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1. Introduction and background

The Coxeter-Catalan combinatorics is an active field of study in the theory of

Coxeter groups. Several diverse and independently motivated sets of objects asso-

ciated to a Coxeter group W have the cardinality
Qr

i¼1ðhþ diÞ=di, where h is

the Coxeter number of W and d1; . . . ; dr its degrees. At the core of the Coxeter-

Catalan combinatorics are the problems of explaining these equalities of

cardinalities. Two of the sets of objects involved are

• the noncrossing partitions NCðW Þ, which in their classical (type A) avatar are

a long-studied combinatorial object harking back at least to Kreweras [12],

and in their generalization to arbitrary Coxeter groups are due to Bessis and

Brady and Watt [5], [7]; and

• the nonnesting partitions NNðWÞ, introduced by Postnikov [14] for all the

classical reflection groups simultaneously.

Athanasiadis in [3] proved in a case-by-case fashion that jNNðWÞj ¼ jNCðWÞj
for the classical reflection groups W , and asked for a bijective proof. This was
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later improved by Athanasiadis and Reiner [4] to a proof for all Weyl groups,

cited as Theorem 1.20 below. This proof showed that nonnesting and noncrossing

partitions are equidistributed by type, a statistic for partitions defined in Definition

1.8; but it handled the classical reflection groups in a nonuniform case-by-case

fashion and was not bijective for the exceptional groups.

Our contribution has been to provide a bijection which, given particular fixed

choices of coordinates in the representation, works uniformly for the classical re-

flection groups. Our proof also provides equidistribution by type. The cases of

our bijection for types B, C, and D have not appeared before in the literature.

The ultimate goal in connecting NNðW Þ and NCðWÞ, a case-free bijective proof

for all Weyl groups, remains open. The special nature of our choices of coordi-

nates enables the construction of bump diagrams, and the present lack of a notion

of bump diagrams for the exceptional groups would seem to be a significant ob-

stacle to extending our approach.

Two other papers presenting combinatorial bijections between noncrossing

and nonnesting partitions independent of this one, one by Stump [18] and by Ma-

mede [13], appeared essentially simultaneously to it. Both of these limit them-

selves to types A and B, and our approach is also distinct to them in its type pres-

ervation and in providing additional statistics characterizing the new bijections.

More recently Conflitti and Mamede [9] have presented a bijection in type D

which preserves di¤erent statistics to ours (namely openers, closers, and transients).

In the remainder of this section we lay out the definitions of the objects in-

volved: in §1.1, the uniform definitions of nonnesting and noncrossing partitions;

in §1.2, a mode of extracting actual partitions from these definitions which our bi-

jections rely upon; in §1.3, the resulting notions for classical reflection groups. In

Section 2 we present a type-preserving bijection between noncrossing and nonnest-

ing partitions that works for all the classical reflection groups. We prove our bi-

jection in a case by case fashion for each classical type, unpacking and specializing

the definition to a more concrete bijection in each type in turn.

1.1. Uniform noncrossing and nonnesting partitions. For noncrossing parti-

tions we follow Armstrong [1], §2.4–6. The treatment of nonnesting partitions is

due to Postnikov [14].

Let ðW ;SÞ be a finite Coxeter system of rank r, so that S ¼ fs1; s2; . . . ; srg gen-

erates the group

W ¼ 3s1; . . . ; sr : s
2
i ¼ ðsisjÞmij ¼ 14:

We will always take the mij finite. Let T ¼ fsw : s a S;w a Wg be the set of all

reflections of W , where sw ¼ w�1sw denotes conjugation. Let ½r� ¼ f1; . . . ; rg.
Consider the R-vector space V ¼ spanRfai : i a ½r�g endowed with the inner prod-

uct 3� ; �4 for which 3ai; aj4 ¼ �cosðp=mijÞ, and let r : W ! AutðVÞ be the geo-
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metric representation of W . This is a faithful representation of W , by which it

acts isometrically on V with respect to 3� ; �4.
The set NCðW Þ of (uniform) noncrossing partitions of W is defined as an in-

terval of the absolute order.

Definition 1.1. The absolute order AbsðW Þ of W is the partial order on W such

that for w; x a W , wax if and only if

lT ðxÞ ¼ lTðwÞ þ lTðw�1xÞ;

where lTðwÞ is the minimum length of any expression for w as a product of ele-

ments of T . A word for w in T of length lTðwÞ will be called a reduced T-word

for w.

The absolute order is a poset graded by lT , with unique minimal element

1 a W . It has several distinguished maximal elements:

Definition 1.2. A standard Coxeter element of ðW ;SÞ is any element of the form

c ¼ ssð1Þssð2Þ . . . ssðrÞ, where s is a permutation of the set ½r�. A Coxeter element is

any conjugate of a standard Coxeter element in W .

All Coxeter elements have maximal rank in AbsðW Þ.

Definition 1.3. Relative to any Coxeter element c, the poset of (uniform) noncross-

ing partitions is the interval NCðW ; cÞ ¼ ½1; c� in the absolute order.

Although this definition appears to depend on the choice of Coxeter element c,

the intervals ½1; c� are isomorphic as posets for all c ([1], Definition 2.6.7). So we

are free to use the notation NCðW Þ for the poset of noncrossing partitions of W

with respect to any c.

Now assume W is a Weyl group. The set NNðW Þ of nonnesting partitions is

defined in terms of the root poset.

Definition 1.4. The root poset of W is its set of positive roots Fþ with the partial

order a under which, for b; g a Fþ, ba g if and only if g� b lies in the positive

real span of the simple roots.

This definition of the root poset is distinct from, and more suited for connec-

tions to nonnesting partitions than, the one given in Björner and Brenti [6], which

does not require the Weil group condition, and which in fact is a strictly weaker

order than Definition 1.4.

Definition 1.5. A (uniform) nonnesting partition for W is an antichain in the root

poset of W . We denote the set of nonnesting partitions of W by NNðW Þ.
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To each root a we have an orthogonal hyperplane a? with respect to 3� ; �4,
and these define a hyperplane arrangement and a poset of intersections.

Definition 1.6. The partition lattice PðW Þ of W is the intersection poset of re-

flecting hyperplanes

n
7
a AS

a? jSJFþ
o
:

Note that PðWÞ includes the empty intersection V , when S ¼ j.
Now let W be a classical reflection group, i.e., one of the groups Ar, Br, Cr or

Dr in the Cartan–Killing classification.

Each classical reflection group has a standard choice of coordinates which

we will use throughout, that is, an isometric inclusion of V into a Euclidean space

Rn bearing its usual inner product, not necessarily an isomorphism. This yields

a faithful isometric representation rcl : W ! AutðRnÞ of W , the superscript cl

standing for ‘‘classical’’. In Section 2.10 of [10], a standard choice of simple roots

is presented in the standard coordinates; our simple roots, in (1.1), are identical

except that we have reversed the indexing, swapping e1; e2; . . . ; er for er; er�1; . . . ;

e1:

DAr
¼ fe2 � e1; e3 � e2; . . . ; erþ1 � erg;

DBr
¼ fe1; e2 � e1; e3 � e2; . . . ; er � er�1g;

DCr
¼ f2e1; e2 � e1; e3 � e2; . . . ; er � er�1g;

DDr
¼ fe1 þ e2; e2 � e1; e3 � e2; . . . ; er � er�1g:

ð1:1Þ

We will reserve n for the dimensions of the particular coordinatizations presented

here, writing r when we mean the rank of W . Hence n ¼ rþ 1 when W ¼ Ar, but

n ¼ r when W is Br or Cr or Dr. We will use the names An�1, Bn, Cn, Dn hence-

forth.

Figure 1 exhibits the root posets of the classical reflection groups. We anno-

tate the lower verges of the root posets with a line of integers, which for reasons

Figure 1. The root posets for groups (left to right) A4, B4, C4, and D4.
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of space we bend around the left side. Given a dot in Figure 1, if i and j are the

integers in line with it on downward rays of slope 1 and �1 respectively, then it

represents the root a ¼ ej � ei, where e�k ¼ �ek for k < 0 and e0 ¼ 0.

1.2. Classical partitions. The definitions of partitions matching the objects con-

sidered in classical combinatorics are framed geometrically in a way that has not

been generalized to all Weyl groups, depending crucially as they do on the form

the reflections take in the standard choice of coordinates. Our treatment of parti-

tions and our drawings are taken from Athanasiadis and Reiner [4]. We have re-

versed the orderings of the ground sets from Athanasiadis and Reiner’s presenta-

tion.

Let W be a classical reflection group. The procedures to obtain objects repre-

senting NNðW Þ and NCðWÞ can be unified to a significant degree—though there

will still be cases with exceptional properties—so we will speak of classical parti-

tions for W .

Definition 1.7. A partition p of the set

L ¼ feei j i ¼ 1; . . . ; ngA f0g;

is a classical partition for W if there exists L a PðWÞ such that each part of p is

the intersection of L with a fiber of the projection to p. We write p ¼ PartðLÞ.

We will streamline the notation of classical partitions by writing ei for eei.

Thus, a classical partition for W is a partition ofe½n� ¼ f1; . . . ; n;�1; . . . ;�n; 0g
for some n, symmetric under negation. A classical partition always contains ex-

actly one part fixed by negation, which contains the element 0, namely the fiber

over 0 a L. Since the position of 0 is predictable given the other elements, in

many circumstances we will omit it altogether. If the block containing 0 contains

other elements as well, we shall call it a zero block. Negating all elements of a

block of a classical partition yields a block. The zero block is the only fixed point

of negation, so the other blocks come in pairs of opposite sign.

For example, a typical classical partition might look like

ff1; 2g; f�1;�2g; f3;�7;�8g; f�3; 7; 8g; f5g; f�5g; f4; 6;�4;�6; 0gg; ð1:2Þ

in which f4; 6;�4;�6; 0g is the zero block. This is the partition depicted in Figure

2.

Given a minimal set of equations for L, each of which must be of the form

s1xi1 ¼ � � � ¼ skxikð¼ 0Þ;
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where the si a fþ1;�1g are signs, the classical partition can be read o¤, one block

from each equation. To the above corresponds fs1i1; . . . ; skikg if the equality ‘‘¼ 0’’

is not included, and fei1; . . . ;eik; 0g if it is.

In case W ¼ An�1, r
cl fixes the set of positive coordinate vectors feig. So a

classical partition for W will be the union of a partition of ½n� and its negative, a

partition of �½n�, with 0 in a block of its own. Here, and in everything we do

henceforth with type A, we will omit the redundant nonpositive parts and treat

type A partitions as partitions of ½n�.
In general the set feeig is stabilized by rcl, giving rise to a faithful permutation

representation of W . Combined with the notational e‰cacies of the last para-

graphs, this is a convenient way to notate elements of W .

To exemplify this notation: for each classical reflection group we have a stan-

dard choice of Coxeter element c, obtained by taking the product of transpositions

in the order they occur along the bottom of the standard diagram of the root

system. Using the permutation representations they are

c ¼
ð1 2 . . . nÞ for W ¼ An�1;�
1 . . . n ð�1Þ . . . ð�nÞ

�
for W ¼ Bn ¼ Cn;�

1 ð�1Þ
��
2 . . . n ð�2Þ . . . ð�nÞ

�
for W ¼ Dn:

8><
>:

ð1:3Þ

Finally, we introduce the type of a partition.

Definition 1.8. Let p ¼ PartðLÞ be a classical partition for a classical reflection

group W . The type typeðpÞ of p is the conjugacy class of L under the action of

W on PðWÞ.

The collision of terminology between this sense of ‘‘type’’ and the sense refer-

ring to a family in the Cartan–Killing classification is unfortunate but standard, so

we muddle along with it.

Combinatorially, the information captured in the type of a classical partition

is related to the multiset of its block sizes. Given a classical partition p, let l

Figure 2. Example of a bump diagram of a noncrossing partition for B8 ¼ C8.
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be the cardinality of its zero block and m1; . . . ; ms the cardinalities of the pairs

of nonzero blocks of opposite sign. Then the partitions of the same type as p are

exactly those with zero block of size l and pairs of other blocks of sizes m1; . . . ; ms.

The integer partition which Athanasiadis in [3] calls the type of p is the partition

m1; . . . ; ms.
For example, a partition has the same type as the partition (1.2),

ff1; 2g; f�1;�2g; f3;�7;�8g; f�3; 7; 8g; f5g; f�5g; f4; 6;�4;�6; 0gg;

if its zero block is of size 4 and it has three pairs of nonzero blocks with sizes 3, 2,

and 1.

1.3. Classical noncrossing and nonnesting partitions. Definitions of the classes

of noncrossing and nonnesting classical partitions are perhaps most intuitively

presented in terms of a diagrammatic representation, motivating the names ‘‘non-

crossing’’ and ‘‘nonnesting’’. Following Armstrong [1], §5.1, we call these bump

diagrams.

Let P be a partition of a totally ordered ground set ðL; <Þ.

Definition 1.9. Let GðPÞ be the graph with vertex set L and edge set

fðs; s 0Þ j s <P s 0 and there is no s 00 a S such that s <P s 00 <P s 0g;

where s <P s 0 i¤ s < s 0 and s and s 0 are in the same block of P.

A bump diagram of P is a drawing of GðPÞ in the plane in which the elements

of L are arrayed along a horizontal line in their given order, all edges lie above

this line, and no two edges intersect more than once.

Definition 1.10. P is noncrossing if its bump diagram contains no two crossing

edges, equivalently if GðPÞ contains no two edges of form ða; cÞ, ðb; dÞ with

a < b < c < d.

Definition 1.11. P is nonnesting if its bump diagram contains no two nested

edges, equivalently if GðPÞ contains no two edges of form ða; dÞ, ðb; cÞ with

a < b < c < d.

The words ‘‘noncrossing’’ and ‘‘nonnesting’’ perhaps properly belong as pred-

icates to the bump diagram of P and not to P itself, but we will mostly abuse the

terminology slightly and use them as just defined. We will denote the set of clas-

sical noncrossing and nonnesting partitions for W by NCclðWÞ resp. NNclðW Þ.
To define these sets it remains only to specify the ordered ground set.
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For NNclðW Þ, the ordering we use is read o¤ the line of integers in Figure 1.

Definition 1.12. A classical nonnesting partition for a classical reflection group W

is a classical partition for W nonnesting with respect to the ground set

1 < � � � < n if W ¼ An�1;

�n < � � � < �1 < 0 < 1 < � � � < n if W ¼ Bn;

�n < � � � < �1 < 1 < � � � < n if W ¼ Cn;

�n < � � � < �1; 1 < � � � < n if W ¼ Dn:

A few remarks on the interpretation of these are in order.

Classical nonnesting partitions for Bn di¤er from those for Cn, reflecting the

di¤erent root posets. We have specified that 0 is part of the ordered ground set

for Bn. Despite that, per Definition 1.7, 0 cannot occur in a classical partition, it

is harmless to consider it present, coming from the zero vector and forming part of

(or perhaps all of ) the zero block. Its presence is quite necessary when drawing

bump diagrams: the dot 0 ‘‘ties down’’ a problematic edge of the zero block in

the middle, preventing it from nesting with the others.

The ground set for classical nonnesting partitions for Dn is not totally ordered

but is merely a strict weak ordering, in which 1 and �1 are incomparable. Defi-

nitions 1.9 and 1.11 generalize cleanly to this situation, with no amendments to the

text of the definitions themselves. That is, in a classical nonnesting partition for

Dn, an edge with 1 as vertex and another with �1 as vertex are never considered to

nest. We diverge in purely cosmetic fashion from Athanasiadis and reinforce this

last point by aligning these two dots vertically when drawing a type D nonnesting

bump diagram.

Figure 3 exemplifies Definition 1.12, giving one nonnesting bump diagram for

each classical type.

For NCclðW Þ, the ordering we use is read o¤ of the standard Coxeter elements

in (1.3).

Figure 3. Examples of nonnesting bump diagrams in (top) A7, B4; (bottom) C4, D4.
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Definition 1.13. A classical noncrossing partition for a classical reflection group

W not of type D is a classical partition for W noncrossing with respect to the

ground set

1 < � � � < n if W ¼ An�1;

�1 < � � � < �n < 1 < � � � < n if W ¼ Bn;

�1 < � � � < �n < 1 < � � � < n if W ¼ Cn:

Observe that the order < in these ground sets di¤ers from those for nonnesting

partitions.

For Dn the standard Coxeter element is not a cycle, so we cannot carry this

through, though it is not too far from true that the ground set is �2 < � � � <
�n < 2 < � � � < n. We return to type D shortly.

These orderings come from cycles, so as one might expect, if P is noncrossing

with respect to ðL; <Þ, it is also noncrossing with respect to any rotation ðL; < 0Þ of
ðL; <Þ, i.e., any order < 0 on L given by

s < 0 t () ta s0 < s or s < ta s0 or s0 < s < t

for some s0 a L fixed. Reflecting this, given any classical partition P, we may

bend round the line on which the vertices of a bump diagram for P lie into a circle,

and if we like supply extra edges for newly adjacent members of the same block,

obtaining a circular bump diagram. Then P will be noncrossing if and only if, for

every pair of distinct blocks B, B 0 of P, the convex hulls of the dots representing B

and B 0 are disjoint.
For example, Figure 4 is the type B or C noncrossing partition of Figure 2

rendered circularly.

The subtleties that occur defining classical noncrossing partitions in type D are

significant, and historically it proved troublesome to provide the correct notion for

this case. Reiner’s first definition [15] of classical noncrossing partitions for type D

Figure 4. The partition of Figure 2 rendered circularly.
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was later superceded by that of Bessis and Brady and Watt [5], [7] and Athanasia-

dis and Reiner [4], which we use here, for its better agreement with the uniform

definition of NCðDnÞ. Indeed definitions 1.9 through 1.11 require tweaking to

handle type D adequately. (This said we will still use the name ‘‘bump diagram’’

for a diagram of a classical noncrossing partition for Dn.)

Definition 1.14. A classical noncrossing partition p for Dn is a classical partition

for Dn such that there exists c a f2; . . . ; ng for which p is noncrossing with respect

to both of the ordered ground sets

�2 < � � � < �c < �1 < �ðcþ 1Þ < � � � < �n < 2 < � � � < c < 1 < cþ 1 < � � � < n

and

�2 < � � � < �c < 1 < �ðcþ 1Þ < � � � < �n < 2 < � � � < c < �1 < cþ 1 < � � � < n:

The set of these will be denoted NCclðDnÞ.
We will draw these circularly. Arrange dots labelled �2; . . . ;�n; 2; . . . ; n in a

circle and place 1 and �1 in the middle. We let 1 and �1 be drawn coincidently,

after [4], although it would be better to use two circles as in [11], with a smaller

one in the center on which only 1 and �1 lie. Then a Dn partition p is noncrossing

if and only if no two blocks in this circular bump diagram have intersecting con-

vex hulls, except possibly two blockseB meeting only at the middle point. The

edges we will supply in these circular diagrams are those delimiting the convex

hulls of the blocks. See Figure 5 for an example.

Note that a zero block of precisely two elements cannot occur in a classical

partition for Dn: a singular equation xi ¼ 0 cannot be the equation of a subspace of

Figure 5. Example of a circular bump diagram for a type D classical nonnesting partition.
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PðDnÞ which is the intersection of hyperplanes of form xi ¼exj. So the two cen-

tral dotse1 belong to di¤erent blocks unless they are both inside the convex hull

of some set of vertices amongef2; . . . ; ng which are part of the sole zero block.

We state without proof the relations between these classical noncrossing and

nonnesting partitions and the uniform ones. For w a W , let the fixed space

FixðwÞ of w be the subspace of VðW Þ consisting of vectors fixed by w, i.e.,

FixðwÞ ¼ kerðw� 1Þ.

Proposition 1.15. The map fNC : w 7! Part
�
FixðwÞ

�
is a bijection between

NCðW ; cÞ and NCclðWÞ, where c is the element in (1.3). Moreover it is an isomor-

phism of posets, where NCðW ; cÞ is given the absolute order and NCclðW Þ the re-

verse refinement order.

Proposition 1.16. The map fNN : S 7! Partð7
a AS a

?Þ is a bijection between

NNðW Þ and NNclðW Þ.

This yields the following elementary descriptions of how to obtain the edges in

a bump diagram. Starting from an antichain p a NNðW Þ, each root gives an edge

of the nonnesting bump diagram (and its negative) between the two integers in

line with it per the discussion before Figure 1. Starting from a group element

p a NCðW Þ, each orbit of the action of p on feei j i ¼ 1; . . . ; ngA f0g gives a

block of the noncrossing bump diagram, with an edge between each element and

its image under the permutation representation.

Proposition 1.17. Consider a reduced expression in T for some w a W where W is

a Weyl group,

w ¼ ta1ta2 ta3 . . . tam and a1; a2; . . . ; am a F:

Then FixðwÞ ¼ 7m

i¼1
a?i .

TheK containment clearly holds. Them the proposition is an immediate con-

sequence of [8, Lemma 2], which tells us that the two spaces have the same dimen-

sion.

Corollary 1.18. Let r be a permutation of the set ½m�. Define

wr ¼ tarð1Þtarð2Þtarð3Þ . . . tarðmÞ :

Then FixðwÞ ¼ FixðwrÞ.

So, if we are given an antichain A of the root poset for some group W , we may

define FixðAÞ to be FixðpAÞ where pA is the product of the elements of A in any
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order. The elements of an antichain are linearly independent so Corollary 1.18

shows that FixðAÞ is well defined. See [16].

Lastly, the distribution of classical noncrossing and nonnesting partitions with

respect to type is well behaved. In the noncrossing case, the images of the conju-

gacy classes of the group W itself are the same as these conjugacy classes of the

action of W on PðW Þ.
One can check that

Proposition 1.19. Two subspaces L;L 0 a PðW Þ are conjugate if and only if both

of the following hold:

• the multisets of block sizes fjCj jC a PartðLÞg and fjCj jC a PartðL 0Þg are

equal;

• if either PartðLÞ or PartðL 0Þ has a zero block, then both do, and these zero

blocks have equal size.

For example, the type A specialization of this result, where zero blocks are ir-

relevant and we drop the redundant negative elements, says that the conjugacy

classes of the symmetric group An�1 on n elements are enumerated by the parti-

tions of the integer n.

We close this section with the statement of the equidistribution result of Atha-

nasiadis and Reiner [4].

Theorem 1.20. Let W be a Weyl group. Let fNC and fNN be the functions of

Propositions 1.15 and 1.16. For any type l we have

jðtype � fNCÞ�1ðlÞj ¼ jðtype � fNNÞ�1ðlÞj:

2. A type-preserving bijection for classical groups

Throughout this section W will be a classical reflection group. Partitions will be

drawn and spoken of with the greatest elements of their ground sets to the left.

Given any partition, define the order <lp on those of its blocks containing pos-

itive elements so that B <lp B
0 if and only if the least positive element of B is less

than the least positive element of B 0.
The notation NCðW Þ with the Coxeter element omitted will mean NCðW ; cÞ, c

being the element in (1.3).

By convention, when we define partition statistics, we shall observe the conven-

tion that Roman letters (like a) denote ground set elements or tuples thereof, and

Greek letters (like m) denote cardinalities or tuples thereof.
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2.1. Statement of the central theorem. We establish some notation.

Definition 2.1. Let Cn be the set of n-tuples with entries in f1; 0;�1g. For any

u a Cn define aðu; 1Þ to be the number of entries equal to 1 in u and define

aðu;�1Þ analagously. Let <lex be the lexicographic order on n-tuples. For any

two vectors a; b a Zn, let a be the set of elements of Zn <lex-less than or equal to

a and let ka� bk ¼ ðja1 � b1j; . . . ; jan � bnjÞ.

To any nonnesting or noncrossing partition x of W we associate a set Wx

which is constructed inductively with i increasing from 1 to n stepwise. Initially,

we begin with Wx ¼ j. In step i, let ui be the element of CnBFixðxÞ with kei � uik
<lex-minimal (actually kei � uik a Cn). Whenever ui is linearly independent with

the elements of Wx, let Wx ¼ WxA f�uig if ui has some entry �1 and let Wx ¼
WxA fuig if not. Let Gx be the number of canonical coordinate projections of

FixðxÞ with trivial image f0g.
Lastly, let E be the canonical basis of Rn.

Theorem 2.2. Let x a NNðWÞ resp. x a NCðWÞ. Then there is a unique

y a NCðW Þ resp. y a NNðW Þ for which Gx ¼ Gy and such that the sets Wx and

Wy are related to each other in the following way:

There is a bijection s between Wx and Wy such that for each u a Wx we have

sðuÞ a Wy satisfying

• aðu; 1Þ ¼a
�
sðuÞ; 1

�
andaðu;�1Þ ¼a

�
sðuÞ;�1

�
,

• juBEj ¼ jsðuÞBEj,

• juBWxj ¼ jsðuÞBWyj,

• the product of the first two nonzero components of u and sðuÞ is not equal when-
everaðu;�1Þ > 1 andaðu; 1Þ > 0.

Consequently, the induced mapping establishes a bijection between noncrossing and

nonnesting partitions preserving type.

Example 2.3. Let x be the nonnesting partition fe2 þ e1; e5 � e1; e6 � e2; e8 � e6;

e7 � e3g of the group C8. The fixed space FixðxÞ is the following intersection in

R8:

fv j v1 ¼ �v2gB fv j v1 ¼ v5gB fv j v2 ¼ v6gB fv j v6 ¼ v8gB fv j v3 ¼ v7g:

This is the set fv a R8 j v1 ¼ v5 ¼ �v2 ¼ �v6 ¼ �v8; v3 ¼ v7g. We can see Gx ¼ 0

and also

Wx ¼ fð�1; 1; 0; 0;�1; 1; 0; 1Þ; ð0; 0; 1; 0; 0; 0; 1; 0Þ; ð0; 0; 0; 1; 0; 0; 0; 0Þg:
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Now we may check that

te7�e6 te8�e7 te1þe8te2�e1te5�e3 te5�e2 te4�e2t2e5

¼ t2e1 te2�e1 te3�e2te4�e3 te5�e4 te6�e5te7�e6 te8�e7 ;

so y ¼ te7�e6 te8�e7te1þe8 te2�e1 te5�e3 is less than a Coxeter element in the absolute

order and thus is a noncrossing partition of C8. We can calculate FixðyÞ ¼
fv a R8 j v1 ¼ v2 ¼ �v6 ¼ �v7 ¼ �v8; v3 ¼ v5g, so Gy ¼ 0 and also

Wy ¼ fð�1;�1; 0; 0; 0; 1; 1; 1Þ; ð0; 0; 1; 0; 1; 0; 0; 0Þ; ð0; 0; 0; 1; 0; 0; 0; 0Þg

Finally, let s : Wx 7! Wy be given by the assignments in the left column of the fol-

lowing table.

aðu; 1Þ aðu;�1Þ juBEj juBWxj

ð�1; 1; 0; 0;�1; 1; 0; 1Þ
7! ð�1;�1; 0; 0; 0; 1; 1; 1Þ 3 2 0 1

ð0; 0; 1; 0; 0; 0; 1; 0Þ
7! ð0; 0; 1; 0; 1; 0; 0; 0Þ 2 0 6 3

ð0; 0; 0; 1; 0; 0; 0; 0Þ
7! ð0; 0; 0; 1; 0; 0; 0; 0Þ 1 0 5 2

The remaining columns record the values in Theorem 2.2; in each case they are

equally true of u (and Wx) and of sðuÞ (and Wy). The last bullet in the Theorem

only has force in the first line, where it also holds. So s satisfies the required prop-

erties.

In the remainder of the paper we will prove Theorem 2.2. The four sections

that follow will give, in a case by case fashion, the individual type-preserving bi-

jections for each of the classical types that arise from the theorem. Then in §2.6 we

tie these together and complete the proof.

2.2. Type A. The bijection in type A, which forms the foundation of the ones for

the other types, is due to Athanasiadis [3], §3. We include it here to make this

foundation explicit and to have bijections for all the classical groups in one place.

Let p be a classical partition for An�1. Let M1 <lp � � � <lp Mm be the blocks of

p, and ai the least element of Mi, so that a1 < � � � < am. Let mi be the cardinality

of Mi. Define the two statistics aðpÞ ¼ ða1; . . . ; amÞ and mðpÞ ¼ ðm1; . . . ; mmÞ.
It turns out that classical nonnesting and noncrossing partitions are equidis-

tributed with respect to these partition statistics, and that they uniquely determine

one partition of either kind. This will be the mode in which we present all of our

bijections, which will di¤er from this one in the introduction of more statistics.
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We will say that a list of partition statistics S establishes a bijection for a clas-

sical reflection group W if, given either a classical noncrossing partition pNC or a

classical nonnesting partition pNN for W , the other one exists uniquely such that

sðpNCÞ ¼ sðpNNÞ for all s a S. We will say it establishes a type-preserving bijec-

tion if furthermore pNC and pNN always have the same type.

Theorem 2.4. The statistics ða; mÞ establish a type-preserving bijection for An�1.

The type-preserving assertion in Theorem 2.4 is easy: by Proposition 1.19 the

tuple m determines the type of any partition that yields it. As for the bijection it-

self, we will sketch two di¤erent descriptions of the process for converting back

and forth between classical noncrossing and nonnesting partitions with the same

tuples a, m, with the intent that they will provide the reader with complementary

suites of intuition.

To give an example, Figures 6 and 7 show step by step the operation of this

bijection in each direction, in the chain-by-chain fashion of our first proof. In

these figures, the chain Mi being considered appears in bold. In the partitions be-

ing constructed, the elements which are shown with labels and thick dots are those

less than or equal to the least element ai of the last placed chain Mi. As we will see

in the proof, no subsequently placed chain can include an element less than ai, so

these labels are correct.

Figure 6. The bijection of type A running chain by chain (from left to right, top to bottom)
converting a nonnesting partition to a noncrossing one. The partitions correspond to
a ¼ ð1; 2; 4Þ, m ¼ ð2; 3; 3Þ.
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Proof of Theorem 2.4, chain by chain. By a chain we will mean a sort of incom-

pletely specified block of a classical partition, or a connected component of a

bump diagram: a chain has a definite cardinality (or length) but may have un-

known elements. The lengths of the chains of p are determined by mðpÞ. We can

view the chains as abstract unlabelled graphs in the plane, and our task is that of

labelling and thereby positioning the vertices of these chains in such a way that the

result is nonnesting or noncrossing, as desired.

To compute the bijection we will inductively place the chains M1; . . . ;Mm, in

that order. When we say a set M of chains is placed, we mean that all pairwise

order relations between the elements of the chains in M are known. The e¤ect is

that if M is placed, we can draw the chains of M in such a way that the bump

diagram of any classical partition p containing blocks whose elements have the

order relations of M can be obtained by drawing additional vertices and edges in

the bump diagram, without redrawing the placed chains.

Suppose we start with pNN and want to build the noncrossing diagram of pNC.

Suppose that, for some ja n, we have placed Mi for all i < j. To place Mj, we

specify that its least element is to be the ajth least element among the elements of

all of M1; . . . ;Mj�1;Mj, and that its remaining elements are to be ordered in the

unique possible way so that the placed chains form no crossing. In this instance,

Figure 7. The bijection of type A running chain by chain (from left to right, top to bottom)
converting a noncrossing partition to a nonnesting one. The partitions correspond to
a ¼ ð1; 2; 5; 6Þ, m ¼ ð3; 2; 3; 1Þ.
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this means that all the elements of Mj should be placed consecutively, in immedi-

ate succession, as in Figure 6.

To build pNC from pNN the procedure is the same, except that we must order

the elements of Mj in the unique possible way so that the placed chains form no

nesting. Concretely, these order relations are the ones we get if every edge is drawn

with its vertices the same distance apart on the line they lie on, as in Figure 7.

Note that, in both directions, all the choices we made were unique, so the re-

sulting partitions are unique. r

We remark that viewing each block of pNN as a chain with a fixed spacing is a

particularly useful picture in terms of the connection between nonnesting parti-

tions and chambers of the Shi arrangement [3], §5.

Proof of Theorem 2.4, dot by dot. Let M1; . . . ;Mm be the blocks of a classical non-

nesting partition pNN, such that the least vertex of Mi is ai. We describe an algo-

rithm to build up a classical noncrossing partition pNC with the same tuples a and

m by assigning the elements 1; . . . ; n, in that order, to blocks.

The algorithm maintains a set O of open blocks: an open block is a pair ðC; kÞ
where C is a subset of the ground set of pNN and k a nonnegative integer. We

think of C as a partially completed block of pNC and k as the number of elements

which must be added to C to complete it. If O ever comes to contain an open

block of form ðC; 0Þ, we immediately drop this, for it represents a complete

block. When we begin constructing pNC, the set O will be empty.

Suppose we have assigned the elements 1; . . . ; j � 1 to blocks of pNC already,

and we want to assign j. If j occurs as one of the ai, then we add a new singleton

block f jg to pNC and add ðfaig; mi � 1Þ to O. Otherwise, we choose an open block

from O according to the

Noncrossing open block policy. Given O, choose from it the open block ðC; kÞ
such that the maximum element of C is maximal.

We add j to this open block, i.e., we replace the block C of pNC by C 0 :¼
CA f jg and replace ðC; kÞ by ðC 0; k� 1Þ within O. The desired partition pNC is

obtained after assigning all dots.

The central observation to make is that this policy indeed makes pNC non-

crossing, and there is a unique way to follow it. Making a crossing of two edges

ða; cÞ and ðb; dÞ, where a < b < c < d, requires assigning c to an open block whose

greatest element is then a, when there also exists one with greatest element b > a,

which is witnessed to have been open at the time by its later acquisition of d; this is

in contravention of the policy.

To recover pNN uniquely from pNC, the same algorithm works, with one mod-

ification: instead of the noncrossing open block policy we use the
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Nonnesting open block policy. Given O, choose from it the open block ðC; kÞ
such that the maximum element of C is minimal.

This policy makes pNN nonnesting and unique for a similar reason. If there

are nested edges ða; dÞ and ðb; cÞ, where a < b < c < d, then c was added to the

block containing b when by policy it should have gone with a, which was in an

open block. r

A careful study of either of these proofs provides a useful characterization of

the pairs of tuples a, m that are the statistics of a classical nonnesting or noncross-

ing partition of type A.

Corollary 2.5. Suppose we are given a pair of tuples of positive integers a ¼
ða1; . . . ; am1

Þ, m ¼ ðm1; . . . ; mm2
Þ and let n > 0. Define a0 ¼ 0 and m0 ¼ 1. Then,

a and m represent a classical noncrossing or nonnesting partition for An�1 if and

only if

(1) m1 ¼ m2 ¼ m;

(2) n ¼
Pm

k¼1 mk; and

(3) ai�1 < ai a
P i�1

k¼0 mk for i ¼ 1; 2; . . . ;m.

2.3. Type C . In the classical reflection groups other than An, the negative ele-

ments of the ground set must be treated, and so it will be useful to have some ter-

minology to deal with these.

Definition 2.6. A positive block of a classical partition p is a block of p that con-

tains some positive integer; similarly a negative block contains a negative integer.

A switching block of p is a block of p that contains both positive and nonpositive

elements, and a nonswitching block is one that contains only positive elements or

only nonpositive elements.

A single edge of the bump diagram is positive or negative or switching or non-

switching if it would have those properties as a block of size 2.

Let p be a classical partition for Cn. Given p, let M1 <lp � � � <lp Mm be the

positive nonswitching blocks of p, and ai the least element of Mi. Let mi be the

cardinality of Mi. These two tuples are reminiscent of type A. Let P1 <lp � � � <lp

Pk be the switching blocks of p, let pi be the least positive element of Pi, and let

ni be the number of positive elements of Pi. Define the three statistics aðpÞ ¼
ða1; . . . ; amÞ, mðpÞ ¼ ðm1; . . . ; mmÞ, nðpÞ ¼ ðn1; . . . ; nkÞ. We have

n ¼
Xm
i¼1

mi þ
Xk

j¼1

nj:
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Theorem 2.7. The statistics ða; m; nÞ establish a type-preserving bijection for Cn.

Figure 8 illustrates a pair of partitions related under the resulting bijection.

Proof. We state a procedure for converting back and forth between classical non-

crossing and nonnesting partitions that preserve the values a, m, and n. Suppose

we start with a partition p, be it noncrossing pNN or nonnesting pNC, so that

we want to find the partition p 0, being pNC or pNN respectively. From a, m, and

n we inductively construct the positive side of p 0, that is, the partition it induces

on the set of positive indices ½n�, which will determine p 0 by invariance under

negation.

First we describe it from the chain-by-chain viewpoint. In the bump diagram

of p, consider the labelled connected component representing Pi, which we call the

chain Pi. Let the (unlabelled ) partial chain P 0
i be the abstract unlabelled connected

graph obtained from the chain Pi by removing its nonpositive nonswitching edges

and nonpositive vertices, leaving the unique switching edge incomplete, i.e. drawn

as a partial edge with just one incident vertex, and by dropping the labels. Notice

how the tuple n allows us to draw these partial chains. The procedure we followed

for type A will generalize to this case, treating the positive parts of the switching

edges first.

We want to obtain the bump diagram for p 0, so we begin by using n to partially

draw the chains representing its switching blocks: we draw only the positive edges

(switching and nonswitching) of every chain, leaving the unique switching edge

incomplete. This is done by reading n from back to front and inserting, each par-

tial switching chain P 0
i in turn with its rightmost dot placed to the right of all

existing chains, analogously to type A. In the noncrossing case, we end up with

every vertex of P 0
i being strictly to the right of every vertex of P 0

j for i < j. In the

nonnesting case, the vertices of the switching edges will be exactly the k first posi-

tions from right to left among all the vertices of P 0
1; . . . ;P

0
k. It remains to place the

nonswitching chains M1;M2; . . . ;Mm, and this we do also as in the type A bijec-

Figure 8. The type C nonnesting (top) and noncrossing (bottom) partitions corresponding
to a ¼ ð3; 4Þ, m ¼ ð2; 1Þ, n ¼ ð2; 3Þ.
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tion, except that at each step, we place the rightmost vertex of Mj so as to become

the ajth vertex, counting from right to left, relative to the chains Mj�1; . . . ;M1 and

the partial chains P 0
1;P

0
2; . . . ;P

0
k already placed.

To take the dot-by-dot viewpoint, the type A algorithm can be used with only

one modification, namely that O begins nonempty. It is initialized from n, as

O ¼ fðfP�
i g; niÞ j i ¼ 1; . . . ; kg;

where P�
i is a fictive element that represents the negative elements of Pi which are

yet to be added. We must also specify how these fictive elements compare, for use

in the open block policies. A fictive element is always less than a real element. In

the noncrossing case P�
i > P�

j i¤ i < j, whereas in the nonnesting case P�
i > P�

j i¤

i > j; the variation assures that P�
1 is chosen first in either case.

Now we have the positive side of p 0. We copy these blocks down again with all

parts negated, and end up with a set of incomplete switching blocks P�
1 ; . . . ;P

�
k on

the positive side and another equinumerous set �P�
1 ; . . . ;�P�

k on the negative side

that we need to pair up and connect with edges in the bump diagram.

There is a unique way to connect these incomplete blocks to get the partition

p 0, be it pNC or pNN. In every case P�
i gets connected with �P�

kþ1�i, and in par-

ticular symmetry under negation is attained. If there is a zero block it arises from

P�
ðkþ1Þ=2.

Finally, p and p 0 have the same type. Since the P�
i are paired up the same way

in each, including any zero block, m and n determine the multiset of block sizes of

p and p 0 and the size of any zero block, in identical fashion in either case. Then

this is Proposition 1.19. r

Again, a careful look at the preceding proof gives the characterization of the

tuples that describe classical noncrossing and nonnesting partitions for type C.

Corollary 2.8. Suppose we are given some tuples of positive integers a ¼ ða1; . . . ;
am1

Þ, m ¼ ðm1; . . . ; mm2
Þ, n ¼ ðn1; . . . ; nkÞ and let n > 0. Define a0 ¼ 0 and m0 ¼ 1.

Then a, m and n represent a classical noncrossing or nonnesting partition for Cn if

and only if

(1) m1 ¼ m2 ¼ m;

(2) n ¼
Pm

i¼1 mi þ
Pk

j¼1 nj ;

(3) ai�1 < ai a
P i�1

k¼0 mk þ
Pk

j¼1 nj for i ¼ 1; 2; . . . ;m.

2.4. Type B. We will readily be able to modify our type C bijection to handle

type B. Indeed, if it were not for our concern about type in the sense of Definition

1.8, we would already possess a bijection for type B, di¤ering from the type C bi-

jection only in pairing up the incomplete switching blocks in a way respecting the
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presence of the element 0. Our task is thus to adjust that bijection to recover the

type-preservation.

If p is a classical partition for Bn, we define the tuples aðpÞ, mðpÞ and nðpÞ as in
type C.

Notice that classical noncrossing partitions for Bn and for Cn are identical, and

that the strictly positive part of any classical nonnesting partition for Bn is also the

strictly positive part of some nonnesting Cn-partition, though not necessarily one

of the same type. Thus Corollary 2.8 characterises the classical noncrossing or

nonnesting partitions for Bn just as well as for Cn.

Suppose p is a classical nonnesting partition for Bn. In two circumstances its

tuples aðpÞ, mðpÞ, nðpÞ also describe a unique nonnesting partition for Cn of the

same type: to be explicit, this is when p does not contain a zero block, and when

the unique switching chain in p is the one representing the zero block. If

P1 <lp � � � <lp Pk are the switching blocks of p, then p contains a zero block and

more than one switching chain if and only if k is odd and k > 1. We notice that

Pk must be the zero block. On the other hand, if pC is a classical nonnesting par-

tition for Cn, the zero block must be Pðkþ1Þ=2. Reflecting this, our bijection will be

forced to reorder n to achieve type preservation.

Generalizing our prior machinery, we will say that two lists SNC and SNN of

partition statistics, in that order, and a list S ¼ ðsiÞ of bijections establish a (type-

preserving) bijection for a classical reflection group W if, given either a classical

noncrossing partition pNC or a classical nonnesting partition pNN for W , the other

one exists uniquely such that si
�
sNC
i ðpNCÞ

�
¼ sNN

i ðpNNÞ for all i (and furthermore

pNC and pNN have the same type).

Suppose we have a tuple n ¼ ðn1; . . . ; nkÞ with k odd. Define the reordering

sBðnÞ ¼ ðn1; . . . ; nðk�1Þ=2; nðkþ3Þ=2; . . . ; nk; nðkþ1Þ=2Þ:

If k is not odd then let sBðnÞ ¼ n. Clearly sB is bijective. For explicitness, the in-

verse for k odd is given by

s�1
B ðnÞ ¼ ðn1; . . . ; nðk�1Þ=2; nk; nðkþ1Þ=2; . . . ; nk�1Þ

and for k even s�1
B ðnÞ ¼ n.

Theorem 2.9. The lists of statistics ða; m; nÞ and ða; m; nÞ establish a type-preserving

bijection for Bn via the bijections ðid; id; sBÞ.

Proof. We use the same procedures as in type C to convert back and forth be-

tween classical nonnesting and noncrossing partitions, except that we must rear-

range n and handle the zero block appropriately, if it is present. When construct-

ing a nonnesting partition we connect the incomplete switching blocks di¤erently:
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in the notation of the dot-by-dot description, P�
k must be connected to �P�

k and

the dot 0, so that we connect P�
i to �P�

k�i for 1a i < k. The conditions of Corol-

lary 2.8, which as we noted above characterize type B classical noncrossing and

nonnesting partitions, do not depend on the order of n. So if tuples a, m, and n

satisfy them then so do a, m and sBðnÞ (or s�1
B ðnÞ). Thus our statistics establish a

bijection between NCclðBnÞ and NNclðBnÞ.
Type is preserved by the definition of s and the preceding discussion. r

Figure 9 illustrates a pair of partitions related under the bijection.

2.5. Type D. The handling of type D partitions is a further modification of our

treatment of the foregoing types, especially type B.

In classical partitions for Dn, the elementse1 will play much the same role as

the element 0 of classical nonnesting partitions for Bn. So when applying the order

<lp and the terminology of Definition 2.6 in type D we will regarde1 as being

neither positive nor negative.

Given p a NNclðDnÞ, define the statistics aðpÞ, mðpÞ and nðpÞ as in type B. In

this case we must have

n� 1 ¼
Xm
i¼1

mi þ
Xk
j¼1

nj:

Let R1 <lp � � � <lp Rl be the blocks of p which contain both a positive element

and either 1 or �1. It is clear that la 2. Define the statistic cðpÞ ¼ ðc1; . . . ; clÞ
by ci ¼ Ri B f1;�1g. To streamline the notation we will usualy write ci as one

of the symbols þ, �, e. Observe that p contains a zero block if and only if

cðpÞ ¼ ðeÞ.

Figure 9. The type B nonnesting (top) and noncrossing (bottom) partitions correspond-
ing to a ¼ ð3; 5Þ, m ¼ ð3; 1Þ, and respectively n ¼ ð1; 2; 1Þ and n ¼ ð1; 1; 2Þ. Note that
sB

�
ð1; 1; 2Þ

�
¼ ð1; 2; 1Þ. These correspond under the bijection of Theorem 2.9.
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To get a handle on type D classical noncrossing partitions, we will transform

them into type B ones. Let NCcl
r ðBn�1Þ be a relabelled set of classical noncrossing

partitions for Bn�1, in which the parts 1; . . . ; ðn� 1Þ and �1; . . . ;�n� 1 are

changed respectively to 2; . . . ; n and �2; . . . ;�n. Define a map CM : NCclðDnÞ
! NCcl

r ðBn�1Þ, which we will call central merging, such that for p a NNclðDnÞ,
CMðpÞ is the classical noncrossing Bn�1-partition obtained by first merging the

blocks containinge1 (which we have drawn at the center of the circular diagram)

into a single part, and then discarding these elementse1. Define the statistics a, m

and n for p to be equal to those for CMðpÞ, where the entries of a should acknowl-

edge the relabelling and thus be chosen from f2; . . . ; ng.
These statistics do not uniquely characterize p, so we define additional statistics

cðpÞ and xðpÞ. The definition of cðpÞ is analogous to the nonnesting case: let

R1 <lp � � � <lp Rl be the blocks of p which intersect f1;�1g, and define cðpÞ ¼
ðc1; . . . ; clÞ where ci ¼ Ri B f1;�1g. Also define zðpÞ ¼ ðz1; . . . ; zlÞ where zl ¼
aðRl B f2; . . . ; ngÞ is the number of positive parts of Rl .

Observe that CMðpÞ lacks a zero block if and only if cðpÞ ¼ ð Þ, the case that 1
and �1 both belong to singleton blocks of p. In this case CMðpÞ is just p with the

blocks f1g and f�1g removed, so that p is uniquely recoverable given CMðpÞ.
Otherwise, CMðpÞ has a zero block. If cðpÞ ¼ ðeÞ this zero block came from a

zero block of p, and p is restored by resupplyinge1 to this zero block. Otherwise

two blocks of p are merged in the zero block of CMðpÞ. Suppose the zero block

of CMðpÞ is fc1; . . . ; cj;�c1; . . . ;�cjg, with 0 < c1 < � � � < cj, so that j ¼
P l

i¼1 zl .

By the noncrossing and symmetry properties of p, one of the blocks of p which

was merged into this block has the form f�ciþ1; . . . ;�cj; c1; . . . ; ci; sg where 1a

ia j and s a f1;�1g. Then, by definition, cðpÞ ¼ ðs;�sÞ and xðpÞ ¼ ði; j � iÞ, ex-
cept that if j � i ¼ 0 the latter component of each of these must be dropped. In

this case the merged blocks of p can be reconstructed since c and x specify s and i.

Let a tagged noncrossing partition for Bn�1 be an element p a NCcl
r ðBn�1Þ to-

gether with tuples cðpÞ of nonempty subsets of f1;�1g and xðpÞ of positive inte-

gers such that

(1) the entries of cðpÞ are pairwise disjoint;
(2) cðpÞ and xðpÞ have equal length;
(3) the sum of all entries of xðpÞ is the number of positive elements in the zero

block of p.

Lemma 2.10. Central merging gives a bijection between classical noncrossing par-

titions for Dn and tagged noncrossing partitions for Bn�1.

Proof. The foregoing discussion establishes that CM is bijective. In view of this

we need only check that the noncrossing property is preserved when moving be-

tween p and CMðpÞ. In terms of bump diagrams, if CMðpÞ is noncrossing p is
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easily seen to be. For the converse, suppose CMðpÞ has a crossing. This must be

between the zero block O and some other block B of CMðpÞ, so that it is possible

to choose i; j a B and k a O such that the segments ði; jÞ and ðk;�kÞ within the

bump diagram of CMðpÞ cross. But these segments also cross in the bump dia-

gram for p and are contained within di¤erent blocks. r

We show next that partitions are uniquely determined by the data we have as-

sociated with them.

Lemma 2.11. A classical nonnesting partition p for Dn is uniquely determined by

the values of aðpÞ, mðpÞ, nðpÞ, and cðpÞ.

Proof. We reduce to the analogous facts for classical nonnesting partitions of

types B and C. There are slight variations in the behaviour depending on cðpÞ,
so we break the argument into cases.

If cðpÞ ¼ ð Þ, then dropping the elementse1 from p and relabelling 2; . . . ; n;
�2; . . . ;�n to 1; . . . ; n� 1;�1; . . . ;�ðn� 1Þ yields a nonnesting partition p 0 for
Cn�1, and this is uniquely characterized by aðp 0Þ, mðp 0Þ, and nðp 0Þ, which only dif-

fer from the statistics of p by the relabelling in a.

If cðpÞ ¼ ðeÞ, then merging the elementse1 into a single element 0 and rela-

belling 2; . . . ; n;�2; . . . ;�n to 1; . . . ; n� 1;�1; . . . ;�ðn� 1Þ yields a nonnesting

Bn�1-partition, and this is again uniquely characterized by aðp 0Þ, mðp 0Þ, and nðp 0Þ,
which only di¤er from the statistics of p by the relabelling in a.

The cases cðpÞ ¼ ð�Þ and cðpÞ ¼ ðþ;�Þ are carried under the exchange of þ1

and �1 respectively to cðpÞ ¼ ðþÞ and cðpÞ ¼ ð�;þÞ, so it su‰ces to handle only

the latter two.

We claim that, in these latter two cases, p is itself a classical nonnesting parti-

tion for Cn. We will write p 0 for p when we mean to conceive of it as an element

NNclðCnÞ; in particular p and p 0 will have di¤erent statistics. Since the ground set

order for NNclðCnÞ is a refinement of the order for NNclðDnÞ in which only the

formerly incomparable elements 1 and �1 in p have become comparable in p 0, p 0

will be in NNclðCnÞ so long as no nestings involving edges of GðpÞ terminating at 1

and �1 are introduced. By symmetry, if there is such a nesting, there will be one

involving the edges ði; 1Þ and ð j;�1Þ of Gðp 0Þ for some i; j > 1. But the fact that

cðpÞ ends with þ implies either i > j or the edge ð j;�1Þ does not exist, so there is

no nesting of this form.

When we readmit 1 and �1 as positive and negative elements, respectively,

every nonswitching block of p remains nonswitching in p 0, and every switching

block of p remains switching unless its only nonpositive element was 1; in this lat-

ter case �1 is likewise the only nonnegative element of its block, which happens i¤

cðpÞ ¼ ðþÞ.
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Let aðpÞ ¼ ða1; . . . ; amÞ, mðpÞ ¼ ðm1; . . . ; mmÞ, nðpÞ ¼ ðn1; . . . ; nmÞ. In the case

cðpÞ ¼ ð�;þÞ, we have

aðp 0Þ ¼ aðpÞ;
mðp 0Þ ¼ mðpÞ;
nðp 0Þ ¼ ðnk þ 1; n1; . . . ; nk�1Þ:

ð2:1Þ

That is, the block containing 1 is the greatest switching block of p under <lp by

assumption, but in p 0 where 1 is positive it becomes the first switching block.

The other switching blocks are unchanged in number of positive elements and

order, and nothing changes about the switching blocks. In case cðpÞ ¼ ðþÞ, the
block containing 1 contains no other nonpositive element, so it becomes a non-

switching block, and in this case we get

aðp 0Þ ¼ ð1; a1; . . . ; amÞ;
mðp 0Þ ¼ ðnk þ 1; m1; . . . ; mmÞ;
nðp 0Þ ¼ ðn1; . . . ; nk�1Þ:

ð2:2Þ

In either case p 0 is a classical nonnesting partition for Cn, and as such is deter-

mined by its statistics, but the translations (2.1) and (2.2) are injective so that p is

determined by its statistics as well. r

Note that, when cðpÞ is ðþÞ or ð�;þÞ, p 0 is an arbitrary noncrossing partition

for Cn subject to the condition that 1 is not the only positive element of its block.

The cases ðþÞ and ð�;þÞ can be distinguished by whether aðp 0Þ starts with 1.

Note also that the blocks of p which contain one of the partse1 are exactly those

described by the last l components of nðpÞ, where l is the length of cðpÞ.
All that remains to obtain a bijection is to describe the modifications to n that

are needed for correct handling of the zero block and its components (rather as in

type B). For a classical nonnesting partition p for Dn, find the tuples aðpÞ, mðpÞ,
nðpÞ ¼ ðn1; . . . ; nkÞ, and cðpÞ. Let xðpÞ be the tuple of the last l entries of nðpÞ,
where l is the length of cðpÞ. Define

�
n̂nðpÞ; xinvðpÞ; cinvðpÞ

�

¼

�
ðn1; . . . ; nk=2�1; nk�1 þ nk; nk=2; . . . ; nk�2Þ; ðx2; x1Þ; ðc2; c1Þ

�
if l ¼ 2;�

ðn1; . . . ; nðk�1Þ=2; nk; nðkþ1Þ=2; . . . ; nk�1Þ; xðpÞ; cðpÞ
�

if l ¼ 1;�
nðpÞ; xðpÞ; cðpÞ

�
if l ¼ 0:

8><
>:

Define a bijection sD by sD
�
nðpÞ; cðpÞ

�
¼

�
n̂nðpÞ; xinvðpÞ; cinvðpÞ

�
. This gives us all

the data for a tagged noncrossing partition CMðp 0Þ for Bn�1, which corresponds
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via central merging with a noncrossing partition p 0 for Dn. Going backwards,

from a noncrossing partition p 0 we recover a nonnesting partition p by applying

central merging, finding the list of statistics
�
aðpÞ; mðpÞ;

�
nðpÞ; cðpÞ

��
via the equal-

ity

�
nðpÞ; cp

�
¼ s�1

D

�
nðp 0Þ; xðp 0Þ; cðp 0Þ

�

(the other statistics remain equal) and using these statistics to make a nonnesting

partition as usual. Type preservation is implied within these modifications of the

statistics. When a zero block exists, the number of positive parts it contains is pre-

served because of the equality xðp 0Þ ¼ nðpÞk which holds in that case. Our han-

dling of n leaves the components corresponding to switching blocks not containing

1 or �1 unchanged, so the number of positive parts in these blocks is also

preserved. The number of positive parts in the blocks containing 1 or �1 is pre-

served because xðp 0Þ corresponds to cðp 0Þ as the l last entries of nðpÞ correspond to

cðpÞ in all cases. The size of each nonswitching block is preserved in the statistic m,

as in previous cases.

All in all, we have just proved the following theorem.

Theorem 2.12. The lists of statistics
�
a; m; ðn; x; cÞ

�
and

�
a; m; ðn; cÞ

�
establish a

type-preserving bijection for Dn via the bijections
�
id; id; ðsDÞ�1�

.

Figures 10 and 11 illustrate this bijection.

Finally we present a characterization of the values of a, m, n and c that describe

type D classical nonnesting partitions. As for noncrossing partitions, between our

discussion of type B and the definition of tagged partitions and Lemma 2.10, we

have already presented all parts of the analogous result.

Corollary 2.13. Suppose we are given the tuples of positive integers a ¼ ða1; . . . ;
am1

Þ, m ¼ ðm1; . . . ; mm2
Þ and n ¼ ðn1; . . . ; nkÞ, and a tuple c ¼ ðc1; . . . ; clÞ of non-

empty subsets of f1;�1g. Let n > 0. Define a0 ¼ 1 and m0 ¼ 2. Then a, m, n and

c represent a classical nonnesting partition for Dn if and only if

(1) m1 ¼ m2 ¼ m;

(2) n� 1 ¼
Pm

i¼1 mi þ
Pk

j¼1 nj ;

Figure 10. The D10 nonnesting partition corresponding to a ¼ ð3Þ, m ¼ ð2Þ, n ¼ ð1; 1; 2; 3Þ,
c ¼ ðþ;�Þ (so n̂n ¼ ð1; 5; 1Þ).
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(3) ai�1 < ai a
P i�1

k¼0 mk þ
Pk

j¼1 nj for i ¼ 1; 2; . . . ;m;

(4) the entries of cðpÞ are pairwise disjoint, so in particular la 2;

(5) k � l is even.

2.6. Proof of the central theorem. Using the preceding bijections we are now

ready to establish our central result.

Proof of Theorem 2.2. When defining statistics and using the terminology of Def-

inition 2.6 we consider positive integers as positive elements of blocks and negative

integers as negative ones, without exception. Tag these new statistics with � to

distinguish them from the old statistics defined in Section 2.2 through Section

2.5. Let xcl be the classical partition representing x. Let h�ðxclÞ be the number

of positive elements in the zero block of xcl. For any nonzero switching block P

of xcl, define the joint block

S ¼ min
<lp

ðP;�PÞ

and let S1 <lp � � � <lp Sk 0 be the joint blocks of xcl. The number of joint blocks k 0

is half the number of nonzero switching blocks. Let Q�
þi be the number of positive

elements in Si and let Q�
�i be the number of negative elements in Si and define

the statistic Q�ðxclÞ ¼
�
ðQ�

þ1; Q
�
�1Þ; . . . ; ðQ�

þk 0 ; Q
�
�k 0 Þ

�
. Finally, define as usual the

statistics a�ðxclÞ ¼ ða�
1 ; . . . ; a

�
m 0 Þ and m�ðxclÞ ¼ ðm�

1 ; . . . ; m
�
m 0 Þ.

Figure 11. (left) The D10 noncrossing partition corresponding to a ¼ ð3Þ, m ¼ ð2Þ,
n ¼ ð1; 5; 1Þ, x ¼ ð3; 2Þ, c ¼ ð�;þÞ. (right) The relabelled type B noncrossing partition
obtained via central merging.
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Let ycl be the image of xcl under the bijections of Theorems 2.4–2.12. There is

a simple way to find a basis for FixðxÞ. From xcl define a function f : xcl ! Cn in

the following way. For any block B of xcl, let

f ðBÞ ¼ sgnðBÞ
X
b AB

b

jbj ejbj;

where sgnðBÞ is þ1 or �1 so that f ðBÞblex 0 when B is nonswitching and

� f ðBÞblex 0 when B is switching. The set b :¼ f ðxclÞnf0g is the basis we are

looking for, which we call the canonical basis of FixðxÞ.
For a (positive) nonswitching block Ci of x

cl, we have

j f ðCiÞBEj ¼ nþ 1� a�
i ;

a
�
f ðCiÞ; 1

�
¼ m�

i ;

a
�
f ðCiÞ;�1

�
¼ 0;

j f ðCiÞB bj ¼ ðm 0 þ 1� iÞ þ ðk 0Þ:

ð2:3Þ

For a joint block Sj of x
cl, we have

j f ðSjÞBEj ¼ 0;

a
�
f ðSjÞ; 1

�
¼ Q�

�j;

a
�
f ðSjÞ;�1

�
¼ Q�

þj;

j f ðSjÞB bj ¼ j:

ð2:4Þ

In any case, we have the equality

Gx ¼ h�ðxclÞ: ð2:5Þ

Note that

f ðS1Þ <lex � � � <lex f ðSk 0 Þ <lex 0 <lex f ðCm 0 Þ <lex � � � <lex f ðC1Þ

and that m 0 þ k 0 is the number of vectors in the ordered basis b. In fact

b ¼ f f ðS1Þ; . . . ; f ðSk 0 Þ; f ðCm 0 Þ; . . . ; f ðC1Þg:

Suppose z is nonnesting or noncrossing partition of W and suppose fv1; . . . ;
vpg is the canonical basis of FixðzÞ, ordered so that v1 <lex � � � <lex vn, which we

do not know. Let zcl be the classical partition of z. Then, knowing the statistics

S� :¼ ða�; m�; Q�; h�Þ associated to zcl allows us to recover the data in (2.3)

through (2.5) associated to each of the vi, and vice versa. Thus, the first step to

reach our goal would be to prove that the bijections in Theorems 2.4 through
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2.12 actually preserve the statistics S�. Any of the old statistics for ycl that is not

mentioned in the following lines is trivially recovered from S�.
Assume without loss of generality that x is a nonnesting partition, the other

direction being completely analogous.

We begin with the case where x is a nonnesting partition of An�1. The bijec-

tion of Theorem 2.4 clearly preserves S�. We have aðyclÞ ¼ a�ðxclÞ and mðyclÞ ¼
m�ðxclÞ so the uniqueness of ycl is established directly from the statistics S�.

Suppose x is an antichain for Cn. The statistics a�, m� and h� are clearly pre-

served in Theorem 2.7. Also Q�
þi ¼ ni and Q�

�i ¼ nkþ1�i so Q� is also preserved.

When there is a zero block we have nðkþ1Þ=2 ¼ h� and this happens if and only if

h� > 0. Therefore ycl is characterized by S�.
Consider the case when x is an antichain for Bn. Again, the statistics a�, m�

and h� are clearly preserved in Theorem 2.9. If there is no zero block we have

Q�
þi ¼ ni and Q�

�i ¼ nkþ1�i. When there is a zero block we have

Q�
þiðxclÞ ¼ niðxclÞ; Q�

þiðyclÞ ¼ niðyclÞ;

Q�
�iðxclÞ ¼ nk�iðxclÞ; Q�

�iðyclÞ ¼ nkþ1�iðyclÞ;

but we also know that

niðxclÞ ¼ niðyclÞ and nk�iðxclÞ ¼ nkþ1�iðyclÞ;

so Q� is preserved. There is a zero block if and only if h� > 0 and here we know in

addition that nkðxclÞ ¼ h� and nðkþ1Þ=2ðyclÞ ¼ h�. Therefore ycl is again character-

ized by S�.
We now consider the case when x is an antichain for Dn. This part is divided

into several subcases. Consider first when cðxclÞ ¼ ð Þ. Here, xcl is a classical

nonnesting partition for Bn and its image ycl under Theorem 2.12 is the unique

classical noncrossing partition from Theorem 2.9 so the previous type su‰ces.

We know cðxclÞ ¼ ð Þ holds exactly when a�
1 ¼ 1, m�

1 ¼ 1 and h� ¼ 0.

Suppose we have cðxclÞ ¼ ðþÞ. Here the element þ1 belongs to a nonswitch-

ing block of size > 1. In the bijection of Theorem 2.12 the statistics S� are pre-

served and this case is characterized by a�
1 ¼ 1, m�

1 > 1 and h� ¼ 0. Furthermore,

on the noncrossing side we have

aðyclÞ ¼ ðâa�
1 ; a

�
2 ; . . . ; a

�
m 0 Þ;

mðyclÞ ¼ ðm̂m�
1 ; m

�
2 ; . . . ; m

�
m 0 Þ;

nðyclÞ ¼ ðQ�
þ1; . . . ; Q

�
þk 0 ; m�

1 � 1; Q�
�k 0 ; . . . ; Q

�
�1Þ;

xðyclÞ ¼ ðm�
1 � 1Þ;

cðyclÞ ¼ ðþÞ:

Thus the uniqueness of ycl is established directly from S�.
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Suppose that cðxclÞ ¼ ð�Þ. The statistics a�, m� and h� are preserved. To

check that Q� is preserved we have

Q�
þ1ðxclÞ ¼ 1; Q�

þ1ðyclÞ ¼ 1;

Q�
�1ðxclÞ ¼ nkðxclÞ; Q�

�1ðyclÞ ¼ nðkþ1Þ=2ðyclÞ;

Q�
þiðxclÞ ¼ ni�1ðxclÞ; Q�

þiðyclÞ ¼ ni�1ðyclÞ for i > 1;

Q�
�iðxclÞ ¼ nk�iðxclÞ; Q�

�iðyclÞ ¼ nkþ1�iðyclÞ for i > 1:

However, we know the following equalities hold:

nkðxclÞ ¼ nðkþ1Þ=2ðyclÞ;
ni�1ðxclÞ ¼ ni�1ðyclÞ and nk�iðxclÞ ¼ nkþ1�iðyclÞ for i > 1:

Hence, Q� is indeed preserved. We also know that cðxclÞ ¼ ð�Þ if and only if

a�
1 > 1, Q�

þ1 ¼ 1 and h� ¼ 0. Using the previous equations we may see that

nðyclÞ is obtained uniquely from Q�, therefore ycl is characterized by S�.
Suppose cðxclÞ ¼ ðeÞ. Here it is easily seen that S� are preserved. The char-

acterization for the case is h� > 0 and the uniqueness of ycl is also easily estab-

lished.

Finally, consider the case when l ¼ 2 so either cðxclÞ ¼ ðþ;�Þ or cðxclÞ ¼
ð�;þÞ holds. To start, suppose that cðxclÞ ¼ ðþ;�Þ. The bijection of Theorem

2.12 clearly preserves a�, m� and n�. To see that Q� is also preserved we need the

more intricate equalities

Q�
þ1ðxclÞ ¼ nk�1ðxclÞ þ 1; Q�

þ1ðyclÞ ¼ x2ðyclÞ þ 1;

Q�
�1ðxclÞ ¼ nkðxclÞ; Q�

�1ðyclÞ ¼ x1ðyclÞ;

Q�
þiðxclÞ ¼ niðxclÞ; Q�

þiðyclÞ ¼ niðyclÞ for i > 1;

Q�
�1ðxclÞ ¼ nk�1�iðxclÞ Q�

�1ðyclÞ ¼ nkþ1�iðyclÞ for i > 1:

But we know from the handling of the statistics for type D that

nk�1ðxclÞ ¼ x2ðyclÞ

because of the function sD;

nkðxclÞ ¼ x1ðyclÞ

also because of the function sD, and

niðxclÞ ¼ niðyclÞ and nk�1�iðxclÞ ¼ nkþ1�iðyclÞ for i > 1:
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This implies that Q� is preserved in Theorem 2.12. Note that cðxclÞ ¼ ðþ;�Þ or
cðxclÞ ¼ ð�;þÞ occurs whenever none of the previous cases holds or whenever

a�
1 > 1, Q�

1 > 1 and h� ¼ 0. Note also that we can obtain aðyclÞ, mðyclÞ, nðyclÞ
and the number of positive and negative elements in the block containing þ1 di-

rectly from S�, but we cannot characterize ycl. This is because the information in

S� does not tell apart two noncrossing partitions ycl
1 and ycl

2 with identical statis-

tics a, m and n but such that xðycl
1 Þ ¼ xinvðycl

2 Þ and cðycl
1 Þ ¼ cinvðycl

2 Þ, ycl
1 and ycl

2

have the same statistics S�. In particular Q�
þ1ðycl

1 Þ ¼ Q�
þ1ðycl

2 Þ and Q�
�1ðycl

1 Þ ¼
Q�
�1ðycl

2 Þ. If additionally we require that the element with smallest absolute

value > 1 in the block containing þ1 changes sign from xcl to ycl, then this would

be Theorem 2.12. This extends to all cases and types in the following way. For a

joint block Si of x
cl with more than one positive element, we require that the ele-

ment with smallest nonminimal absolute value in Si and the equivalent element in

its image block S 0
i of ycl have opposite signs. This new requirement is simply a

necessary condition for noncrossing (or nonnesting) bump diagrams in all other

cases and it was discussed in the proof of Theorem 2.7, so there is no loss or

change in the previous analysis if we consider it as being part of the bijections.

However this is tantamount to requiring that for any such block Si the product

of the first two nonzero components in f ðSjÞ and f ðS 0
i Þ is not equal. Clearly Si

satisfiesa
�
f ðSjÞ;�1

�
> 1 anda

�
f ðSjÞ; 1

�
> 0 and these inequalities are equiva-

lent to the condition imposed on Si.

Therefore, if we can prove that Wx ¼ b in the general case, where x is a non-

nesting or noncrossing partition of W , we are done.

Suppose x is a noncrossing or nonnesting partition and we are on step i in

the construction of Wx. We have ei and we want to obtain ui a CnBFixðxÞ with
kui � eik <lex-minimal.

Consider the case when i belongs to a zero block of xcl. This means that

p i
�
FixðxÞ

�
¼ f0g where p i is the canonical projection on the i-th coordinate. If v

belongs to CnBFixðxÞ then kv� eikblex ei because kv� eiki ¼ 1. Hence ui ¼ 0

and ui does not enter Wx.

Now consider the case that i does not belong to a zero block. We first prove

the uniqueness of ui. Suppose there exist two vectors ui and u 0
i such that kui � eik

and ku 0
i � eik are <lex-minimal. This implies kui � eik ¼ ku 0

i � eik, but then

ðuiÞi ¼ ðu 0
i Þi and jðuiÞjj ¼ jðu 0

i Þj j for jA i. The <lex-minimality condition implies

that ui ¼ u 0
i ¼ 0 or ðuiÞi ¼ ðu 0

i Þi ¼ 1. Suppose ðuiÞi ¼ ðu 0
i Þi ¼ 1 holds and suppose

ðuiÞj ¼ �ðu 0
i Þj for some jA i. Then ðui þ u 0

i Þ=2 belongs to CnBFixðxÞ and

kðui þ u 0
i Þ=2� eik <lex kui � eik ¼ ku 0

i � eik, a contradiction. Thus ui is unique.

Again, the <lex-minimality condition implies that ui ¼ 0 or ðuiÞi ¼ 1. If ui ¼ 0

then it does not enter Wx. Suppose that there exists some j < i such that

ðuiÞj A 0. In this case k0� eik <lex kui � eik, a contradiction. Therefore, if ui
enters Wx then ðuiÞj ¼ 0 for j < i and ðuiÞi ¼ 1. The <lex-minimality condition
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shows that actually ui is the vector in CnBFixðxÞ with the least number of non-

zero components such that ðuiÞj ¼ 0 for j < i and ðuiÞi ¼ 1. Now ui satisfies these

conditions if and only if i is the least nonzero component of f ðBÞ for some non-

zero block B of xcl such that ui ¼ f ðBÞ or ui ¼ �f ðBÞ (according to whether B is

nonswitching or switching, respectively). But the sets

S1; . . . ;Sk 0 ; C1; . . . ;Cm 0

are pairwise disjoint and their minimal positive elements are all di¤erent, and ui
(or �ui) always enters Wx, so we obtain a correspondence between the elements

of Wx and b. r
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