vector) process h ¼ ðh0; h1; . . . ; hNÞ, where we

interpret hi
t as the number of units that we hold of asset i in the portfolio at time

t. The corresponding market value process V h is defined by V hðtÞ ¼ hðtÞSðtÞ ¼PN
i¼0 h

iðtÞSiðtÞ, and the portfolio is said to be self-financing if the condition

dVðtÞ ¼ hðtÞ dSðtÞ is satisfied.
An arbitrage possibility is a self-financing portfolio h with the properties that

V hð0Þ ¼ 0, P
�
V hðTÞb 0

�
¼ 1 and P

�
V hðTÞ > 0

�
> 0. An arbitrage would con-

stitute a ‘‘money-making machine’’ and a minimal requirement of market e‰-

ciency is that the market is free of arbitrage possibilities. The main result in this

direction is, subject to some technical conditions, as follows.

Theorem 1.1. The market is free of arbitrage if and only if there exists a probabil-

ity measure Q with the properties

(1) QPP,

(2) all normalized asset processes

S0ðtÞ
S0ðtÞ

;
S1ðtÞ
S0ðtÞ

; . . . ;
SNðtÞ
S0ðtÞ

are Q-martingales.

Such a measure Q (which is typically not unique, see below) is called a martin-

gale measure. The numeraire asset S0 could in principle be any asset with positive

prices, but very often it is chosen as the money account B defined by dBðtÞ ¼
rðtÞBðtÞ dt where r is the short interest rate, i.e.,

BðtÞ ¼ e
Ð t

0
rðsÞ ds:

A contingent T-claim is any random variable Y a FT , where the interpretation

is that the holder of the claim will receive the stochastic amount Y (in a given cur-

rency) at time T . Given a T-claim Y , a self-financing portfolio h is said to repli-

cate (or ‘‘hedge against’’) Y if V hðTÞ ¼ Y , P-a.s. The market model is complete if

every claim can be replicated. The main result for completeness in an arbitrage

free market is the following.

Theorem 1.2. The market is complete if and only if the martingale measure is

unique.
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We now turn to the pricing problem for contingent claims. In order to do this,

we consider the ‘‘primary’’ market S0;S1; . . . ;SN as given a priori, and we fix a T-

claim Y . Our task is that of determining a ‘‘reasonable’’ price process Pðt;YÞ for
Y , and we assume that the primary market is arbitrage free. There are two main

approaches:

• The derivative should be priced in a way that is consistent with the prices of

the underlying assets. More precisely we should demand that the extended

market Pðt;YÞ;S0ðtÞ;S1ðtÞ; . . . ;SNðtÞ is free of arbitrage possibilities.

• If the claim is attainable, with hedging portfolio h, then the only reasonable

price is given by Pðt;YÞ ¼ Vðt; hÞ.

In the first approach above, we thus demand that there should exist a martin-

gale measure Q for the extended market Pðt;YÞ;S0ðtÞ;S1ðtÞ; . . . ;SNðtÞ. Letting Q

denote such a measure, assuming enough integrability, and applying the definition

of a martingale measure we obtain

Pðt;YÞ
S0ðtÞ

¼ EQ PðT ;YÞ
S0ðTÞ

����Ft

� �
¼ EQ Y

S0ðTÞ

����Ft

� �
:

We thus have the following result.

Theorem 1.3 (General Pricing Formula). The arbitrage free price process for the

T-claim Y is given by

Pðt;YÞ ¼ S0ðtÞEQ Y

S0ðTÞ

����Ft

� �
; ð1Þ

where Q is a (not necessarily unique) martingale measure for the a priori given mar-

ket S0;S1; . . . ;SN, with S0 as the numeraire.

Note that di¤erent choices of Q will generically give rise to di¤erent price pro-

cesses.

In particular we note that if we assume that if S0 is the money account

S0ðtÞ ¼ S0ð0Þ � e
Ð t

0
rðsÞ ds;

where r is the short rate, then (1) reduces to the familiar ‘‘risk neutral valuation

formula’’.

Theorem 1.4 (Risk Neutral Valuation Formula). Assuming the existence of a

short rate, the pricing formula takes the form

Pðt;YÞ ¼ EQ½e�
Ð T

t
rðsÞ dsY jFt�:
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where Q is a (not necessarily unique) martingale measure with the money account as

the numeraire.

For the second approach to pricing let us assume that Y can be replicated by h.

Since the holding of the derivative contract and the holding of the replicating port-

folio are equivalent from a financial point of view, we see that the price of the de-

rivative must be given by the formula

Pðt;YÞ ¼ V hðtÞ: ð2Þ

One problem here is what will happen in a case when Y can be replicated by two

di¤erent portfolios, and one would also like to know how this formula is con-

nected to (1).

Defining Pðt;YÞ by (2) we note that the process Pðt;YÞ=S0ðtÞ is a normalized

asset price and thus a Q-martingale. Consequently we again obtain the formula

(1) and for an attainable claim we have in particular the formula

V hðtÞ ¼ S0ðtÞEQ Y

S0ðTÞ

����Ft

� �
;

which will hold for any replicating portfolio and for any martingale measure Q.

Thus we see that the two pricing approaches above do in fact coincide on the set

of attainable claims.

We finish with a remark on the characterization of a risk neutral martingale

measure.

Lemma 1.5. A risk neutral martingale measure, i.e., an EMM with the bank ac-

count as numeraire, is characterized by the properties that QPP, and that every

asset price process has the short rate as its local rate of return under Q. More pre-

cisely, under Q the dynamics of any asset price process p (derivative or underlying)

must be of the form

dpt ¼ ptrt dtþ pts
p
t dW

Q
t ; ð3Þ

where r is the short rate and WQ is Q-Wiener.

2. Interest rates and the bond market

Our main object of study is the zero coupon bond market, and we need some for-

mal definitions.
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Definition 2.1. A zero coupon bond with maturity date T , also called a T-bond, is

a contract which guarantees the holder $1:00 to be paid on the date T . The price

at time t of a bond with maturity date T is denoted by pðt;TÞ.

Given the bond market above, one can define a (surprisingly large) number of

riskless interest rates. The term LIBOR below, is an acronym for ‘‘London Inter-

bank O¤ered Rate’’.

Definition 2.2. (1) The continuously compounded forward rate for ½S;T � con-

tracted at t is defined as

Rðt;S;TÞ ¼ � log pðt;TÞ � log pðt;SÞ
T � S

:

(2) The continuously compounded spot rate for ½S;T � is defined as

RðS;TÞ ¼ � log pðS;TÞ
T � S

:

(3) The instantaneous forward rate with maturity T , contracted at t, is defined by

f ðt;TÞ ¼ � q log pðt;TÞ
qT

:

(4) The instantaneous short rate at time t is defined by

rðtÞ ¼ f ðt; tÞ:

We now go on to define the money account process B.

Definition 2.3. The money account process is defined by

BðtÞ ¼ e
Ð t

0
rðsÞ ds;

i.e.,

dBðtÞ ¼ rðtÞBðtÞ dt; Bð0Þ ¼ 1:

The interpretation of the money account is that you may think of it as describ-

ing a bank with the stochastic short rate r.

As an immediate consequence of the definitions we have the following useful

formulas.
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Lemma 2.4. For ta saT we have

pðt;TÞ ¼ pðt; sÞ � e�
Ð T

s
f ðt;uÞ du;

and in particular

pðt;TÞ ¼ e�
Ð T

t
f ðt;uÞ du:

We finish this section by presenting the relations that hold between the dynam-

ics of forward rates and those of the corresponding bond prices. These relations

will be used repeatedly below. We will consider dynamics of the following form.

Bond price dynamics:

dpðt;TÞ ¼ pðt;TÞmðt;TÞ dtþ pðt;TÞvðt;TÞ dWðtÞ: ð4Þ

Forward rate dynamics:

df ðt;TÞ ¼ aðt;TÞ dtþ sðt;TÞ dWðtÞ: ð5Þ

The Wiener process W is allowed to be vector valued, in which case the vola-

tilities vðt;TÞ and sðt;TÞ are row vectors. The processes mðt;TÞ, vðt;TÞ, aðt;TÞ
and sðt;TÞ are allowed to be arbitrary adapted processes parameterized by time of

maturity T .

Our main technical tool is as follows.

Proposition 2.5. If f ðt;TÞ satisfies (5) then pðt;TÞ satisfies

dpðt;TÞ ¼ pðt;TÞ rðtÞ þ Aðt;TÞ þ 1

2
kSðt;TÞk2

� �
dtþ pðt;TÞSðt;TÞ dWðtÞ;

where k � k denotes the Euclidean norm, and

Aðt;TÞ ¼ �
Ð T

t
aðt; sÞ ds;

Sðt;TÞ ¼ �
Ð T

t
sðt; sÞ ds:

(

3. Factor models

Since the price of a contingent claim Y is given by the general formula

Pðt;YÞ ¼ EQ½e�
Ð T

t
rs dsY jFt�;
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it is natural to study Markovian factor models of the form

dXt ¼ mðt;XtÞ dtþ sðt;XtÞ dWt;

rt ¼ hðt;XtÞ;

where m, s, and h are given deterministic functions and W is Wiener. In this

framework we typically restrict ourselves to contingent T-claims Y of the form

Y ¼ FðXTÞ, where F denotes the contract function, i.e., F specifies the amount

of money to be paid to the holder of the contract at time T . This modeling can

be done either under the objective measure P, or under a martingale measure Q.

We recall that the defining properties of a risk neutral martingale measure Q

are that QPP and that Pt=Bt should be a Q-martingale for every asset price pro-

cess P. Since, in the present setup, the only asset price specified a priori is the

bank account Bt, and since Bt=Bt ¼ 1 is trivially a Q-martingale, we see that in

this case every measure QPP is a martingale measure, and that a particular

choice of Q will generate arbitrage free asset prices by the prescription

Pðt;YÞ ¼ EQ½e�
Ð T

t
hðs;XsÞ dsFðXT Þ jFt�; ð6Þ

for any claim Y of the form Y ¼ FðXT Þ.

3.1. Modeling under the objective measure P. As above we consider a factor

model of the form

dXt ¼ m pðt;XtÞ dtþ sðt;XtÞ dW p
t ;

rt ¼ hðt;XtÞ;

where Wp is P-Wiener. The price of claim Y of the form Y ¼ FðXTÞ is again

given by the formula (6) above. In the present setting, with the filtration generated

by Wp, it follows that the likelihood process L defined by

Lt ¼
dQ

dP
on Ft

is obtained by a Girsanov transformation of the form

dLt ¼ Ltj
?
t dW

p
t ; L0 ¼ 1:

Here and in the following ? denotes transpose. To keep the Markovian structure

we now assume that the Girsanov kernel process j is of the form jðt;XtÞ and from

the Girsanov Theorem we can write dW
p
t ¼ jt dtþ dWt where W is Q-Wiener.

We thus have the Q-dynamics of X as

dXt ¼ fm pðt;XtÞ þ sðt;XtÞjðt;XtÞg dtþ sðt;XtÞ dWt:
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For notational simplicity we denote the Q-drift of X by m, i.e.,

mðt; xÞ ¼ m pðt; xÞ þ sðt; xÞjðt; xÞ:

Since the price process Pðt;YÞ for a claim of the form Y ¼ FðXT Þ is given by (6)

we now have the following result, which follows directly from the Kolmogorov

backward equation.

Theorem 3.1. • For a claim of the form Y ¼ FðXT Þ, the price process Pðt;YÞ is
in fact of the form Pðt;YÞ ¼ Fðt;XtÞ where F satisfies the term structure

equation

qF

qt
ðt; xÞ þAF ðt; xÞ � hðt; xÞFðt; xÞ ¼ 0; ð7Þ

F ðT ; xÞ ¼ FðxÞ; ð8Þ

where the operator A is given by

AF ðt; xÞ ¼
Xn

i¼1

miðt; xÞ
qF

qxi
ðt; xÞ þ 1

2

Xn

i; j¼1

Cijðt; xÞ
q2F

qxiqxj
ðt; xÞ

and where Cðt; xÞ ¼ sðt; xÞsðt; xÞ?.

• In particular, bond prices are given by pðt;TÞ ¼ F T ðt;XtÞ (the index T is

viewed as a parameter), where the pricing function F T satisfies

qF T

qt
ðt; xÞ þAF Tðt; xÞ � hðt; xÞF T ðt; xÞ ¼ 0; ð9Þ

F TðT ; xÞ ¼ 1: ð10Þ

3.2. The market price of risk. There is an immediate economic interpretation of

the Girsanov kernel j above. To see this let pt be the price process of any asset

(derivative or underlying) in the model. We write the P-dynamics of p as

dpt ¼ ptat dtþ ptdt dW
P
t ;

where a is the local mean rate of return of p (under P) and d is the (vector) vola-

tility process. From the Girsanov Theorem we obtain, as above,

dpt ¼ pðtÞfat þ dtjtg dtþ ptdt dWt;

where W is Q-Wiener. From Lemma 1.5 we have , on the other hand,

dpt ¼ ptrt dtþ ptdt dWt;

328 T. Björk and R. M. Gaspar



so we obtain the relation

at þ dtjt ¼ rt;

or, equivalently,

at � rt ¼ �dtjt ¼ �
X
i

ditjit:

In other words, the risk premium for p, given by at � rt, i.e., the excess rate of re-

turn above the risk free rate r, is given (apart from a minus sign) as the sum of the

volatility terms di multiplied by the ‘‘factor loadings’’ ji. This has motivated econ-

omists to refer to the process lt ¼ �jt as the ‘‘market price of risk’’ process, where

li is the market price of risk for Wiener factor number i. In particular we see that

if W (and thus d) is scalar then l in fact equals the Sharpe ratio, i.e.,

lt ¼
at � rt

dt
:

The economic interpretation is that l is a measure of the aggregate risk aversion in

the market, in the sense that if l is positive then the market is risk averse, if l is

negative then the market is risk loving and if l ¼ 0 is positive then the market is

risk neutral. We summarize the moral in the following slogan.

Result 3.2. The martingale measure is chosen by the market.

3.3. Martingale modeling. In order to construct a factor model of the type

above, and to be able to compute derivative prices, it seems that we have to model

the following objects.

• The P-drift m p.

• The volatility s (which is the same under P and under Q.

• The market price of risk l ¼ �j, which connects Q to P by a Girsanov trans-

formation.

However, from the pricing formula (6) we have the following simple observation.

Proposition 3.3. The term structure of bond prices, as well as the prices of all other

derivatives, are completely determined by specifying the dynamics of X under the

martingale measure Q.

This observation has led to the following standard modeling procedure: instead

of specifying m p, s and l under the objective probability measure P we will hence-
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forth specify the dynamics of the factor process X directly under the martingale

measure Q. This procedure is known as martingale modeling, and the typical as-

sumption will thus be that X under Q has dynamics given by

dXt ¼ mðt;XtÞ dtþ sðt;XtÞ dWt; ð11Þ

where W is Q-Wiener. The short rate is as before defined by

rt ¼ hðt;XtÞ: ð12Þ

The pricing formulas from Theorem 3.1 still hold.

3.4. A‰ne term structures. In order to compute bond prices, we have to be able

so solve the term structure equation (9)–(10). It turns out that the only cases when

the term structure equation can be solved analytically is more or less when we

have an a‰ne term structure.

Definition 3.4. The factor model (11)–(12) above is said to possess an a‰ne term

structure (ATS for short) if bond prices are of the form

pðt;TÞ ¼ eAðt;TÞ�Bðt;TÞXt ; ð13Þ

where A (scalar) and B (row vector) are deterministic functions of t and T .

The importance of the ATS models stem from the fact that these are roughly

speaking the only models for which we can obtain analytical formulas for bond

prices and bond option prices. The question now arises as to when we have an

ATS, and the basic result is as follows.

Theorem 3.5. Su‰cient conditions for the existence of an a‰ne term structure are

the following.

(1) The drift (under Q) is an a‰ne function of the factors, i.e., m is of the form

mðt; xÞ ¼ aðtÞ þ DðtÞx;

where the n� 1 column vector a and the n� n matrix D are deterministic func-

tions of time.

(2) The ‘‘square of the di¤usion’’ is an a‰ne function of the factors, i.e., ss? is of

the form

sðt; xÞsðt; xÞ? ¼ CðtÞ þ
Xn

i¼1

DiðtÞxi;

where C and Di are deterministic n� n matrix functions of t.
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(3) The short rate is an a‰ne function of the factors, i.e.,

hðt; xÞ ¼ cðtÞ þ dðtÞx;

where the scalar c and the 1� n row vector d are deterministic functions of t.

Furthermore, under the conditions above the functions A and B in (13) are deter-

mined by the following system of ODEs, where the subscript t denotes partial deriv-

ative with respect to t, and where D denotes the block matrix D ¼ ½D1; . . . ;Dn�:

Btðt;TÞ ¼ �Bðt;TÞDðtÞ þ 1

2
Bðt;TÞDðtÞB?ðt;TÞ � dðtÞ; ð14Þ

BðT ;TÞ ¼ 0: ð15Þ

Atðt;TÞ ¼ Bðt;TÞaðt;TÞ � 1

2
Bðt;TÞCðtÞB?ðt;TÞ þ cðtÞ; ð16Þ

AðT ;TÞ ¼ 0: ð17Þ

Proof. The proof is surprisingly simple. Given the Ansatz (13), and the su‰cient

conditions above, compute the partial derivatives and plug them into the term

structure equation. The PDE will then be separable in x and the ODEs are ob-

tained by identifying coe‰cients. r

We note that, for every fixed T , (14)–(17) is a coupled system of ODEs in the

t-variable. We also see that (14) is a Riccati equation for B, whereas (16)–(17) can

be integrated directly, once B is computed.

3.5. Short rate models. The simplest type of a factor model is the one where

the factor process X is scalar and coincides with the short rate, i.e., Xt ¼ rt and

hðxÞ ¼ x. Such a model will then have the form

drt ¼ mðt; rtÞ dtþ sðt; rtÞ dWt;

where W is Q-Wiener. As we saw in the previous section, the term structure (i.e.,

the family of bond price processes) will, together with all other derivatives, be

completely determined by the term structure equation

qF

qt
ðt; rÞ þ mðt; rÞ qF

qr
ðt; rÞ þ 1

2
s2ðt; rÞ q

2F

qr2
ðt; rÞ � rFðt; rÞ ¼ 0; ð18Þ

FðT ; rÞ ¼ FðrÞ: ð19Þ

In the literature there are a large number of proposals on how to specify the Q-

dynamics for r. We present a (far from complete) list of the most popular models.
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If a parameter is time dependent this is written out explicitly. Otherwise all pa-

rameters are constant and positive.

(1) Vasiček: drt ¼ ðb� artÞ dtþ s dWt,

(2) Cox–Ingersoll–Ross (CIR): drt ¼ aðb� rtÞ dtþ s
ffiffiffiffi
rt

p
dWt,

(3) Dothan: drt ¼ art dtþ srt dWt,

(4) Black–Derman–Toy (BDT): drt ¼ YðtÞrt dtþ sðtÞrt dWt,

(5) Ho–Lee: drt ¼ YðtÞ dtþ s dWt,

(6) Hull–White (extended Vasiček): drt ¼ fYðtÞ � aðtÞrtg dtþ sðtÞ dWt,

(7) Hull–White (extended CIR): drt ¼ fYðtÞ � aðtÞrg dtþ sðtÞ ffiffiffiffi
rt

p
dWt.

3.6. Inverting the yield curve. We now turn to the problem of parameter esti-

mation in the martingale models above, and a natural procedure would perhaps

be to use standard statistical estimation procedures based on time series data of

the underlying factor process. This procedure, however, is unfortunately com-

pletely nonsensical and the reason is as follows.

Let us for simplicity assume we have a short rate model. Now, we have chosen

to model the r-process by giving the Q-dynamics, which means that all parameters

are defined under the martingale measure Q. When we make observations in the

real world we are however not observing r under the martingale measure Q, but

under the objective measure P. This means that if we apply standard statistical

procedures to our observed data we will not get our Q-parameters. What we get

instead is pure nonsense.

To see how we can save the situation, we begin by recalling from Result 3.2

that the martingale measure is chosen by the market. Thus, in order to obtain in-

formation about the Q-drift parameters we have to collect price information from

the market, and the typical approach is that of inverting the yield curve which

works as follows.

• Choose a particular short rate model involving one or several parameters.

(The arguments below will in fact apply to any factor model, but for sim-

plicity we confine ourselves to short rate models.) Let us denote the entire

parameter vector by a. Thus we write the r-dynamics (under Q) as

drt ¼ mðt; rt; aÞ dtþ sðt; rt; aÞ dWt: ð20Þ

• Solve the term structure equation (18)–(19) to obtain the theoretical term

structure as

pðt;T ; aÞ ¼ F T ðt; r; aÞ:
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• Collect price data (at t ¼ 0) from the bond market for all maturities. Denote

this empirically observed term structure by fp�ð0;TÞ;Tb 0g.

• Now choose the parameter vector a in such a way that the theoretical curve

fpð0;T ; aÞ;Tb 0g fits the empirical curve fp�ð0;TÞ;Tb 0g as well as possi-

ble (according to some objective function). This gives us our estimated pa-

rameter vector a�.

• We have now determined our martingale measure Q, and we can go on to

compute prices of interest rate derivatives.

The procedure above is known as ‘‘inverting the yield curve’’, ‘‘backing out

parameters from market data’’, or ‘‘calibrating the model to market data’’.

We end this section by noting that if we want a complete fit between the theo-

retical and the observed bond prices this calibration procedure is formally that of

solving the system of equations

pð0;T ; aÞ ¼ p�ð0;TÞ for all T > 0: ð21Þ

We observe that this is an infinite-dimensional system of equations (one equation

for each T) with a as the unknown, so if we work with a model containing a finite

parameter vector a (like the Vasiček model) there is no hope of obtaining a perfect

fit.

This is the reason why in the Hull–White model we introduce the infinite-

dimensional parameter vector Y and it can in fact be shown that there exists a

unique solution to (21) for the Ho–Lee model as well as for Hull–White ex-

tended Vasiček and CIR models. As an example, for the Ho–Lee model Y is

given by

YðtÞ ¼ f �T ð0; tÞ þ s2t;

where the lower index denotes partial derivative with respect to maturity.

It should, however, be noted that the introduction of an infinite parameter,

in order to fit the entire initial term structure, has its dangers in terms of over-

parameterization, leading to numerical instability of the parameter estimates.

4. Forward rate models and the geometric view

Up to this point we have studied interest models generated by a finite number of

underlying factors. The method proposed by Heath–Jarrow–Morton (HJM) is at

the far end of this spectrum—they choose the entire forward rate curve as their

(infinite-dimensional) state variable.
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4.1. The HJM drift condition. We now turn to the specification of the Heath–

Jarrow–Morton framework. This can be done under P or Q, but here we confine

ourselves to Q modeling.

Assumption 4.1. We assume that, for every fixed T > 0, the forward rate f ð�;TÞ
has a stochastic di¤erential which, under a given martingale measure Q, is given

by

df ðt;TÞ ¼ aðt;TÞ dtþ sðt;TÞ dWðtÞ; ð22Þ
f ð0;TÞ ¼ f �ð0;TÞ; ð23Þ

where W is a (d-dimensional) Q-Wiener process whereas að�;TÞ and sð�;TÞ are

adapted processes.

Note that conceptually equation (22) is a scalar stochastic di¤erential in the t-

variable for each fixed choice of T . The index T thus only serves as a ‘‘mark’’ or

‘‘parameter’’ in order to indicate which maturity we are looking at. Also note that

we use the observed forward rated curve f f �ð0;TÞ;Tb 0g as the initial condition.

This will automatically give us a perfect fit between observed and theoretical bond

prices at t ¼ 0, thus relieving us of the task of inverting the yield curve.

Remark 4.2. It is important to observe that the HJM approach to interest rates

does not a propose of a specific model, like, for example, the Vasiček model. It is

instead a framework to be used for analyzing interest rate models. We do not have

a specific model until we have specified the drift and volatility structure in (22).

Every short rate model can be equivalently formulated in forward rate terms,

and for every forward rate model, the arbitrage free price of a contingent T-claim

Y will still be given by the pricing formula

Pð0;YÞ ¼ EQ½e�
Ð T

0
rðsÞ ds � Y �;

where the short rate as usual is given by rðsÞ ¼ f ðs; sÞ.

We noticed earlier that for a short rate model every QPP will serve as a mar-

tingale measure. This is not the case for a forward rate model, the reason being

that we have the following two di¤erent formulas for bond prices

pðt;TÞ ¼ e�
Ð T

t
f ðt; sÞ ds;

pðt;TÞ ¼ EQ½e�
Ð T

0
rðsÞ ds jFt�;

where the short rate r and the forward rate f are connected by rðtÞ ¼ f ðt; tÞ. In

order for these formulas to hold simultaneously, we have to impose some sort of
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consistency relation between a and s in the forward rate dynamics. The result is

the famous Heath–Jarrow–Morton drift condition.

Proposition 4.3 (HJM drift condition). Under the martingale measure Q, the pro-

cesses a and s must satisfy the following relation, for every t and every T b t.

aðt;TÞ ¼ sðt;TÞ
ðT

t

sðt; sÞ? ds: ð24Þ

Proof. From Proposition 2.5 we obtain the bond price dynamics as

dpðt;TÞ ¼ pðt;TÞ rðtÞ þ Aðt;TÞ þ 1

2
kSðt;TÞk2

� �
dtþ pðt;TÞSðt;TÞ dWðtÞ:

We also know that, under a martingale measure, the local rate of return has to

equal the short rate r. Thus we obtain the identity

Aðt;TÞ þ 1

2
kSðt;TÞk2 ¼ 0;

and di¤erentiating this with respect to T gives us (24). r

The moral of Proposition 4.3 is that when we specify the forward rate dynam-

ics (under Q) we may freely specify the volatility structure. The drift parameters

are then uniquely determined.

4.2. The Musiela parameterization. In many practical applications it is more

natural to use time to maturity, rather than time of maturity, to parameterize

bonds and forward rates. If we denote running time by t, time of maturity by T ,

and time to maturity by x, then we have x ¼ T � t, and in terms of x the forward

rates are defined as follows.

Definition 4.4. For all xb 0 the forward rates rðt; xÞ are defined by the relation

rðt; xÞ ¼ f ðt; tþ xÞ:

Suppose now that we have the standard HJM-type model for the forward rates

under a martingale measure Q

df ðt;TÞ ¼ aðt;TÞ dtþ sðt;TÞ dWðtÞ: ð25Þ

The question is to find the Q-dynamics for rðt; xÞ, and we have the following re-

sult, known as the Musiela equation.
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Proposition 4.5 (The Musiela equation). Assume that the forward rate dynamics

under Q are given by (25). Then

drðt; xÞ ¼ q

qx
rðt; xÞ þDðt; xÞ

� �
dtþ s0ðt; xÞ dWðtÞ; ð26Þ

where

s0ðt; xÞ ¼ sðt; tþ xÞ;

Dðt; xÞ ¼ s0ðt; xÞ
ð x

0

s0ðt; sÞ? ds:

Proof. Using a slight variation of the Itô formula we have

drðt; xÞ ¼ df ðt; tþ xÞ þ qf

qT
ðt; tþ xÞ dt;

where the di¤erential in the term df ðt; tþ xÞ only operates on the first t. We thus

obtain

drðt; xÞ ¼ aðt; tþ xÞ dtþ sðt; tþ xÞ dWðtÞ þ q

qx
rðt; xÞ dt;

and, using the HJM drift condition, we obtain our result. r

The point of the Musiela parameterization is that it highlights equation (26) as

an infinite-dimensional SDE. It has become an indispensable tool of modern in-

terest rate theory.

In the remaining of this section we give briefly overview the geometric view on

forward rate models. This way of thinking about term structures was first pro-

posed by Björk and Christensen [3] and Björk and Svensson [8].

4.3. The geometric setup and main problems. We consider a given forward rate

model under a risk neutral martingale measure Q. We will adopt the Musiela pa-

rameterization and thus use the notation rðt; xÞ ¼ f ðt; tþ xÞ. Recall from propo-

sition 4.5 that under the martingale measure Q the r-dynamics are given by

drðt; xÞ ¼
n q

qx
rðt; xÞ þ sðt; xÞ

ð x

0

sðt; uÞ? du
o
dtþ sðt; xÞ dWðtÞ; ð27Þ

rð0; xÞ ¼ roð0; xÞ: ð28Þ

where, as before, ? denotes transpose and ro is the initial forward rate curve.
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Note that from now on r denotes forwards rates. To avoid confusion, we also

change the notation of short rate to R (i.e., RðtÞ ¼ rðt; 0Þ).
Suppose that we are given a concrete model M within the above framework,

i.e., suppose that we are given a concrete specification of the volatility process s.

We then have some natural problems to study, and we start from a calibration

point of view.

A standard procedure when dealing with concrete interest rate models on a

high frequency (say, daily) basis can be described as follows:

(1) At time t ¼ 0, use market data to fit (calibrate) the model to the observed

bond prices.

(2) Use the calibrated model to compute prices of various interest rate derivatives.

(3) The following day (t ¼ 1), repeat the procedure in (1) above in order to recali-

brate the model, etc.

To carry out the calibration in step 1. above, the analyst typically has to produce a

forward rate curve froð0; xÞ; xb 0g from the observed data. However, since only

a finite number of bonds actually trade in the market, the data consist of a discrete

set of points, and a need to fit a curve to these points arises. This curve-fitting

may be done in a variety of ways. One way is to use splines, but also a number

of parameterized families of smooth forward rate curves have become popular in

applications—the most well-known probably being the Nelson-Siegel family (see

[43]). Once the curve froð0; xÞ; xb 0g has been obtained, the parameters of the

interest rate model may be calibrated to this.

Now, from a purely logical point of view, the recalibration procedure in step 3.

above is of course slightly nonsensical: If the interest rate model at hand is an

exact picture of reality, then there should be no need to recalibrate. The reason

that everyone insists on recalibrating is of course that any model in fact only is

an approximate picture of the financial market under consideration, and recalibra-

tion allows incorporating newly arrived information in the approximation. Even

so, the calibration procedure itself ought to take into account that it will

be repeated. It appears that the optimal way to do so would involve a combina-

tion of time series and cross-section data, as opposed to the purely cross-sectional

curve-fitting, where the information contained in previous curves is discarded in

each recalibration.

The cross-sectional fitting of a forward curve and the repeated recalibration is

thus, in a sense, a pragmatic and somewhat non-theoretical endeavor. Nonethe-

less, there are some nontrivial theoretical problems to be dealt with in this context,

and the problem to be studied in this section concerns the consistency between, on

the one hand, the dynamics of a given interest rate model, and, on the other hand,

the forward curve family employed.
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What, then, is meant by consistency in this context? Assume that a given in-

terest rate model M (e.g., the Hull–White extension of the Vasiček model) in fact

is an exact picture of the financial market. Now consider a particular family G of

forward rate curves (e.g., the Nelson–Siegel family) and assume that the interest

rate model is calibrated using this family. We then say that the pair M and G

are consistent if all forward curves which can be produced by the interest rate

model M are contained within the family G. Otherwise, the pair ðM;GÞ is incon-
sistent.

Thus, if M and G are consistent, then the interest rate model actually produces

forward curves which belong to the relevant family. In contrast, if M and G are

inconsistent, then the interest rate model will produce forward curves outside the

family used in the calibration step, and this will force the analyst to change the

model parameters all the time—not because the model is an approximation to re-

ality, but simply because the family does not go well with the model.

Put into more operational terms this can be rephrased as follows: Suppose that

you are using a fixed interest rate model M. If you want to do recalibration, then

your family G of forward rate curves should be chosen is such a way as to be con-

sistent with the model M.

Note however that the argument also can be run backwards, yielding the fol-

lowing conclusion for empirical work.

Suppose that a particular forward curve family G has been observed to provide

a good fit, on a day-to-day basis, in a particular bond market. Then this gives you

modeling information about the choice of an interest rate model in the sense that

you should try to use/construct an interest rate model which is consistent with the

family G.

We can now formulate our main problems:

(1) Under which conditions is a given forward rate model M and a parameterized

family G of forward rate curves consistent?

(2) When can the given, inherently infinite-dimensional, interest rate model M be

written as a finite dimensional state space model? More precisely, we seek con-

ditions under which the forward rate process rðt; xÞ induced by the model M,

can be realized by a system of the form

dZt ¼ aðZtÞ dtþ bðZtÞ dWt; ð29Þ
rðt; xÞ ¼ GðZt; xÞ; ð30Þ

where Z (interpreted as the state vector process) is a finite dimensional dif-

fusion, aðzÞ, bðzÞ and Gðz; xÞ are deterministic functions and W is the same

Wiener process as in (27).

As will be seen below, these two problems are intimately connected.
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4.4. Consistency and invariant manifolds. We start by looking into the first

problem and study when a given sub manifold of forward rate curves is consistent

(in the sense described above) with a given interest rate model. This problem is of

interest from an applied as well as from a theoretical point of view. In particular

we will use the results from this section to analyze problems about existence of fi-

nite dimensional factor realizations for interest rate models on forward rate form.

We now move on to give precise mathematical definition of the consistency

property discussed above, and this leads us to the concept of an invariant manifold.

Definition 4.6 (Invariant manifold). Take as given the forward rate process dy-

namics (27). Consider also a fixed family (manifold) of forward rate curves G.

We say that G is locally invariant under the action of r if, for each point ðs; rÞ a
Rþ � G, the condition rs a G implies that rt a G on a time interval with positive

length. If r stays forever on G, we say that G is globally invariant.

We will characterize invariance in terms of local characteristics of G and M,

and in this context local invariance is the best one can hope for. In order to save

space, local invariance will therefore be referred to as invariance.

4.4.1. The formalized problem. As our basic space of forward rate curves we

will use a weighted Sobolev space, where a generic point will be denoted by r.

Definition 4.7. Consider a fixed real number g > 0. The space Hg is defined as

the space of all di¤erentiable (in the distributional sense) functions

r : Rþ ! R

satisfying the norm condition krkg < l. Here the norm is defined as

krk2g ¼
ðl
0

r2ðxÞe�gx dxþ
ðl
0

dr

dx
ðxÞ

	 
2

e�gx dx:

Remark 4.8. The variable x is as before interpreted as time to maturity. With the

inner product

ðr; qÞ ¼
ðl
0

rðxÞqðxÞe�ax dxþ
ðl
0

dr

dx
ðxÞ

	 

dq

dx
ðxÞ

	 

e�gx dx;

the space Hg becomes a Hilbert space. Because of the exponential weighting func-

tion all constant forward rate curves will belong to the space. In the sequel we will

suppress the subindex g, writing H instead of Hg.
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4.4.2. The forward curve manifold. We consider as given a mapping

G : Z ! H; ð31Þ

where the parameter space Z is an open connected subset of Rd , i.e., for each pa-

rameter value z a ZJRd we have a curve GðzÞ a H. The value of this curve at

the point x a Rþ will be written as Gðz; xÞ, so we see that G can also be viewed as

a mapping

G : Z� Rþ ! R: ð32Þ

The mapping G is thus a formalization of the idea of a finitely parameterized fam-

ily of forward rate curves, and we now define the forward curve manifold as the

set of all forward rate curves produced by this family.

Definition 4.9. The forward curve manifold GJH is defined as

G ¼ ImðGÞ:

4.4.3. The interest rate model. We take as given a volatility function s of the

form

s : H� Rþ ! Rm

i.e., sðr; xÞ is a functional of the infinite-dimensional r-variable, and a function of

the real variable x. Denoting the forward rate curve at time t by rt we then have

the following forward rate equation.

drtðxÞ ¼
n q

qx
rtðxÞ þ sðrt; xÞ

ð x

0

sðrt; uÞ? du
o
dtþ sðrt; xÞ dWt: ð33Þ

Remark 4.10. For notational simplicity we have assumed that the r-dynamics are

time homogeneous. The case when s is of the form sðt; r; xÞ can be treated in ex-

actly the same way (see [3]).

We also need some regularity assumptions, but we suppress these here and

refer to [3] for technical details.

4.4.4. The invariance conditions. In order to study the invariance problem we

need to use some compact notation.

Definition 4.11. We define Hs by

Hsðr; xÞ ¼
ð x

0

sðr; sÞ ds:
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Suppressing the x-variable, the Itô dynamics for the forward rates are thus

given by

drt ¼
q

qx
rt þ sðrtÞHsðrtÞ?

� �
dtþ sðrtÞ dWt; ð34Þ

and we write this more compactly as

drt ¼ m0ðrtÞ dtþ sðrtÞ dWt; ð35Þ

where the drift m0 is given by the bracket term in (34). To get some intuition we

now formally ‘‘divide by dt’’ and obtain

dr

dt
¼ m0ðrtÞ þ sðrtÞ _WWt; ð36Þ

where the formal time derivative _WWt is interpreted as an ‘‘input signal’’ chosen by

chance. We are thus led to study the associated deterministic control system

dr

dt
¼ m0ðrtÞ þ sðrtÞut: ð37Þ

The intuitive idea is now that G is invariant under (35) if and only if G is invariant

under (37) for all choices of the input signal u. It is furthermore geometrically ob-

vious that this happens if and only if the velocity vector mðrÞ þ sðrÞu is tangential

to G for all points r a G and all choices of u a Rm. Since the tangent space of G at

a point GðzÞ is given by Im½G 0
zðzÞ�, where G 0

z denotes the Frechet derivative (Jaco-

bian), we are led to conjecture that G is invariant if and only if the condition

m0ðrÞ þ sðrÞu a Im½G 0
zðzÞ�

is satisfied for all u a Rm. This can also be written

m0ðrÞ a Im½G 0
zðzÞ�; sðrÞ a Im½G 0

zðzÞ�;

where the last inclusion is interpreted componentwise for s.

This ‘‘result’’ is, however, not correct due to the fact that the argument above

neglects the di¤erence between ordinary calculus, which is used for (37), and Itô

calculus, which governs (35). In order to bridge this gap we have to rewrite the

analysis in terms of Stratonovich integrals instead of Itô integrals.

Definition 4.12. For given semimartingales X and Y , the Stratonovich integralÐ t

0 XðsÞ � dYðsÞ of X with respect to Y is defined asð t

0

Xs � dYs ¼
ð t

0

Xs dYs þ
1

2
3X ;Y4t: ð38Þ
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The first term on the RHS is the Itô integral. In the present case, with only

Wiener processes as driving noise, we can define the ‘quadratic variation process’

3X ;Y4 in (38) by

d3X ;Y4t ¼ dXt dYt; ð39Þ

with the usual ‘multiplication rules’ dW � dt ¼ dt � dt ¼ 0, dW � dW ¼ dt. We now

recall the main result and raison d’être for the Stratonovich integral.

Proposition 4.13 (Chain rule). Assume that the function F ðt; yÞ is smooth. Then

we have

dFðt;YtÞ ¼
qF

qt
ðt;YtÞ dtþ

qF

qy
� dYt: ð40Þ

Thus, in the Stratonovich calculus, the Itô formula takes the form of the stan-

dard chain rule of ordinary calculus.

Returning to (35), the Stratonovich dynamics are given by

drt ¼
q

qx
rt þ sðrtÞHsðrtÞ?

� �
dt� 1

2
d3sðrtÞ;Wt4þ sðrtÞ � dWt: ð41Þ

In order to compute the Stratonovich correction term above we use the

infinite-dimensional Itô formula (see [16]) to obtain

dsðrtÞ ¼ f. . .g dtþ s 0
rðrtÞsðrtÞ dWt; ð42Þ

where s 0
r denotes the Frechet derivative of s with respect to the infinite-

dimensional r-variable. From this we immediately obtain

d3sðrtÞ;Wt4 ¼ s 0
rðrtÞsðrtÞ dt: ð43Þ

Remark 4.14. If the Wiener process W is multidimensional, then s is a vector

s ¼ ½s1; . . . ; sm�, and the right-hand side of (43) should be interpreted as

s 0
rðrtÞsðrtÞ ¼

Xm
i¼1

s 0
irðrtÞsiðrtÞ:

Thus (41) becomes

drt ¼
q

qx
rt þ sðrtÞHsðrtÞ? �

1

2
s 0
rðrtÞsðrtÞ

� �
dtþ sðrtÞ � dWt ð44Þ
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We now write (44) as

drt ¼ mðrtÞ dtþ sðrtÞ � dWt; ð45Þ

where

mðr; xÞ ¼ q

qx
rðxÞ þ sðrt; xÞ

ð x

0

sðrt; uÞ? du�
1

2
½s 0

rðrtÞsðrtÞ�ðxÞ: ð46Þ

Given the heuristics above, our main result is not surprising. The formal

proof, which is somewhat technical, is left out. See [3].

Theorem 4.15 (Main Theorem). The forward curve manifold G is locally invariant

for the forward rate process rðt; xÞ in M if and only if

G 0
xðzÞ þ sðrÞHsðrÞ? � 1

2
s 0
rðrÞsðrÞ a Im½G 0

zðzÞ�; ð47Þ

sðrÞ a Im½G 0
zðzÞ�; ð48Þ

hold for all z a Z with r ¼ GðzÞ.

Here, G 0
z and G 0

x denote the Frechet derivative of G with respect to z and x,

respectively. The condition (48) is interpreted componentwise for s. Condition

(47) is called the consistent drift condition, and (48) is called the consistent volatility

condition.

Remark 4.16. It is easily seen that if the family G is invariant under shifts in the

x-variable, then we will automatically have the relation

G 0
xðzÞ a Im½G 0

zðzÞ�;

so in this case the relation (47) can be replaced by

sðrÞHsðrÞ? � 1

2
s 0
rðrÞsðrÞ a Im½G 0

zðzÞ�;

with r ¼ GðzÞ as usual.

The results above are extremely easy to apply in concrete situations. As a

test case we consider the Nelson–Siegel family of forward rate curves. We ana-

lyze the consistency of this family with the Hull–White extension of the Vasiček

model.
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4.4.5. Example: the NS family and the HW extended Vasiček model. The

Nelson–Siegel (henceforth NS) forward curve manifold G is parameterized by

z a R4, the curve x 7! Gðz; xÞ as

Gðz; xÞ ¼ z1 þ z2e
�z4x þ z3xe

�z4x : ð49Þ

For z4A 0, the Frechet derivatives are easily obtained as

G 0
zðz; xÞ ¼ ½1; e�z4x; xe�z4x;�ðz2 þ z3xÞxe�z4x�; ð50Þ

G 0
xðz; xÞ ¼ ðz3 � z2z4 � z3z4xÞe�z4x: ð51Þ

In the degenerate case z4 ¼ 0, we have

Gðz; xÞ ¼ z1 þ z2 þ z3x; ð52Þ

We return to this case below.

As our test case, we analyze the Hull and White (henceforth HW) extension of

the Vasiček model. On short rate form the model is given by

dRðtÞ ¼ fFðtÞ � aRðtÞg dtþ s dWðtÞ; ð53Þ

where a; s > 0: As is well known, the corresponding forward rate formulation is

drðt; xÞ ¼ bðt; xÞ dtþ se�ax dWt: ð54Þ

Thus, the volatility function is given by sðxÞ ¼ se�ax, and the conditions of

Theorem 4.15 become

G 0
xðz; xÞ þ

s2

a
½e�ax � e�2ax� a Im½G 0

zðz; xÞ�; ð55Þ

se�ax a Im½G 0
zðz; xÞ�: ð56Þ

To investigate whether the NS manifold is invariant under HW dynamics, we start

with (56) and fix a z-vector. We then look for constants (possibly depending on z)

A, B, C and D, such that for all xb 0 we have

se�ax ¼ Aþ Be�z4x þ Cxe�z4x �Dðz2 þ z3xÞxe�z4x: ð57Þ

This is possible if and only if z4 ¼ a, and since (56) must hold for all choices of

z a Z we immediately see that HW is inconsistent with the full NS manifold.

See [24] for a remarkable extension of this result.

Proposition 4.17 (Nelson–Siegel and Hull–White). The Hull–White model is in-

consistent with the NS family.
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We have thus obtained a negative result for the HW model. The NS manifold

is ‘too small’ for HW, in the sense that if the initial forward rate curve is on the

manifold, then the HW dynamics will force the term structure o¤ the manifold

within an arbitrarily short period of time. For more positive results see [3].

Remark 4.18. It is an easy exercise to see that the minimal manifold which is con-

sistent with HW is given by

Gðz; xÞ ¼ z1e
�ax þ z2e

�2ax:

4.5. Existence of finite realizations. We now turn to Problem 2 in Section 4.3,

i.e., the problem when a given forward rate model has a finite dimensional factor

realization. For ease of exposition we mostly confine ourselves to a discussion of

the case of a single driving Wiener process and to time invariant forward rate

dynamics. Multidimensional Wiener processes and time varying systems can be

treated similarly, and for completeness we state the results for the multidimen-

sional case. We will use some ideas and concepts from di¤erential geometry, and

a general reference here is [48].

We now take as given a volatility s : H ! H and consider the induced for-

ward rate model (on Stratonovich form)

drt ¼ mðrtÞ dtþ sðrtÞ � dWt; ð58Þ

where as before (see Section 4.4.4)

mðrÞ ¼ q

qx
rþ sðrÞHsðrÞ? � 1

2
s 0
rðrÞsðrÞ: ð59Þ

Remark 4.19. The reason for our choice of H as the underlying space, is that the

linear operator F ¼ d=dx is bounded in this space. Together with the assumptions

above, this implies that both m and s are smooth vector fields on H, thus ensuring

the existence of a strong local solution to the forward rate equation for every ini-

tial point ro a H.

4.5.1. The geometric problem. Given a specification of the volatility mapping

s, and an initial forward rate curve ro we now investigate when (and how) the cor-

responding forward rate process possesses a finite, dimensional realization. We

are thus looking for smooth d-dimensional vector fields a and b, an initial point

z0 a Rd , and a mapping G : Rd ! H such that r, locally in time, has the represen-

tation

dZt ¼ aðZtÞ dtþ bðZtÞ dWt; Z0 ¼ z0; ð60Þ
rðt; xÞ ¼ GðZt; xÞ: ð61Þ
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Remark 4.20. Let us clarify some points. Firstly, note that in principle it may

well happen that, given a specification of s, the r-model has a finite dimensional

realization given a particular initial forward rate curve ro, while being infinite-

dimensional for all other initial forward rate curves in a neighbourhood of ro.

We say that such a model is a non-generic or accidental finite dimensional model.

If, on the other hand, r has a finite dimensional realization for all initial points in a

neighbourhood of ro, then we say that the model is a generically finite dimensional

model. In this text we are solely concerned with the generic problem. Secondly,

let us emphasize that we are looking for local (in time) realizations.

We can now connect the realization problem to our studies of invariant mani-

folds.

Proposition 4.21. The forward rate process possesses a finite dimensional realiza-

tion if and only if there exists an invariant finite dimensional submanifold G with

ro a G.

Proof. See [3] for the full proof. The intuitive argument runs as follows. Suppose

that there exists a finite dimensional invariant manifold G with ro a G. Then G

has a local coordinate system, and we may define the Z process as the local coor-

dinate process for the r-process. On the other hand it is clear that if r has a finite

dimensional realization as in (60)–(61), then every forward rate curve that will be

produced by the model is of the form x 7! Gðz; xÞ for some choice of z. Thus

there exists a finite dimensional invariant submanifold G containing the initial for-

ward rate curve ro, namely G ¼ ImðGÞ. r

Using Theorem 4.15 we immediately obtain the following geometric character-

isation of the existence of a finite realization.

Corollary 4.22. The forward rate process possesses a finite dimensional realization

if and only if there exists a finite dimensional manifold G containing ro, such that, for

each r a G the following conditions hold:

mðrÞ a TGðrÞ; sðrÞ a TGðrÞ:

Here TGðrÞ denotes the tangent space to G at the point r, and the vector fields m and

s are as above.

4.5.2. The main result. Given the volatility vector field s, and hence also the

field m, we now are faced with the problem of determining if there exists a finite

dimensional manifold G with the property that m and s are tangential to G at

each point of G. In the case when the underlying space is finite dimensional, this

is a standard problem in di¤erential geometry, and we will now give the heuristics.
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To get some intuition we start with a simpler problem and therefore consider

the space H (or any other Hilbert space), and a smooth vector field f on the

space. For each fixed point ro a H we now ask if there exists a finite dimensional

manifold G with ro a G such that f is tangential to G at every point. The answer

to this question is yes, and the manifold can in fact be chosen to be one-

dimensional. To see this, consider the infinite-dimensional ODE

drt

dt
¼ f ðrtÞ; ð62Þ

r0 ¼ ro: ð63Þ

If rt is the solution, at time t, of this ODE, we use the notation

rt ¼ e ftro:

We have thus defined a group of operators fe ft : t a Rg, and we note that the set

fe ftro : t a RgJH is nothing else than the integral curve of the vector field f ,

passing through ro. If we define G as this integral curve, then our problem is

solved, since f will be tangential to G by construction.

Let us now take two vector fields f1 and f2 as given, where the reader infor-

mally can think of f1 as s and f2 as m. We also fix an initial point ro a H and

the question is if there exists a finite dimensional manifold G, containing ro, with

the property that f1 and f2 are both tangential to G at each point of G. We call

such a manifold an tangential manifold for the vector fields. At a first glance it

would seem that there always exists an tangential manifold, and that it can even

be chosen to be two-dimensional. The geometric idea is that we start at ro and let

f1 generate the integral curve fe f1sro : sb 0g. For each point e f1sro on this curve

we now let f2 generate the integral curve starting at that point. This gives us the

object e f2te f1sro and thus it seems that we sweep out a two dimensional surface G

in H. This is our obvious candidate for an tangential manifold.

In the general case this idea will, however, not work, and the basic problem is

as follows. In the construction above we started with the integral curve generated

by f1 and then applied f2, and there is of course no guarantee that we will obtain

the same surface if we start with f2 and then apply f1. We thus have some sort of

commutativity problem, and the key concept is the Lie bracket.

Definition 4.23. Given smooth vector fields f and g on H, the Lie bracket ½ f ; g�
is a new vector field defined by

½ f ; g�ðrÞ ¼ f 0ðrÞgðrÞ � g 0ðrÞ f ðrÞ: ð64Þ

The Lie bracket measures the lack of commutativity on the infinitesimal scale

in our geometric program above, and for the procedure to work we need a condi-
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tion which says that the lack of commutativity is ‘‘small’’. It turns out that the

relevant condition is that the Lie bracket should be in the linear hull of the vector

fields.

Definition 4.24. Let f1; . . . ; fn be smooth independent vector fields on some space

X . Such a system is called a distribution, and the distribution is said to be involu-

tive if

½ fi; fj�ðxÞ a spanf f1ðxÞ; . . . ; fnðxÞg for all i; j;

where the span is the linear hull over the real numbers.

We now have the following basic result, which extends a classic result from fi-

nite dimensional di¤erential geometry (see [48]).

Theorem 4.25 (Frobenius). Let f1; . . . ; fk and be linearly independent smooth vec-

tor fields in H and consider a fixed point ro a H. Then the following statements are

equivalent.

• For each point r in a neighbourhood of ro, there exists a k-dimensional tangen-

tial manifold passing through r.

• The system f1; . . . ; fk of vector fields is (locally) involutive.

Proof. See [8], which provides a self-contained proof of the Frobenius Theorem in

Banach space. r

Let us now go back to our interest rate model. We are thus given the vector

fields m, s, and an initial point ro, and the problem is whether there exists a finite

dimensional tangential manifold containing ro. Using the infinite-dimensional

Frobenius theorem, this situation is now easily analyzed. If fm; sg is involutive

then there exists a two dimensional tangential manifold. If fm; sg is not involu-

tive, this means that the Lie bracket ½m; s� is not in the linear span of m and s, so

we then consider the system fm; s; ½m; s�g. If this system is involutive there exists a

three dimensional tangential manifold. If it is not involutive at least one of the

brackets ½m; ½m; s��, ½s; ½m; s�� is not in the span of fm; s; ½m; s�g, and we then adjoin

this (these) bracket(s). We continue in this way, forming brackets of brackets, and

adjoining these to the linear hull of the previously obtained vector fields, until the

point when the system of vector fields thus obtained actually is closed under the

Lie bracket operation.

Definition 4.26. Take the vector fields f1; . . . ; fk as given. The Lie algebra gener-

ated by f1; . . . ; fk is the smallest linear space (over R) of vector fields which con-
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tains f1; . . . ; fk and is closed under the Lie bracket. This Lie algebra is denoted

by

L ¼ f f1; . . . ; fkgLA

The dimension of L is defined, for each point r a H, as

dim½LðrÞ� ¼ dim spanf f1ðrÞ; . . . ; fkðrÞgLA:

Putting all these results together, we have the following main result on finite

dimensional realizations.

Theorem 4.27 (Main result). Take the volatility mapping s ¼ ðs1; . . . ; smÞ as

given. Then the forward rate model generated by s generically admits a finite di-

mensional realization if and only if

dimfm; s1; . . . ; smgLA < l

in a neighbourhood of ro.

When computing the Lie algebra generated by m and s, the following observa-

tions are often useful.

Lemma 4.28. Take the vector fields f1; . . . ; fk as given. The Lie algebra L ¼
f f1; . . . ; fkgLA remains unchanged under the following operations.

• The vector field fiðrÞ may be replaced by aðrÞ fiðrÞ, where a is any smooth non-

zero scalar field.

• The vector field fiðrÞ may be replaced by

fiðrÞ þ
X
jAi

ajðrÞ fjðrÞ;

where aj is any smooth scalar field.

Proof. The first point is geometrically obvious, since multiplication by a scalar

field will only change the length of the vector field fi, and not its direction, and

thus not the tangential manifold. Formally it follows from the ‘‘Leibnitz rule’’

½ f ; ag� ¼ a½ f ; g� � ða 0f Þg. The second point follows from the bilinear property of

the Lie bracket together with the fact that ½ f ; f � ¼ 0. r

We conclude this general section by pointing out that although the Lie algebra

approach described above allows us to completely solve the FDR problem, it has

a serious limitation in the sense that it relies heavily on the assumption that the
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driving processes are Wiener processes. If you introduce a driving point process in

the dynamics of the forward rates, then the Lie algebra approach cannot be used

in a straightforward manner. The reason is basically that the Lie algebra

approach relies on local analysis, such as di¤erential calculus and the Frobenius

Theorem. Local analysis is well suited to Wiener framework since a Wiener pro-

cess acts locally in time and space, and this is reflected by the fact that the infini-

tesimal operator is a di¤erential operator. A point process, on the other hand,

exhibits global behavior by forcing the forward rate curve to jump from one point

in the space to another and this is reflected in the fact that the infinitesimal opera-

tor is an integral operator. For a general theory including point processes we thus

need completely new arguments, and one interesting step in this direction is taken

in the PhD thesis [46]. For point processes driving only the volatility, but not

entering directly into the forward rate dynamcis, the situation is simpler, and the

Lie algebra approach can be used. See [22].

4.5.3. Application 1: the case of constant volatility. We now present some sim-

ple applications of the theory developed above, but first we need to recall some

facts about quasi-exponential functions.

Definition 4.29. A quasi-exponential (or QE) function is by definition any func-

tion of the form

f ðxÞ ¼
X
u

elux þ
X
j

eajx½pjðxÞ cosðwjxÞ þ qjðxÞ sinðwjxÞ�;

where lu, aj, wj are real numbers, whereas pj and qj are real polynomials.

QE functions will turn up over and over again, so we list some simple well

known property.

Lemma 4.30. A function is QE if and only if it is a component of the solution of a

linear ODE with constant coe‰cients.

We start with the simplest case, which is when the volatility sðr; xÞ is a con-

stant vector in H, and we assume for simplicity that we have only one driving

Wiener process. Then we have no Stratonovich correction term and the vector

fields are given by

mðr; xÞ ¼ FrðxÞ þ sðxÞ
ð x

0

sðsÞ ds; sðr; xÞ ¼ sðxÞ:

where F ¼ q
qx
.
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The Frechet derivatives are trivial in this case. Since F is linear (and bounded

in our space), and s is constant as a function of r, we obtain

m 0
r ¼ F; s 0

r ¼ 0:

Thus the Lie bracket ½m; s� is given by

½m; s� ¼ Fs;

and in the same way we have

½m; ½m; s�� ¼ F2s:

Continuing in the same manner it is easily seen that the relevant Lie algebra L is

given by

L ¼ fm; sgLA ¼ spanfm; s;Fs;F2s; . . .g ¼ spanfm;Fns; n ¼ 0; 1; 2; . . .g:

It is thus clear that L is finite dimensional (at each point r) if and only if the func-

tion space

spanfFns; n ¼ 0; 1; 2; . . .g

is finite dimensional. We have thus obtained the following result.

Proposition 4.31. Under the above assumptions, there exists a finite dimensional

realization if and only if s is a quasi-exponential function.

4.5.4. Application 2: the case of constant direction volatility. We go on to

study the most natural extension of the deterministic volatility case (still in the

case of a scalar Wiener process) namely the case when the volatility is of the form

sðr; xÞ ¼ jðrÞlðxÞ: ð65Þ

In this case the individual vector field s has the constant direction l a H but is of

varying length, determined by j, where j is allowed to be any smooth functional

of the entire forward rate curve. In order to avoid trivialities we make the follow-

ing assumption.

Assumption 4.32. We assume that jðrÞA 0 for all r a H.

After a simple calculation the drift vector m turns out to be

mðrÞ ¼ Frþ j2ðrÞD� 1

2
j 0ðrÞ½l�jðrÞl; ð66Þ
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where j 0ðrÞ½l� denotes the Frechet derivative j 0ðrÞ acting on the vector l, and

where the constant vector D a H is given by

DðxÞ ¼ lðxÞ
ð x

0

lðsÞ ds:

We now want to know under what conditions on j and l we have a finite dimen-

sional realization, i.e., when the Lie algebra generated by

mðrÞ ¼ Frþ j2ðrÞD� 1

2
j 0ðrÞ½l�jðrÞl; sðrÞ ¼ jðrÞl;

is finite dimensional. Under Assumption 4.32 we can use Lemma 4.28, to see that

the Lie algebra is in fact generated by the simpler system of vector fields

f0ðrÞ ¼ FrþFðrÞD; f1ðrÞ ¼ l;

where we have used the notation

FðrÞ ¼ j2ðrÞ:

Since the field f1 is constant, it has zero Frechet derivative. Thus the first Lie

bracket is easily computed as

½ f0; f1�ðrÞ ¼ FlþF 0ðrÞ½l�D:

The next bracket to compute is ½½ f0; f1�; f1�, which is given by

½½ f0; f1�; f1� ¼ F 00ðrÞ½l; l�D:

Note that F 00ðrÞ½l; l� is the second order Frechet derivative of F operating on the

vector pair ½l; l�. This pair is to be distinguished from (notice the semicolon) the

Lie bracket ½l; l� (with a comma), which if course would be equal to zero. We

now make a further assumption.

Assumption 4.33. We assume that F 00ðrÞ½l; l�A 0 for all r a H.

Given this assumption we may again use Lemma 4.28 to see that the Lie alge-

bra is generated by the vector fields

f0ðrÞ ¼ Fr; f1ðrÞ ¼ l; f3ðrÞ ¼ Fl; f4ðrÞ ¼ D:

352 T. Björk and R. M. Gaspar



Of these vector fields, all but f0 are constant, so all brackets are easy. After ele-

mentary calculations we see that in fact

fm; sgLA ¼ spanfFr;Fnl;FnD; n ¼ 0; 1; . . .g:

From this expression it follows immediately that a necessary condition for the Lie

algebra to be finite dimensional is that the vector space spanned by fFnl; nb 0g is

finite dimensional. This occurs if and only if l is quasi-exponential. If, on the

other hand, l is quasi-exponential, then we know from Lemma 4.30 that also D

is quasi-exponential, since it is the integral of the QE function l multiplied by the

QE function l. Thus the space fFnD; n ¼ 0; 1; . . .g is also finite dimensional, and

we have proved the following result.

Proposition 4.34. Under Assumptions 4.32 and 4.33, the interest rate model with

volatility given by sðr; xÞ ¼ jðrÞlðxÞ has a finite dimensional realization if and only

if l is a quasi-exponential function. The scalar field j is allowed to be any smooth

field.

4.5.5. Application 3: when is the short rate a markov process? One of the clas-

sical problems concerning the HJM approach to interest rate modeling is that of

determining when a given forward rate model is realized by a short rate model,

i.e., when the short rate is Markovian. We now briefly indicate how the theory

developed above can be used in order to analyze this question. For the full theory

see [8].

Using the results above, we immediately have the following general necessary

condition.

Proposition 4.35. The forward rate model generated by s is a generic short rate

model, i.e the short rate is generically a Markov process only if

dimfm; sgLAa 2: ð67Þ

Proof. If the model is really a short rate model, then bond prices are given as

pðt; xÞ ¼ F ðt;Rt; xÞ where F solves the term structure PDE. Thus bond prices,

and forward rates are generated by a two dimensional factor model with time t

and the short rate R as the state variables. r

Remark 4.36. The most natural case is dimfm; sgLA ¼ 2. It has in fact been

shown in [27] (see Remark 4.6 therein) that—under some mild and natural techni-

cal assumptions—every nontrivial generic short rate model is of dimension 2.

Note that condition (67) is only a necessary condition for the existence of a

short rate realization. It guarantees that there exists a two-dimensional realiza-
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tion, but the question remains whether the realization can chosen in such a way

that the short rate and running time are the state variables. This question is com-

pletely resolved by the following central result (see [8]).

Theorem 4.37. Assume that the model is not deterministic, and take as given a time

invariant volatility sðr; xÞ. Then there exists a short rate realization if and only if

the vector fields ½m; s� and s are parallel, i.e., if and only if there exists a scalar field

aðrÞ such that the relation

½m; s�ðrÞ ¼ aðrÞsðrÞ ð68Þ

holds (locally) for all r.

It turns out that the class of generic short rate models is very small indeed. We

have, in fact, the following result, which was first proved in [39] (using techniques

di¤erent from those above). See [8] for a proof based on Theorem 4.37.

Theorem 4.38. Consider a HJM model with one driving Wiener process and a vol-

atility structure of the form

sðr; xÞ ¼ gðR; xÞ;

where R ¼ rð0Þ is the short rate. Then the model is a generic short rate model if and

only if g has one of the following forms.

• There exists a constant c such that

gðR; xÞC c:

• There exist constants a and c such that

gðR; xÞ ¼ ce�ax:

• There exist constants a and b, and a function aðxÞ, where a satisfies a certain

Riccati equation, such that

gðR; xÞ ¼ aðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aRþ b

p
:

We immediately recognize these cases as the Ho-Lee model, the Hull–White

extended Vasiček model, and the Hull–White extended Cox–Ingersoll–Ross

model. Thus, in this sense the only generic short rate models are the a‰ne ones,

and the moral of this, perhaps somewhat surprising, result is that most short rate

models considered in the literature are not generic but ‘‘accidental’’. To under-

stand the geometric picture one can think of the following program.
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(1) Choose an arbitrary short rate model, say of the form

dRt ¼ aðRtÞ dtþ bðRtÞ dWt

with a fixed initial point R0.

(2) Solve the associated PDE in order to compute bond prices. This will also pro-

duce

• an initial forward rate curve r̂roðxÞ,
• forward rate volatilities of the form gðR; xÞ.

(3) Forget about the underlying short rate model and take the forward rate vola-

tility structure gðR; xÞ as given in the forward rate equation.

(4) Initiate the forward rate equation with an arbitrary initial forward rate curve

roðxÞ.

The question is now whether the thus constructed forward rate model will pro-

duce a Markovian short rate process. Obviously, if you choose the initial forward

rate curve ro as ro ¼ r̂ro, then you are back where you started, and everything is

fine. If, however, you choose another initial forward rate curve than r̂ro, say the

observed forward rate curve of today, then it is no longer clear that the short

rate will be Markovian. What the theorem above says is that only the models

listed above will produce a Markovian short rate model for all initial points in a

neighbourhood of r̂ro. If you take another model (like, say, the Dothan model)

then a generic choice of the initial forward rate curve will produce a short rate pro-

cess which is no

5. Potentials and positive interest

The purpose of this section is to present two approaches to interest rate theory

based on so called ‘‘stochastic discount factors’’ (see below for details), while also

relating bond pricing to stochastic potential theory.

An appealing aspect of the approaches described below is that they both gen-

erate positive term structures, i.e., a system of bond prices for which all induced

forward rates are positive.

5.1. Generalities. As a general setup we consider a standard filtered probability

space ðW;F;F ;PÞ where P is the objective measure. We now need an assumption

about how the market prices various assets.

Assumption 5.1. We assume that the market prices all assets, underlying and de-

rivative, using a fixed martingale measure Q (with the money account as the nu-

meraire).
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We now recall that for a T-claim Y the arbitrage free price at t ¼ 0 is given by

Pð0;YÞ ¼ EQ½e�
Ð T

0
rs ds � Y �: ð69Þ

We denote the likelihood process for the transition from the objective measure

P to the martingale measure Q by L, i.e.,

Lt ¼
dQt

dPt

;

where the index t denotes the restriction of P and Q to Ft. We may of course also

write the price in (69) as an expected value under P:

EP½e�
Ð T

0
rs ds � LT � Y �:

This leads us to the following definition.

Definition 5.2. The stochastic discount factor (SDF), or state price density process

Z is defined by

ZðtÞ ¼ e�
Ð t

0
rs ds � Lt:

We now have the following basic pricing result, which follows directly from the

Bayes formula.

Proposition 5.3. For any T-claim Y, the arbitrage free price process is given by

Pðt;YÞ ¼ EP½ZTY jFt�
Zt

:

In particular, bond prices are given by

Pðt;YÞ ¼ EP½ZT jFt�
Zt

: ð70Þ

We now have the following fact which we will use extensively.

Proposition 5.4. Assume that the short rate is strictly positive and that the econom-

ically natural condition pð0;TÞ ! 0 as T ! l is satisfied. Then the stochastic dis-

count factor Z is a probabilistic potential, i.e.,

• Z is a supermartingale.

• E½Zt� ! 0 as t ! l.
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Conversely one can show that any potential will serve as a stochastic discount

factor. Thus the moral is that modeling bond prices in a market with positive in-

terest rates is equivalent to modeling a potential, and in the next sections we will

describe two ways of doing this.

We end by noticing that we can easily recover the short rate from the dynamics

of Z.

Proposition 5.5. If the dynamics of Z are written as

dZt ¼ �ht dtþ dMt;

where h is nonnegative and M is a martingale, then the short rate is given by

rt ¼ Z�1
t ht:

Proof. Applying the Itô formula to the definition of Z we obtain

dZt ¼ �rtZt dtþ e�
Ð t

0
rs ds dLt: r

5.2. The Flesaker–Hughston fractional model. Given a stochastic discount

factor Z and a positive short rate we may, for each fixed T , define the process

fXðt;TÞ; 0a taTg by

Xðt;TÞ ¼ EP½ZT jFt�; ð71Þ

and thus, according to (70), write bond prices as

pðt;TÞ ¼ Xðt;TÞ
Xðt; tÞ : ð72Þ

We now have the following result.

Proposition 5.6. For each fixed t, the mapping T 7! Xðt;TÞ is smooth, and in fact

q

qT
Xðt;TÞ ¼ �EP½rTZT jFt�: ð73Þ

Furthermore, for each fixed T, the process

XTðt;TÞ ¼ q

qT
Xðt;TÞ

is a negative P-martingale satisfying

XT ð0;TÞ ¼ �pT ð0;TÞ for all T b 0:
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Proof. Using the definition of Z and the Itô formula, we obtain

dZs ¼ �rsZs dsþ e�
Ð s

0
ru du dLs;

so

ZT ¼ Zt �
ðT

t

rsZs dsþ
ðT

t

e�
Ð s

0
ru du dLs:

Since L is a martingale, this gives us

EP½ZT jFt� ¼ Zt � EP
hðT

t

rsZs ds jFt

i
;

and (73) follows immediately. The martingale property now follows directly from

(73). r

We can now state the basic result from Flesaker–Hughston.

Theorem 5.7. Assume that the term structure is positive and

lim
T!l

pðt;TÞ ¼ 0

almost surely for all t. Then there exists a family of positive martingales Mðt;TÞ
indexed by T and a positive deterministic function F such that

pðt;TÞ ¼
Ðl
T
FðsÞMðt; sÞ dsÐl

t
FðsÞMðt; sÞ ds

: ð74Þ

The M family can, up to multiplicative scaling by the F process, be chosen as

Mðt;TÞ ¼ �XT ðt;TÞ ¼ EP½rTZT jFt�:

In particular, F can be chosen as

FðsÞ ¼ �pT ð0; sÞ; ð75Þ

in which case the corresponding M is normalized to Mð0; sÞ ¼ 1 for all sb 0.

Proof. The condition limT!l pðt;TÞ ¼ 0 implies that Xðt;TÞ ! 0 as T ! l, so

we have

Xðt;TÞ ¼ �
ðl
T

XT ðt; sÞ ds
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and thus obtain from (72)

pðt;TÞ ¼
Ðl
T
XT ðt; sÞ dsÐl

t
XT ðt; sÞ ds

: ð76Þ

If we now define Mðt;TÞ by

Mðt;TÞ ¼ �XT ðt;TÞ;

then (74) follows from (76) with FC 1. The function F is only a scale factor

which can be chosen arbitrarily, and the choice in (75) is natural in order to nor-

malize the M family. Since XT is negative, M is positive and we are done. r

There is also a converse of the result above.

Proposition 5.8. Consider a given family of positive martingales Mðt;TÞ indexed
by T and a positive deterministic function F. Then the specification

pðt;TÞ ¼
Ðl
T
FðsÞMðt; sÞ dsÐl

t
FðsÞMðt; sÞ ds

; ð77Þ

defines an arbitrage free positive system of bond prices. Furthermore, the stochastic

discount factor Z generating the bond prices is given by

Zt ¼
ðl
t

FðsÞMðt; sÞ ds:

Proof. Using the martingale property of the M family, we obtain

EP½ZT jFt� ¼
ðl
T

EP½FðsÞMðT ; sÞ jFt� ds ¼
ðl
T

FðsÞMðt; sÞ ds:

This implies, by the positivity of M and F, that Z is a potential and can thus serve

as a stochastic discount factor. The induced bond prices are thus given by

pðt;TÞ ¼ EP½ZT jFt�
Zt

;

and the calculation above shows that the induced (arbitrage free) bond prices are

given by (77). r

359Interest rate theory and geometry



The most used instance of a Flesaker–Hughston model is the so called rational

model. In such a model we consider a given martingale K and two deterministic

positive functions aðtÞ and bðtÞ. We then define the M family by

Mðt;TÞ ¼ aðTÞ þ bðTÞKðtÞ:

With this specification of M it is easily seen that bond prices will have the form

pðt;TÞ ¼ AðTÞ þ BðTÞKðtÞ
AðtÞ þ BðtÞKðtÞ ;

where

AðtÞ ¼
ðl
t

FðsÞaðsÞ ds; BðtÞ ¼
ðl
t

FðsÞbðsÞ ds;

We can specialize this further by assuming K to be of the form

KðtÞ ¼ e
Ð t

0
gðsÞ dWs�1

2

Ð t

0
g2ðsÞ ds;

where g is deterministic. Then K will be a lognormal martingale, and the entire

term structure will be analytically very tractable.

5.3. Connections to the Riesz decomposition. In Section 5.1 we saw that any

stochastic discount factor generating a nice bond market is a potential, so from a

modeling point of view it is natural to ask how one can construct potentials from

scratch.

The main tool used is the following standard result.

Proposition 5.9 (Riesz decomposition). If Z is a potential, then it admits a repre-

sentation as

Zt ¼ �At þMt; ð78Þ

where A is an increasing process, and M is a martingale defined by

Mt ¼ EP½Al jFt�:

To construct a potential, let us assume that we define A as

At ¼
ð t

0

as ds ð79Þ
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for some integrable nonnegative process a. Then we easily obtain

Zt ¼ EP
hðl

0

as ds jFt

i
�
ð t

0

as ds ¼
ðl
t

EP½as jFt� ds: ð80Þ

We can now connect this to the Flesaker–Hughston framework. The family of

processes Xðt;TÞ defined in (71) will, in the present framework, have the form

Xðt;TÞ ¼ EP
hðl

T

EP½as jFT � ds jFt

i
¼

ðl
T

EP½as jFt� ds;

so the basic family of Flesaker–Hughston martingales are given by

Mðt;TÞ ¼ � q

qT
Xðt;TÞ ¼ EP½aT jFt�:

5.4. Conditional variance potentials. An alternative way of representing poten-

tials which has been studied in depth by Hughston and co-authors is through con-

ditional variances.

Consider a fixed random variable Xl a L2ðP;FlÞ. We can then define a mar-

tingale X by setting

Xt ¼ EP½Xl jFt�:

Now let us define the process Z by

Zt ¼ EP½ðXl � XtÞ2 jFt�:

An easy calculation shows that

Zt ¼ EP½X 2
l jFt� � X 2

t :

Since the first term is a martingale and the second is a submartingale, the di¤er-

ence is a supermartingale, which by definition is positive and it is in fact a poten-

tial.

The point of this is that the potential Z, and thus the complete interest rate

model generated by Z, is in fact fully specified by a specification of the single ran-

dom variable Xl. A very interesting idea is now to expand Xl into Wiener

chaos. See the notes in Section 6 below.

5.5. The Rogers Markov potential approach. As we have seen above, in order

to generate an arbitrage free bond market model it is enough to construct a posi-

tive supermartingale which acts as stochastic discount factor, and in the previous

section we saw how to do this using the Riesz decomposition. In this section we

will present a systematic way of constructing potentials along the lines above, in
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terms of Markov processes and their resolvents. The ideas are due to Rogers, and

we largely follow his presentation.

We consider a time homogeneous Markov process X under the objective mea-

sure P, with infinitesimal generator G.

For any positive real valued su‰ciently integrable function g and any positive

number a we can now define the process A in the Riesz decomposition (78) as

At ¼
ð t

0

e�asgðXsÞ ds;

where the exponential is introduced in order to allow for at least all bounded func-

tions g. In terms of the representation (79) we thus have

at ¼ e�atgðXtÞ;

and a potential Z is, according to (80), obtained by

Zt ¼
ðl
t

e�asEP½gðXsÞ jFt� ds:

Using the Markov assumption we thus have

Zt ¼ EP
hðl

t

e�asgðXsÞ ds jXt

i
; ð81Þ

and this expression leads to a well known probabilistic object.

Definition 5.10. For any nonnegative a the resolvent Ra is an operator, defined

for any bounded measurable function g by the expression

RagðxÞ ¼ EP
x

hðl
0

e�asgðXsÞ ds
i
;

where subscript x refers to the conditioning X0 ¼ x.

We can now connect resolvents to potentials.

Proposition 5.11. For any bounded nonnegative g, the process

Zt ¼ e�at RagðXtÞ
RagðX0Þ

ð82Þ

is a potential with Z0 ¼ 1.
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Proof. The normalizing factor is trivial so we disregard it in the rest of the proof.

Using time invariance we have, from (81),

Zt ¼ EP
hðl

0

e�aðtþsÞgðXtþsÞ ds jXt

i
¼ e�atRagðXtÞ: r

Given a SDF of the form above, we can of course compute bond prices, and

the short rate can easily be recovered.

Proposition 5.12. If the stochastic discount factor Z is defined by (82) then bond

prices are given by

pðt;TÞ ¼ e�aðT�tÞ E
P½RagðXT Þ jFt�

RagðXtÞ
; ð83Þ

and the short rate is given by

rt ¼
gðXtÞ

RagðXtÞ
: ð84Þ

Proof. The formula (83) follows directly from the general formula (70). From the

construction of the process a we have

dZt ¼ �e�at gðXtÞ
RagðX0Þ

dtþ dMt;

and (84) now follows from Proposition 5.5. r

One problem with this scheme is that, for a concrete case, it may be very hard

to compute the quotient in (84). To overcome this di‰culty we recall the follow-

ing standard result.

Proposition 5.13. With notation as above we have essentially

Ra ¼ ða� GÞ�1: ð85Þ

The phrase ‘‘essentially’’ indicates that the result is ‘‘morally’’ correct but that

care has to be taken concerning the domain of the operators.

Using the identity Ra ¼ ða� GÞ�1 we see that with f ¼ Rag we have

gðXtÞ
RagðXtÞ

¼ ða� GÞ f ðXtÞ
f ðXtÞ

;

where it usually is a trivial task to compute the last quotient.
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This led Rogers to use the following scheme.

(1) Fix a Markov process X , number a and a nonnegative function f .

(2) Define g by

g ¼ ða� GÞ f :

(3) Choose a (and perhaps the parameters of f ) such that g is nonnegative.

(4) Now we have f ¼ Rag, and the short rate can be recaptured by

rðtÞ ¼ ða� GÞ f ðXtÞ
f ðXtÞ

:

In this way Rogers produces a surprising variety of concrete analytically trac-

table nonnegative interest rate models, and exchange rate models can also be

treated within the same framework.

6. Notes

All basic material in this article can be found in most advanced textbooks, like [1]

and [18]. The martingale approach to arbitrage pricing was developed in [31], and

[32]. It was then extended in, among other papers, [17], [19]. An elementary text-

book on bond markets is [23]. For more advanced treatments see [1] and [18].

The encyclopedic book [11] contains a wealth of theoretical, numerical and prac-

tical information. Basic papers on short rate models are [15], [34], [36], [47]. For

an example of a two-factor model see [41]. For extensions and notes on the a‰ne

term structure theory, see [20]. Jump processes (and a‰ne theory) is treated in [6],

[21]. The HJM framework first appeared in [33] and the Musiela parameterization

first appeared in [10]. In [6], [4] the HJM theory has been extended to more gen-

eral driving noise processes. Consistency problems for HJM models and families

of forward rate curves were studied in [3], [25], [24], and [26]. The question of

when the short rate in a HJM model is in fact Markovian was first studied in [12]

for the case of deterministic volatiliy, and for the case of a short rate depending

volatility structure it was solved in [39]. The more general question when a given

HJM model admits a realisation in terms of a finite dimensional Markovian di¤u-

sion was, for various special cases, studied in [44], [13], [37], [5], and [14]. The nec-

essary and su‰cient conditions for the existence of finite dimensional Markovian

realizations in the general case were first obtained, using methods from di¤erential

geometry, in [8], and the problem of actually constructing an FDR is treated in [7].

The functional analytical framework for FDR theory is considerably extended,

and many deep and new interesting results are derived, in [27], and [28]. Applica-

tions to futures and forward price term structure models are given in [2] and [30].
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The LIBOR market models were developed in [9], [42]. See also [38] for swap

market models. The Flesaker–Hughston models appeared in [29] and analyzed

further in [40]. The Wiener chaos approach is developed in [35]. For the Rogers

potential approach, see [45].
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[25] D. Filipović, Exponential-polynomial families and the term structure of interest rates.
Bernoulli 6 (2000), 1081–1107. Zbl 0982.60085 MR 1809736
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