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Introduction

This paper is concerned with bounded lattice structured discriminator varieties,

i.e., discriminator varieties interpreting the variety L01 of bounded lattices. The

many examples of such varieties found in the literature are in fact varieties in-

terpreting bounded distributive lattices or even Heyting algebras. The theory of

discriminator varieties, developed by many authors, started with a paper by A.

Pixley in 1971 [21]. It relies on the existence of a term defining the discriminator

function on all the subdirectly irreducible algebras of a variety. It plays a unifying

role for a large class of varieties, providing for some of them the results previously

obtained by many authors.

Our search of all bounded lattice structured discriminator varieties covering

the variety TM of tetravalued modal algebras, aroused our interest in studying

the class of varieties in the title, with tools from the general theory of discriminator

varieties. The variety TM, generated by a four-element quasi-primal algebra,

covers the variety LM3 of three-valued Łukasiewicz–Moisil algebras. The latter

was introduced and studied by Gr. C. Moisil in 1940, 1941; the former was intro-

duced by A. A. Monteiro in 1978, and studied by I. Loureiro for her thesis [16],

under the guidance of A. A. Monteiro.

Our work started by recognizing that, for the special discriminator varieties

under study, the role played by the ternary discriminator may be played by a bi-

nary function. This function was called a ð0; 1Þ-switching function in [23], where

some results concerning these varieties were given without proofs, and examples of

discriminator varieties covering TM were presented.

This paper is an expanded version of the first part of [23]. A version of the

remaining part will be given in another paper. To avoid repetitions when we



speak of a variety V we mean a variety interpreting the variety L01. In Section 1,

basic facts from discriminator varieties are recalled and some facts regarding

known varieties, which are generalized here, are focused. In Section 2, discrimina-

tor varieties V are characterized by equational conditions on a binary term. The

proof of the equational characterization theorem provides a description of the

principal congruences on each algebra from V, and a characterization of its sub-

directly irreducible (simple) algebras. In Section 3, a discriminator variety SwL01

interpreting L01 which is interpretable in every variety V is considered. The study

of some questions regarding discriminator varieties V amounts to studing them

for the variety SwL01. Four special unary terms for a variety V are derived

from the special binary term: a term defining an existential quantifier, a term de-

fining a universal quantifier, a term defining a weak pseudocomplementation, and

a term defining a weak dual pseudocomplentation. All these terms determine in

any algebra the same subreduct which is a Boolean algebra, and is the core of

the algebra. It is also shown that the variety TM as well as LM3 are termwise

equivalent to subvarieties of SwL01. In Section 4, it is shown that the Boolean

subreduct BðAÞ of an algebra A a V is isomorphic to the lattice of principal con-

gruences on A, and it determines all congruences of A. Moreover, A and BðAÞ
have isomorphic congruence lattices. Descriptions of congruences are presented,

and the 1-cosets and 0-cosets are characterized. Finally, in Section 5, we consider

a term operation of weak implication for any variety V, generalizing the one

introduced and studied by A. A. Monteiro for the variety LM3; the deductive

systems relative to this operation are precisely the 1-cosets.

1. Preliminaries

The ternary discriminator function (the discriminator, for short), and the quater-

nary switching function (also called the normal transform) on a nonempty set A

are functions d : A3 ! A, and s : A4 ! A defined by

dðx; y; zÞ ¼ x if xA y

z if x ¼ y

�
; sðx; y; z; vÞ ¼ v if xA y

z if x ¼ y

�
:

The two functions are interrelated by

dðx; y; zÞ ¼ sðx; y; z; xÞ; sðx; y; z; vÞ ¼ d
�
dðx; y; zÞ; dðx; y; vÞ; v

�
:

The ternary switching function on A is derived as follows:

sðx; y; zÞ ¼ s
�
x; y; z; dðx; z; yÞ

�
¼ d

�
dðx; y; zÞ; x; dðx; z; yÞ

�
:
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A discriminator [quasi-primal ] algebra is a nontrivial [finite] algebra A having a

term which induces the discriminator on A (equivalentely, having a term which

induces the quaternary switching function on A); any such term is called a discrim-

inator term (a switching term) for A. Any discriminator algebra is simple. A class

of nontrivial algebras having a common discriminator term is called a discrimina-

tor class.

A discriminator variety (D-variety, for short) is a variety generated by a dis-

criminator class of algebras. For any variety V, SiV denotes the class of all its

nontrivial subdirectly irreducible algebras. A variety V is a D-variety i¤ SiV

is a discriminator class. Some properties of a discriminator variety V are recalled

next.

V is semisimple, i.e., each A a SiV is simple; each finite algebra of V is a

direct product of finite simple algebras; V is arithmetical (i.e., congruence-

distributive (CD), and congruence-permutable (CP)); V is congruence-regular

i.e., any congruence of any algebra is determined by any of its equivalence classes:

y ¼ Yð½a�yÞ ¼ fðx; yÞ : sðx; y; aÞ a ½a�yg; each algebra A a V has equationally de-

finable principal congruences (EDPC): Yða; bÞ ¼ fðx; yÞ : dða; b; xÞ ¼ dða; b; yÞg;
the congruence lattice of each algebra A a V, ConA, has as a sublattice the set

Conp A of principal congruences of A, and Conp A is a generalized Boolean lat-

tice; Conp A is a Boolean lattice i¤ the largest congruence ‘ is principal. From

[14], Lemma 5.3, using the congruence regularity (see also [24], and [3]):

Yða; bÞ4Yða; cÞ ¼ Y
�
a; sða; b; c; bÞ

�
;

Yða; bÞbYða; cÞ ¼ Y
�
a; sða; b; b; cÞ

�
;

Yða; bÞFYða; cÞ ¼ Y
�
a; dða; c; bÞ

�
;

where F denotes the dual relative pseudocomplement of Yða; cÞ in Yða; bÞ (the
complement of Yða; cÞ in ½D;Yða; bÞ4Yða; cÞ�).

A variety W is said to be interpretable (or representable) into a variety V

if there exists a system of V-terms t ¼ 3tj : j a J4 such that for each algebra

A a V the algebra At ¼ 3A; tj; j a J4 a W. We also say that V interprets W

via the system t. This system is called an interpretation (or a representation) of

W into V; At is said to be a t-reduct of A, and any subalgebra of At is said to

be a t-subreduct of A. If t is formed by basic operations of V, this variety is

said to be an expansion of W.

Two algebras A and B (not necessarily of the same type) are said to be equiv-

alent (or term equivalent) if they have the same universe and the same n-ary term

operations for every n, i.e., the same clone of operations. This means that each

basic operation of A is a term operation of B and vice-versa.

Two varieties V and W are (termwise) equivalent if there is an interpretation

t of W into V and an interpretation q of V into W such that Atq ¼ A for all
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A a V, and Bqt ¼ B for all B a W. It is worth remembering that: Two varieties

V and W are equivalent i¤ V ¼VðAÞ and W ¼VðBÞ, for some equivalent alge-

bras A and B ([19], 4.140).

The notion of an existential (and a universal) quantifier for a Boolean algebra

was considered by P. Halmos in [13]; it was extended to bounded special lattices

by many authors. For a bounded lattice an existential quantifier D is an additive,

semi-multiplicative, and normal closure operator. Equivalently, it can be defined

by the following conditions [8]:

Q0: Dð0Þ ¼ 0; Q1: xbDðxÞ ¼ x;

Q2: D
�
xbDðyÞ

�
¼ DðxÞbDðyÞ; Q3: Dðx4yÞ ¼ DðxÞ4DðyÞ:

Dually, a universal quantifier E is a semi-additive, multiplicative, normal interior

operator. Equivalently, it can be defined by

~QQ0: Eð1Þ ¼ 1; ~QQ1: x4EðxÞ ¼ x;

~QQ2: EðxbyÞ ¼ EðxÞbEðyÞ; ~QQ3: E
�
x4EðyÞ

�
¼ EðxÞ4EðyÞ:

An existential [universal] quantifier is simple if DðxÞ ¼ 1, for all xA 0 [EðxÞ ¼ 0,

for all xA 1].

An algebra having two distinct constant term operations, denoted 0; 1, is usu-

ally called a ð0; 1Þ-pointed algebra.

Let A be any ð0; 1Þ-pointed discriminator algebra. Then ðA; d; 0; 1Þ is a reduct

of A, and ðf0; 1g; d; 0; 1Þ is a subreduct. We note that the algebra ðf0; 1g; d; 0; 1Þ
is equivalent to the Boolean algebra B2 ¼ ðf0; 1g;b;4;�; 0; 1Þ. The binary terms

sðx; yÞ ¼ sðx; y; 1; 0Þ ¼ d
�
dðx; y; 1Þ; dðx; y; 0Þ; 0

�
¼ d

�
0; dðx; y; 0Þ; dðx; y; 1Þ

�
; and

~ssðx; yÞ ¼ sðx; y; 0; 1Þ ¼ d
�
dðx; y; 0Þ; dðx; y; 1Þ; 1

�
¼ d

�
1; dðx; y; 1Þ; dðx; y; 0Þ

�

induce on A the following functions:

sAðx; yÞ ¼ 0 if xA y

1 if x ¼ y

�
; ~ssAðx; yÞ ¼ 1 if xA y

0 if x ¼ y

�
:

These functions [terms] will be called the ð0; 1Þ-switching function [term], and the

dual ð0; 1Þ-switching function [term], respectively; they are related to each other by:

~ssðx; yÞ ¼ s
�
0; sðx; yÞ

�
; and sðx; yÞ ¼ ~ss

�
1; ~ssðx; yÞ

�
:

Thus, ðA; s; 0; 1Þ and ðA; ~ss; 0; 1Þ are equivalent reducts of A. The operations s and
~ss characterize equality in any algebra from a ð0; 1Þ-pointed discriminator variety.
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We now present some facts concerning known discriminator varieties for

comparison with facts, given for the discriminator varieties V under study, in the

forthcoming sections, where the role played by the binary switching functions is

emphasized.

The variety B of Boolean algebras, the most important ð0; 1Þ-pointed discrim-

inator variety, is generated by the (quasi-)primal algebra B2. Besides the basic

operationsb, and4, the term operations x! y :¼ �x4y, and its dual x y :¼
�xby allow one to equationally characterize the partial order on each algebra

B a B:

xa y i¤ xby ¼ x i¤ x4y ¼ y i¤ x! y ¼ 1 i¤ x y ¼ 0:

Hence equality can be equationally characterized by:

x ¼ y i¤ xby ¼ x4y i¤ ðx! yÞbðy! xÞ ¼ 1 i¤

ðx yÞ4ðy xÞ ¼ 0:

In f0; 1g, the switching functions defined above are induced by the following

terms:

sðx; yÞ ¼ ðx! yÞbðy! xÞ ¼ ð�x4yÞbðx4�yÞ ¼ �ðx4yÞ4ðxbyÞ;
~ssðx; yÞ ¼ ðx yÞ4ðy xÞ ¼ ð�xbyÞ4ðxb�yÞ ¼ �ðxbyÞbðx4yÞ:

Note that ~ssðx; yÞ is the symmetric di¤erence, usually denoted xa y, and its dual

sðx; yÞ ¼ �~ssðx; yÞ is sometimes called equivalence and denoted by $.

Among the discriminator terms for B2 we choose:

dðx; y; zÞ ¼ ½ð�x4yÞbðx4�yÞbz�4ðxb�yÞ
¼ ½ðx! yÞbðy! xÞbz�4f�½ðx! yÞbðy! xÞ�bxg
¼ ½sðx; yÞbz�4½�sðx; yÞbx� ¼ ½~ssðx; yÞ4z�b½�~ssðx; yÞ4x�:

For B a B, Conp BGB. For a; b a B, we choose some ways of giving the

principal congruence generated by ða; bÞ by means of binary operations:

Yða; bÞ ¼ Y
�
ð�a4bÞbða4�bÞ; 1

�
¼ Y

�
ða! bÞbðb! aÞ; 1

�
¼ Y

�
sða; bÞ; 1

�
¼ fðx; yÞ : sða; bÞbx ¼ sða; bÞbyg ¼ Y3b4

�
sða; bÞ; 1

�
¼ Y

�
0; ð�abbÞ4ðab�bÞ

�
¼ Y

�
0; ða bÞ4ðb aÞ

�
¼ Y

�
0;�sða; bÞ

�
¼ fðx; yÞ : �sða; bÞ4x ¼ �sða; bÞ4yg ¼ Y344

�
0;�sða; bÞ

�
;
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where Y3b4ðCÞ [Y344ðCÞ] denotes the congruence of B3b4 [B344], the 3b4-reduct
[344-reduct] of B, generated by C.

For y a ConB, the 1-coset, ½1�y, is a filter, the 0-coset, ½0�y, is an ideal, and

y ¼ Yð½1�yÞ ¼ fðx; yÞ : sðx; yÞ a ½1�yg ¼ fðx; yÞ : x! y a ½1�y; y! x a ½1�yg
¼ Y3b4ð½1�yÞ ¼ fðx; yÞ : bf a ½1�y; xb f ¼ yb f g
¼ Yð½0�yÞ ¼ fðx; yÞ : �sðx; yÞ a ½0�yg ¼ fðx; yÞ : x y a ½0�y; y x a ½0�yg
¼ Y344ð½0�yÞ ¼ fðx; yÞ : bi a ½0�y; x4i ¼ y4ig:

The variety LM3 of three-valued Łukasiewicz–Moisil algebras is another im-

portant ð0; 1Þ-pointed discriminator variety generated by the quasi-primal algebra

L3 ¼ ðf0; a; 1g;b;4;P;D; 0; 1Þ, where ðf0; a; 1g;b;4;P; 0; 1Þ is a simple Kleene

algebra, and D is the unary operation: Dð0Þ ¼ 0, DðaÞ ¼ Dð1Þ ¼ 1. Among the

discriminator terms for L3 we point out (see [24] for another):

dðx; y; zÞ ¼ ½Psðx; yÞ4z�b½sðx; yÞ4x� ¼ ½sðx; yÞbz�4½Psðx; yÞbx�

where sðx; yÞ :¼ ½PDðx4yÞ4DðxbyÞ�b½DP ðx4yÞ4PDP ðxbyÞ� is a ð0; 1Þ-
switching term for L3.

The operation D determines an endomorphism on the bounded lattice reduct

of each algebra from LM3. The variety B may be considered as a subvariety of

LM3, by adding the trivial unary operation D. Then B is the subvariety of LM3

characterized by the identity Dx ¼ x.

The variety LM3 interprets the variety HA of Heyting algebras (see [20], Ch.

VII, §3, and [2], Ch. 4, §3). More precisely, the variety LM3 is equivalent to the

variety generated by a 3-element Heyting algebra H3 ¼ ðf0; a; 1g;b;4;);P; 0; 1Þ
with a dual automorphism P of period 2 ([20], Ch. VII, Th. 3.5). The Heyting

implication ) is given by the LM3-term x) y ¼PDx4y4ðDPxbDyÞ, and
D is given by Dx ¼ ðPx) xÞ.

LM3-algebras (and LMn-algebras, n > 3), were introduced and studied by Gr.

C. Moisil in 1940, 1941, as an algebraic counterpart of three-valued propositional

logic.

The variety TM of tetravalent modal algebras is generated by the algebra

T ¼ ðf0; a; b; 1g;b;4;P;D; 0; 1Þ, where ðf0; a; b; 1g;b;4;P; 0; 1Þ is a simple De

Morgan algebra, and D is the unary operation: Dð0Þ ¼ 0, DðaÞ ¼ DðbÞ ¼
Dð1Þ ¼ 1. Discriminator terms given above for L3 are also discriminator terms

for T, as also is the ð0; 1Þ-switching term.

The lattice of subvarieties of TM is the chain: BHLM3 HTM. The variety

LM3 is the subvariety of TM characterized by D being an endomorphism, i.e.

characterized by the equation: DðxbyÞ ¼ DðxÞbDðyÞ. Unlike what happens

for LM3, the variety HA is not interpretable in TM, and the operation D deter-
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mines an existential quantifier on the bounded lattice reduct of any algebra from

TM.

The variety TM was defined by A. A. Monteiro in 1978, and studied by I.

Loureiro in [16].

The variety MB of monadic Boolean algebras is another important example of

a discriminator variety, introduced and studied by P. Halmos in [13]. Monadic

Boolean algebras are Boolean algebras with an existential quantifier D. The sim-

ple algebras are those having a simple quantifier. The proper subvarieties of MB

form an o-chain of discriminator varieties MBn; n a N. Each MBn is generated

by a simple algebra having n atoms; MB1, the least nontrivial subvariety of MB,

is equivalent to the variety B, since its simple algebra is a two-element Boolean

algebra with the trivial quantifier D. Discriminator terms for the simple algebras

of MB are found in [3], and [24]:

dðx; y; zÞ ¼ ½�sðx; yÞ4z�b½sðx; yÞ4x� ¼ ½sðx; yÞbz�4½�sðx; yÞbx�

where sðx; yÞ ¼ �D½ðx4yÞb�ðxbyÞ� ¼ �D� ½�ðx4yÞ4ðxbyÞ� are ð0; 1Þ-
switching terms.

All these examples are discriminator varieties interpreting the variety D01

of bounded distributive lattices. All but one, TM, interpret the variety HA of

Heyting algebras.

General references for notions and facts on universal algebra, lattices and vari-

eties are [19], [4], [12], and [1]. For discriminator varieties we refer the reader to

[24], [4], [14] and [3] and the references given therein. For interpretations and

equivalence of algebras and varieties the reader may consult [11] and [19]. For

the main results about LM3, the reader is referred to [1], and to [20], where A.

A. Monteiro gives an excellent account of his own works and those of other mem-

bers of his School in Bahia Blanca. Also the book [2], published in 1991, is an

excellent survey of all the results about these algebras and their generalizations,

obtained until 1988, without tools from discriminator varieties.

2. Characterizations of discriminator varieties interpreting L01

As was observed in the previous section, any ð0; 1Þ-pointed discriminator algebra

A has necessarily a ð0; 1Þ-switching term and a dual ð0; 1Þ-switching term. The

converse is not true. For instance, the algebra ðf0; 1g;a; 0; 1Þ is not a discrimina-

tor algebra. It was also observed that the existence of a ð0; 1Þ-switching term for

any algebra is equivalent to the existence of a dual ð0; 1Þ-switching term.

In this section we are concerned with varieties V, for which there is an inter-

pretation of the variety L01 into V, which will be denoted by ðb;4; 0; 1Þ.
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As is suggested by the examples recalled in the previous section, it is easily

checked that for any algebra having a ð4;b; 0; 1Þ-reduct in L01, the existence of a

ð0; 1Þ-switching term sðx; yÞ implies the existence of a discriminator term:

�
sðx; yÞbz

�
4

�
s
�
0; sðx; yÞ

�
bx

�
:

Hence, discriminator varieties interpreting L01 may be characterized by the exis-

tence of a binary [dual] ð0; 1Þ-switching term for the class of their subdirectly irre-

ducibles, as stated in our first theorem.

Theorem 2.1. For a variety V interpreting L01, the following are equivalent:

(1) There exists a discriminator term for SiV.

(2) There exists a ð0; 1Þ-switching term for SiV.

[There exists a dual ð0; 1Þ-switching term for SiV.]

Theorem 2.2. Let V be a variety and ðb;4; 0; 1Þ be a family of terms giving an

interpretation ofL01 intoV. For a binary term sðx; yÞ, the following are equivalent:
(1) sðx; yÞ is a ð0; 1Þ-switching term for SiV.

(2)
�
sðx; yÞbz

�
4

�
s
�
0; sðx; yÞ

�
bx

�
is a discriminator term for SiV.

[
�
s
�
0; sðx; yÞ

�
4z

�
b
�
sðx; yÞ4x

�
is a discriminator term for SiV.]

Proof. ð2Þ ) ð1Þ Let A a SiV, and dðx; y; zÞ :¼
�
sðx; yÞbz

�
4
�
s
�
0; sðx; yÞ

�
bx

�
be a discriminator term. We first show that sða; aÞ ¼ 1, for all a a A. We obtain

from (2): 0 ¼ dða; a; 0Þ ¼ s
�
0; sða; aÞ

�
ba, for every a a A. Hence, z ¼ dða; a; zÞ ¼

sða; aÞbz, for every z a A, so 1 ¼ dða; a; 1Þ ¼ sða; aÞ. For a; b a A, with aA b, we

obtain from (2): a ¼
�
sða; bÞbc

�
4

�
s
�
0; sða; bÞ

�
ba

�
. For c ¼ 0, we obtain

a ¼ s
�
0; sða; bÞ

�
ba: ð*Þ

Hence a ¼
�
sða; bÞbc

�
4a, for all c a A. But, if c ¼ 1, we obtain a ¼ sða; bÞ4a.

Thus, taking a ¼ 0,

bA 0 ) sð0; bÞ ¼ 0: ð**Þ

If aA 0, and bA a, we have sða; bÞ ¼ 0, since otherwise, by (**), we would have

s
�
0; sða; bÞ

�
¼ 0 and, by (*), a ¼ 0, a contradiction. r

Discriminator varieties were characterized in [18] (see also [22]) by equational

conditions on a ternary term. In the following theorem discriminator varieties in-

terpreting the variety L01 are characterized by equational conditions on a binary

term.
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Theorem 2.3. For a variety V with a family of terms ðb;4; 0; 1Þ giving an interpre-

tation of L01 into V, and a binary term sðx; yÞ, the following are equivalent:

(1) sðx; yÞ is a ð0; 1Þ-switching term for SiV.

(2) V satisfies the following identities:

S1. sðx; xÞ ¼ 1,

S2. sðx; yÞbx ¼ sðx; yÞby,

S3. sðx; yÞ4s
�
0; sðx; yÞ

�
¼ 1,

and, for each n-ary operation symbol f of V,

Sf . sðx; yÞb f ðz1; . . . ; znÞ ¼ sðx; yÞb f
�
sðx; yÞbz1; . . . ; sðx; yÞbzn

�
(sðx; yÞb f ðz1; . . . ; znÞ ¼ f

�
sðx; yÞbz1; . . . ; sðx; yÞbzn

�
, whenever f ð0; . . . ; 0Þ

¼ 0).

(3) V satisfies the identity

S1. sðx; xÞ ¼ 1,

and, for each A a V, and any a; b a A, with aA b, ða; bÞ B Y
�
0; sða; bÞ

�
.

Proof. ð1Þ ) ð2Þ It is easily checked that these identities hold in SiV, hence they

hold in V.

ð2Þ ) ð3Þ We first observe that properties of bounded semilattices together

with S1, S2 ensure that for A a V, and y a ConA,

ða; bÞ a y ,
�
sða; bÞ; 1

�
a y ,

�
sða; bÞbx; x

�
a y; for all x a A: ð*Þ

In fact,

ða; bÞ a y )
�
sða; bÞ; 1

�
¼

�
sða; bÞ; sðb; bÞ

�
a y by S1

)
�
sða; bÞbx; x

�
a y; for all x a A

)
�
sða; bÞba; a

�
a y;

�
sða; bÞbb; b

�
a y

) ða; bÞ a y: by S2 and transitivity

Let A a V, and a; b a A. The equivalence relation

t ¼ fðx; yÞ a A� A : sða; bÞbx ¼ sða; bÞbyg

is a congruence on A, since it is compatible with each basic operation f of V, by

the identities Sf . By S2, ða; bÞ a t. We shall now prove that t is the least congru-

ence containing ða; bÞ.
Let y a ConA be such that ða; bÞ a y. We want to show that tJ y. Let

ðx; yÞ a t, i.e., sða; bÞbx ¼ sða; bÞby. As
�
sða; bÞbx; x

�
a y, and

�
sða; bÞby; y

�
a y by (*), we conclude that ðx; yÞ a y by the transitivity of y. Thus, for any

a; b a A, t is the congruence of A generated by ða; bÞ:

Yða; bÞ ¼ fðx; yÞ a A� A : sða; bÞbx ¼ sða; bÞbyg: ð**Þ
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Now, let a; b a A, with aA b. We have that ða; bÞ B Y
�
0; sða; bÞ

�
, since otherwise

we would obtain a contradiction:

ða; bÞ a Y
�
0; sða; bÞ

�
,

�
sða; bÞ; 1

�
a Y

�
0; sða; bÞ

�
by ð*Þ

, s
�
0; sða; bÞ

�
bsða; bÞ ¼ s

�
0; sða; bÞ

�
by ð**Þ

) 0 ¼ s
�
0; sða; bÞ

�
by S2

) sða; bÞ ¼ 1 by S3

) a ¼ b: by S2

ð3Þ ) ð1Þ By S1, sðx; xÞ ¼ 1, for all x a A. It remains to show that for any

A a SiV, sðx; yÞ ¼ 0 for all x; y a A, with xA y. Let A a SiV, with monolith

Yða; bÞ, aA b. The hypothesis ða; bÞ B Y
�
0; sða; bÞ

�
implies that Y

�
0; sða; bÞ

�
¼ D.

Hence sða; bÞ ¼ 0. By S1,
�
sða; bÞ; 1

�
a Yða; bÞ. So ð0; 1Þ a Yða; bÞ, i.e., Yða; bÞ

¼ ‘, and A is a simple algebra. Let x; y a A, with xA y. By the hypothesis,

Y
�
0; sðx; yÞ

�
A‘. Then, by the simplicity ofA, Y

�
0; sðx; yÞ

�
¼ D, and sðx; yÞ ¼ 0.

r

Another equational characterization, dual to the one in Theorem 2.3 is given

next. It can be stated in terms of ~ssðx; yÞ.

Theorem 2.3 0. For a variety V, such that ðb;4; 0; 1Þ is an interpretation of L01

into V, and a binary term sðx; yÞ ½~ssðx; yÞ�, the following are equivalent:

(1) sðx; yÞ ½~ssðx; yÞ� is a [dual ] ð0; 1Þ-switching term for SiV.

(2) V satisfies the following identities:

S1 0. s
�
0; sðx; xÞ

�
¼ 0, ½~ssðx; xÞ ¼ 0�,

S2 0. s
�
0; sðx; yÞ

�
4x ¼ s

�
0; sðx; yÞ

�
4y, ½~ssðx; yÞ4x ¼ ~ssðx; yÞ4y�,

S3 0. sðx; yÞbs
�
0; sðx; yÞ

�
¼ 0,

�
~ss
�
1; ~ssðx; yÞ

�
b~ssðx; yÞ ¼ 0

�
,

and, for each n-ary operation symbol f of V,

S 0f . s
�
0; sðx; yÞ

�
4 f ðz1; . . . ; znÞ

¼ s
�
0; sðx; yÞ

�
4 f

�
s
�
0; sðx; yÞ

�
4z1; . . . ; s

�
0; sðx; yÞ

�
4zn

�
�
~ssðx; yÞ4 f ðz1; . . . ; znÞ ¼ ~ssðx; yÞ4 f

�
~ssðx; yÞ

�
4z1; . . . ; ~ssðx; yÞ4zn

�
ðs
�
0; sðx; yÞ

�
4 f ðz1; . . . ; znÞ ¼ f

�
s
�
0; sðx; yÞ

�
4z1; . . . ; s

�
0; sðx; yÞ

�
4zn

�
�
~ssðx; yÞ4 f ðz1; . . . ; znÞ ¼ f

�
~ssðx; yÞ4z1; . . . ; ~ssðx; yÞ4zn

��
whenever f ð1; . . . ; 1Þ ¼ 1).

Remarks. (1) The proof of Theorem 2.3 provides us with the following facts:

principal congruences of algebras from V can be equationally described as

principal congruences of semilattices; the subdirectly irreducible algebras are

simple (known fact), and are those for which sðx; yÞ is a ð0; 1Þ-switching
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function. The proof of Theorem 2.3 0, with arguments dual to those in the

proof of Theorem 2.3, would provide us with the facts:

ða; bÞ a y ,
�
0; s

�
0; sða; bÞ

��
a y ,

�
s
�
0; sða; bÞ

�
4x; x

�
a y; for all x a A

Yða; bÞ ¼
�
ðx; yÞ a A� A : s

�
0; sða; bÞ

�
4x ¼ s

�
0; sða; bÞ

�
4y

�
:

(2) The axiom S2 [S2 0], and properties of bounded semilattices ensure that:

(a) sð0; xÞbx ¼ 0 [(a 0) s
�
0; sðx; 1Þ

�
4x ¼ 1]. This implies that: sð0; 1Þ ¼ 0.

(b) sðx; yÞbx ¼ sðx; yÞbxby [(b 0) s
�
0; sðx; yÞ

�
4x ¼ s

�
0; sðx; yÞ

�
4x4y]

(c) sðx; yÞ ¼ 1) x ¼ y [(c 0) s
�
0; sðx; yÞ

�
¼ 0) x ¼ y].

(3) The commutativity of sðx; yÞ follows from the commutativity ofb together

with S1, S2, and Ss:

sðx; yÞbsðy; xÞ ¼ sðx; yÞbs
�
sðx; yÞby; sðx; yÞbx

�
¼ sðx; yÞ; and

sðy; xÞbsðx; yÞ ¼ sðy; xÞbs
�
sðy; xÞbx; sðy; xÞby

�
¼ sðy; xÞ:

(4) xa y i¤ sðxby; xÞ ¼ 1 i¤ sðx; x4yÞ ¼ 1; x ¼ y i¤ sðxby; x4yÞ ¼ 1 i¤

sðxby; xÞbsðxby; yÞ ¼ 1 i¤ sðx; x4yÞbsðy; x4yÞ ¼ 1.

A variety which is interpretable in each discriminator variety V in which the

variety L01 is interpretable is next defined.

Definition 2.4. Let SwL01 denote the class of all algebras ðA;b;4; s; 0; 1Þ, with
ðA;b;4; 0; 1Þ a L01, satisfying the following identities:

S1. sðx; xÞ ¼ 1,

S2. sðx; yÞbx ¼ sðx; yÞby,

S3. sðx; yÞ4s
�
0; sðx; yÞ

�
¼ 1,

S4. sðx; yÞbðz14z2Þ ¼
�
sðx; yÞbz1

�
4
�
sðx; yÞbz2

�
,

Ss. sðx; yÞbsðu; vÞ ¼ sðx; yÞbs
�
sðx; yÞbu; sðx; yÞbv

�
.

By Theorem 2.3, SwL01 is a discriminator variety. Theorem 2.3 0 provides
another equational basis for SwL01:

S1 0. s
�
0; sðx; xÞ

�
¼ 0,

S2 0. s
�
0; sðx; yÞ

�
4x ¼ s

�
0; sðx; yÞ

�
4y,

S3 0. sðx; yÞbs
�
0; sðx; yÞ

�
¼ 0,

Sb. s
�
0; sðx; yÞ

�
4ðz1bz2Þ ¼

�
sðx; yÞ4z1

�
4

�
sðx; yÞ4z2

�
,

Ss. s
�
0; sðx; yÞ

�
4sðu; vÞ ¼ s

�
0; sðx; yÞ

�
4s

�
s
�
0; sðx; yÞ

�
4u; s

�
0; sðx; yÞ

�
4v

�
.
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Theorem 2.3 yields now the following:

Theorem 2.5. A variety V interpreting L01 is a discriminator variety i¤ it inter-

prets the variety SwL01, and satisfies the identities Sf (or S
0
f ), for each basic opera-

tion symbol f .

3. The variety SwL01

In this section, every theorem established for the variety SwL01 also holds for

any discriminator variety V interpreting L01 (equivalently, interpreting SwL01).

Other identities holding in SwL01 and therefore also holding in V are given

in the following proposition. It is routine to check that they hold in each

A a SiV.

Proposition 3.1. The following identities hold in the variety SwL01:

S4. sðx; 1Þ4x ¼ x;

S4 0. s
�
0; sð0; xÞ

�
bx ¼ x;

S5. s
�
sðx; yÞ; 1

�
¼ sðx; yÞ;

S5 0. s
�
0; s

�
0; sðx; yÞ

��
¼ sðx; yÞ;

S6. sðxby; 1Þ ¼ sðx; 1Þbsðy; 1Þ;
S6 0. s

�
0; s

�
0; ðx4yÞ

��
¼ s

�
0; sð0; xÞ

�
4s

�
0; sð0; yÞ

�
;

S7. sð0; x4yÞ ¼ sð0; xÞbsð0; yÞ;
S8. s

�
sðx; 1Þ4y; 1

�
¼ sðx; 1Þ4sðy; 1Þ;

S8 0. s
�
0; sðv; xÞby

�
¼ s

�
0; sðv; xÞ

�
4sð0; yÞ.

Proposition 3.2. For any A a SwL01, and v; x; y; z a A, the set fsðv; xÞ; y; zg gen-
erates a distributive sublattice.

Proof. Let A a SiSwL01. As on A sðv; xÞ a f0; 1g, it is obvious that

fsðv; xÞ; y; zg generates a distributive sublattice. Hence the same holds for any

algebra from SwL01. Alternatively, it is readily seen that A satisfies the identity:

S9.
�
sðv; xÞ4y

�
bðy4zÞb

�
z4sðv; xÞ

�
¼

�
sðv; xÞby

�
4ðybzÞ4

�
zbsðv; xÞ

�
,

i.e., the elements sðv; xÞ are neutral. Then the claim follows from [12], pg 140.

r

For shorter notation in what follows, we will write:

s0ðxÞ for sð0; xÞ; s1ðxÞ for sðx; 1Þ; s00ðxÞ for s0s0ðxÞ; s01ðxÞ for s0s1ðxÞ.

496 M. Ramalho



These four unary term operations form a semigroup generated by fs0; s1g as

well as by fs01; s00g, and fs01; s0g.

s0 s1 s00 s01

s0 s00 s01 s0 s1
s1 s0 s1 s00 s01
s00 s0 s1 s00 s01
s01 s00 s01 s0 s1

Proposition 3.3. For each A a SwL01,

s01ðAÞ ¼ s0ðAÞ ¼ s1ðAÞ ¼ s00ðAÞ ¼ fsða; bÞ : a; b a Ag:

Proof. Let A a SwL01. As can be seen by the above table, s01ðaÞ ¼ s0s1ðaÞ,
s0ðaÞ ¼ s1

�
s0ðaÞ

�
, s1ðaÞ ¼ s00s1ðaÞ, for all a a A. Thus,

s01ðAÞJ s0ðAÞJ s1ðAÞJ s00ðAÞJ fsða; bÞ : a; b a Ag:

The equalities hold since, by S5 0, sða; bÞ ¼ s00
�
sða; bÞ

�
¼ s01

�
s0sða; bÞ

�
a s01ðAÞ,

for all a; b a A. r

Theorem 3.4. For any A a SwL01, the algebra

BðAÞ :¼
�
s0ðAÞ;b;4; s0; 0; 1

�

is the largest Boolean ðb;4; s0; 0; 1Þ-subreduct of A.

Proof. Let A a SwL01. Taking into account Proposition 3.3, BðAÞ is closed

underbby S6, it is closed under4by S6 0, and it is closed under s0 by S5 0. So,

BðAÞ is a subalgebra of ðA;b;4; s0; 0; 1Þ. Moreover, by Proposition 3.2, BðAÞ is
a distributive lattice, and the operation s0 is the complementation, by S5 0, S7, and
S3.

Let ðB;4;b; s0; 0; 1Þ be a Boolean subalgebra of ðA;b;4; s0; 0; 1Þ. Then, for

any b a B, s0ðbÞ a B, and b ¼ s0s0ðbÞ a s0ðAÞ. So, BJ s0ðAÞ. r

Proposition 3.5. For any A a SwL01,

(a) s0 ½s01� induces a weak [dual ] pseudocomplementation, and s0ðxÞa s01ðxÞ.
(b) s1 ½s00� induces a universal [existential ] quantifier. Moreover, s00 ¼ s0s1s0, and

s1 ¼ s01s00s01.

Proof. (a) We have s0ðxÞbx ¼ 0, by Remark 2(a); xa y implies s0ðyÞa s0ðxÞ, by
S7; xa s0

�
s0ðxÞ

�
, by S4 0. [Dually for s01.]

497Bounded lattice structured discriminator varieties



(b) We have s1ð1Þ ¼ 1, by S1; s1ðxÞax, by S4; s1
�
s1ðxÞ4y

�
¼ s1ðxÞ4s1ðyÞ,

by S8; s1ðxbyÞ ¼ s1ðxÞbs1ðyÞ, by S6. [Dually for s00.] r

Notice that in BðAÞ, s0 ¼ s01, s1 ¼ s00 ¼ id.

As a consequence of Theorem 3.4, Proposition 3.5 and Remark 1, in §2, we

have:

Corollary 3.6. Let A a SwL01. Then, A is simple i¤ BðAÞ is simple i¤ s00 is a

simple existential quantifier i¤ s1 is a simple universal quantifier.

Theorem 3.7. For a subvariety W of SwL01, the following are equivalent:

(a) s00 ½s1� is an endomorphism of A3b;4;0;14, for each A a W.

(b) s0 ½s01� is a dual endomorphism of A3b;4;0;14, for each A a W.

(c) In each simple algebra of W, 0 ½1� isb-irreducible [4-irreducible].

Proof. (a)) (b) Let A a W. We have s0ð0Þ ¼ 1, and s0ð1Þ ¼ 0, and by S7, for

all a; b a A, s0ða4bÞ ¼ s0ðaÞbs0ðbÞ. Supposing that s00 is an endomorphism we

obtain:

s0ðabbÞ ¼ s0s00ðabbÞ ¼ s0
�
s00ðaÞbs00ðbÞ

�
¼ s0s0

�
s0ðaÞ4s0ðbÞ

�
¼ s00

�
s0ðaÞ4s0ðbÞ

�
¼ s00

�
s0ðaÞ4s00s0ðbÞ

�
¼ s0ðaÞ4s0ðbÞ:

(b)) (c) Let A a SiW, and assume that s0 is a dual endomorphism of

A3b;4;0;14. If 0 ¼ abb, with a; b a Anf0g, then 1 ¼ s0ðabbÞ ¼ s0ðaÞ4s0ðbÞ ¼
040 ¼ 0, a contradiction. Thus 0 isb-irreducible.

(c)) (a) Let us suppose that in every simple algebra of W, 0 isb-irreducible.

As, by Corollary 3.6, s00 is a simple existential quantifier, it is easily seen that s00 is

an endomorphism of A3b;4;0;14. r

The subvariety of SwL01 consisting of all algebras ðA;b;4; s; 0; 1Þ in which

ðA;b;4; 0; 1Þ a D01, and satisfying S1, S2, S3, and Ss will be denoted by SwD01.

We will now focus the bottom of the lattice of subvarieties of SwL01. The

least subvariety of SwL01 is the variety VðS2Þ, generated by the simple algebra

S2 ¼ ðf0; 1g;b;4; s; 0; 1Þ equivalent to B2. As B2 is a primal algebra, the equiva-

lence of S2 and B2 follows from the observation that the negation in B2, �, is the
term operation sð0; xÞ of S2. Obviously, VðS2Þ is the subvariety of SwD01 char-

acterized by the equation sðx; 1Þ ¼ x (or by the equation s
�
0; sð0; xÞ

�
¼ x).

Theorem 3.8. The variety TM ¼VðTÞ is equivalent to the variety VðA4Þ, where
A4 ¼ ðf0; a; b; 1g;b;4; s; 0; 1Þ a SwL01, with a and b atoms.
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Proof. It su‰ces to show that A4 ¼ ðf0; a; b; 1g;b;4; s; 0; 1Þ is equivalent to

T ¼ ðf0; a; b; 1g;b;4;P;D; 0; 1Þ. They have the same bounded lattice reduct and,

as pointed out in §1, the operation s of A4 is a term operation of T:

sðx; yÞ ¼
�
PDðx4yÞ4DðxbyÞ

�
b

�
DP ðx4yÞ4PDP ðxbyÞ

�
:

On the other side, the De Morgan negationP, and the operator D of T are term

operations for A4:

Px ¼
�
x4s0ðxÞ

�
bs01ðxÞ ¼

�
xbs01ðxÞ

�
4s0ðxÞ; DðxÞ ¼ s00ðxÞ: r

Corollary 3.9. The variety LM3 ¼VðL3Þ is equivalent to the variety VðA3Þ,
where A3 ¼ ðf0; a; 1g;b;4; s; 0; 1Þ a SwL01.

Remarks. (1) The four operators in Proposition 3.5 are as follows for TM:

s0ðxÞ ¼PDðxÞ; s00ðxÞ ¼ DðxÞ; s1ðxÞ ¼PDP ðxÞ; s01ðxÞ ¼ DP ðxÞ:

Thus, we obtain

sðx; yÞ ¼
�
s0ðx4yÞ4s00ðxbyÞ

�
b

�
s01ðx4yÞ4s1ðxbyÞ

�
¼

�
s0ðxÞ4s00ðxbyÞ

�
b

�
s0ðyÞ4s00ðxbyÞ

�
b
�
s01ðx4yÞ4s1ðxÞ

�
b
�
s01ðx4yÞ4s1ðyÞ

�
¼

�
s0ðxÞ4s00ðxbyÞ

�
b

�
s0ðyÞ4s00ðxbyÞ

�
b
�
s01ðxÞ4s1ðyÞ

�
b

�
s01ðyÞ4s1ðxÞ

�
:

the last equality, because in the algebra T the following identity holds:

�
s0ðxÞ4s00ðxbyÞ

�
b

�
s01ðx4yÞ4s1ðyÞ

�
¼

�
s0ðxÞ4s00ðxbyÞ

�
b

�
s01ðxÞ4s1ðyÞ

�
:

(2) Taking into account that, for LM3, the operator s00 ¼ D is an endomorphism,

we obtain from (1)

sðx; yÞ ¼
�
s0ðxÞ4s00ðyÞ

�
b

�
s0ðyÞ4s00ðxÞ

�
b
�
s01ðxÞ4s1ðyÞ

�
b
�
s01ðxÞ4s1ðyÞ

�
:

By Theorem 2.5, the variety SwL01 is interpretable into the discriminator

variety MB of monadic Boolean algebras; ð0; 1Þ-switching terms for SiMB were

given in §1.

Theorem 3.10. For each n a N, the variety generated by the simple algebra

ð2n;b;4; s; 0; 1Þ a SwL01 is interpretable in the variety MBn. In particular, the

variety TM is interpretable in the variety MB2.
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Proof. As seen above, ð2n;b;4; s; 0; 1Þ is a reduct of the simple algebra MBn ¼
ð2n;b;4;�;D; 0; 1Þ which generates MBn. By Theorem 3.8, the variety TM is

equivalent to the variety generated by the simple algebra ð22;b;4; s; 0; 1Þ. Hence

the conclusion is obvious. We only point out that the De Morgan negationP is

given by the unary term
�
x4�DðxÞ

�
bDð�xÞ for MB2. r

However the variety MBn is not interpretable in SwL01; hence MB2 is

not equivalent to TM, because L3 cannot be a reduct of any monadic Boolean

algebra.

4. Descriptions of congruences

As recalled in Section 1, any discriminator variety is congruence regular. This

means that for each algebra A and any a a A, y 7! ½a�y defines an order isomor-

phism between ConA and the closure system of all a-cosets f½a�y : y a ConAg,
being y ¼ Yð½a�yÞ the congruence generated by ½a�y.

Throughout this Section V denotes any discriminator variety interpreting the

variety SwL01. We shall present descriptions of congruences on algebras from

these special discriminator varieties, and we shall characterize the 1-cosets and

the 0-cosets.

As was shown in the proof of Theorem 2.3, for A a V and y a ConA,

ðx; yÞ a y )
�
sðx; yÞ; 1

�
a y ,

�
sðx; yÞbz; z

�
a y; for all z a A

) ðx; yÞ a y: ð4:1Þ

From these equivalences we obtain that for any a; b a A:

Yða; bÞ ¼ Y
�
sða; bÞ; 1

�
ð4:2Þ

and, since (4.1) also holds for any y a ConA3b; s4, A3b; s4 ¼ ðA;b; sÞ, we have:

Y3b; s4ða; bÞ ¼ Y3b; s4

�
sða; bÞ; 1

�
: ð4:3Þ

But the description of Yða; bÞ, given in the proof of Theorem 2.3, means that

Yða; bÞ is precisely the congruence generated by
�
sða; bÞ; 1

�
on the 3b4-reduct of

A. Hence, it is also the congruence generated by
�
sða; bÞ; 1

�
on any reduct of A

having reduct A3b4. So, taking into account (4.2) and (4.3), we obtain:

Yða; bÞ ¼ Y
�
sða; bÞ; 1

�
¼ Y3b4

�
sða; bÞ; 1

�
¼ Y3b; s4

�
sða; bÞ; 1

�
¼ Y3b; s4ða; bÞ:

500 M. Ramalho



Dually, by applying s0, we obtain:

ðx; yÞ a Y ,
�
0; s

�
0; sðx; yÞ

��
a y

,
�
z; z4s

�
0; sðx; yÞ

��
a y; Ez a A ð4:4Þ

and the other dual facts summarized in (a) of the following theorem.

Theorem 4.1. Let A a V. Then:

(a) For any a; b a A,

Yða; bÞ ¼ fðx; yÞ a A� A : sða; bÞbx ¼ sða; bÞbyg ¼ Y3b4

�
sða; bÞ; 1

�
¼ Y

�
sða; bÞ; 1

�
¼ Y3b; s4

�
sða; bÞ; 1

�
¼ Y3b;4; s4

�
sða; bÞ; 1

�
¼ Y3b; s4ða; bÞ ¼ Y3b;4; s4ða; bÞ
¼ fðx; yÞ a A� A : s0sða; bÞ4x ¼ s0sða; bÞ4yg ¼ Y344

�
0; s0sða; bÞ

�
¼ Y

�
0; s0sða; bÞ

�
¼ Y34; s4

�
0; s0sða; bÞ

�
¼ Y3b;4; s4

�
0; s0sða; bÞ

�
¼ Y34; s4ða; bÞ:

(b) ½1�Yða; bÞ is the principal filter
�
sða; bÞ

�
¼ fx a A : sða; bÞaxg.

½0�Yða; bÞ is the principal ideal
�
s0sða; bÞ

�
¼ fx a A : xa s0sða; bÞg.

½c�Yða; bÞ ¼ ½sða; bÞbc; s0sða; bÞ4c�.

Proof. (b) Follows immediately from (a). r

Lemma. For any algebra A and any reduct At,

ConA ¼ ConAt i¤ Conp A ¼ Conp At:

Proof. Obviously ConAJConAt. If ConA ¼ ConAt, then Conp A ¼ Conp At.

If Conp A ¼ Conp At, then for any y a ConAt, we also have y a ConA, since y is

the join of principal congruences, and joins in A and At are the same. r

Thus, we have as a consequence of Theorem 4.1(a) together with this Lemma:

Corollary 4.2. Let A a V. Then,

ConA ¼ ConA3b;4; s;0;14 ¼ ConA3b; s;0;14 ¼ ConA34; s;0;14:

The first equivalence in (4.1) and its dual in (4.4) yield, respectively, the follow-

ing descriptions of a congruence y:

y ¼ Yð½1�yÞ ¼ fðx; yÞ a A� A : sðx; yÞ a ½1�yg: ð4:5Þ
y ¼ Yð½0�yÞ ¼ fðx; yÞ a A� A : s0sðx; yÞ a ½0�yg: ð4:6Þ
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For A a V and y a ConA, the 1-coset ½1�y is a filter of A3b4 [the 0-coset ½0�y is

an ideal of A344]. By (4.1) and (4.4), the filter ½1�y and the ideal ½0�y have the fol-

lowing properties:

x a ½1�y , ðx; 1Þ a y ,
�
sðx; 1Þ; 1

�
a y , s1ðxÞ a ½1�y: ð4:7Þ

x a ½0�y , ð0; xÞ a y ,
�
0; s

�
0; sð0; xÞ

��
a y , s00ðxÞ a ½0�y: ð4:8Þ

Thus s1ð½1�yÞJ ½1�y, and s00ð½0�yÞJ ½0�y.

Theorem 4.3. Let A a V. Then, for any y a ConA,

y ¼ Yð½1�yÞ ¼ fðx; yÞ a A� A : sðx; yÞ a ½1�yg ¼ Y3b; s4ð½1�yÞ ¼ Y3b;4; s4ð½1�yÞ

¼ Y3b4ð½1�yÞ ¼ fðx; yÞ a A2 : fbx ¼ fby; for some f a ½1�yg

¼ fðx; yÞ a A2 : s1ð f Þbx ¼ s1ð f Þby; for some f a ½1�yg
¼ Yð½0�yÞ ¼ fðx; yÞ a A� A : s0sðx; yÞ a ½0�yg ¼ Y34; s4ð½0�yÞ ¼ Y3b;4; s4ð½0�yÞ

¼ Y344ð½0�yÞ ¼ fðx; yÞ a A2 : i4x ¼ i4y; for some i a ½0�yg

¼ fðx; yÞ a A2 : s00ðiÞ4x ¼ s00ðiÞ4y; for some i a ½0�yg:

Proof. The two first equalities are (4.5). That y ¼ Y3b; s4ð½1�yÞ ¼ Y3b;4; s4ð½1�yÞ is
a consequence of Corollary 4.2, since Yð½1�yÞ ¼7fa a ConA : ½1�y� ½1�yJ ag.
To show that y ¼ Yð½1�yÞ ¼ Y3b4ð½1�yÞ, we first recall that

Y3b4ð½1�yÞ ¼ fðx; yÞ a A2 : fbx ¼ fby; for some f a ½1�yg:

Then we observe that:

fðx; yÞ a A2 : fbx ¼ fby; for some f a ½1�yg

¼ fðx; yÞ a A2 : s1ð f Þbx ¼ s1ð f Þby; for some f a ½1�yg:

In fact, by (4.7), the second member is contained in the first. Conversely, if

fbx ¼ fby for some f a ½1�y, then s1ð f Þbx ¼ s1ð f Þby, since s1ð f Þa f , and

s1ð f Þ a ½1�y by (4.7).

The identities Sf ensure that

Y3b4ð½1�yÞ ¼ fðx; yÞ a A2 : s1ð f Þbx ¼ s1ð f Þby for some s1ð f Þ a ½1�yg a ConA:

As the only congruence of A having 1-coset ½1�y is Yð½1�yÞ, we must have

Yð½1�yÞ ¼ Y3b4ð½1�yÞ.
The subsequent equalities are proved dually. r
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Definition 4.4. For any A a V, a strong filter or s1-filter [strong ideal or s00-ideal ]

is a filter F [an ideal I ] of A3b4 [A344] such that:

s1ðFÞJF ½s00ðIÞJ I �:

The poset of all strong filters [ideals] of A will be denoted by Fils A [Ids A].

We note that if F is a strong filter, then F is the order filter generated by s1ðFÞ,
since s1ðFÞ is closed underb. Dually for strong ideals.

In the following theorem it is shown that the strong filters [ideals] of A are

precisely the 1-cosets [0-cosets].

Theorem 4.5. Let A a V with BðAÞ its largest Boolean subreduct. Then, for

F JA ½I JA�, the following are equivalent:

(a) F ¼ ½1�y ½I ¼ ½0�y�, for some y a ConA.

(b) F is a strong filter [I is a strong ideal ].

(c) F is the filter of A3b;4;0;14 generated by a filter of BðAÞ [I is the ideal of

A3b;4;0;14 generated by an ideal of BðAÞ].

Proof. (a)) (b) Shown in (4.7).

(b)) (c) Let F be a strong filter of A. Then s1ðF Þ is a filter of BðAÞ, since s1 is
a ðb; 1Þ-endomorphism of A3b;14 with range BðAÞ. Moreover, F is the (order)

filter of A generated by s1ðFÞ. From s1ðF ÞJF we obtain
�
s1ðF Þ

�
JF . Since

for any f a F , we have s1ð f Þa f , we conclude that f a
�
s1ðFÞ

�
. So, F ¼

�
s1ðF Þ

�
.

(c)) (a) The filter F of A generated by a filter F of BðAÞ is the order filter

generated by F , F ¼ fx a A : xax; for some x a Fg. The equivalence relation

on A, defined by

y :¼ fðx; yÞ a A2 : fbx ¼ fby; for some f a Fg:

is compatible with every basic operation of A by the identities Sf . So y a ConA.

Moreover, ½1�y ¼ F , since

ðx; 1Þ a y , bf a F : fbx ¼ f , bf a F : f ax , x a F : r

Theorem 4.6. Let A a V, and BðAÞ be its largest Boolean subreduct. Then, there

is an order isomorphim between the lattice of filters [ideals] of BðAÞ and the lattice

of strong filters [ideals] of A.

Proof. By the proof of Theorem 4.5 (b)) (c), we have an onto mapping

Fil BðAÞ !Fils A

F 7! ½FÞ ¼ fx a A : xax; for some x a Fg
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For any F 1;F 2 a Fil BðAÞ, it is clear that F 1 JF 2 ) ½F 1ÞJ ½F 2Þ. To show

the converse implication, assume that ½F 1ÞJ ½F 2Þ. Then, x a F 1 ) x a ½F 1ÞJ
½F 2Þ ) x2ax, for some x2 a F 2 ) x a F 2. Thus F 1 JF 2. r

By this fact strong filters [ideals] in any algebra A a V have the same proper-

ties as filters [ideals] in Boolean algebras. For instance, we have immediately that

each proper strong filter [ideal] is an intersection of maximal strong filters [ideals].

This could also follow from the congruence regularity and the semisimplicity of A,

since every y a ConAnf‘g is an intersection of maximal congruences.

Theorem 4.7. Let A a V with BðAÞ its largest Boolean subreduct. Then,

ConAGConBðAÞ:

Proof. By the congruence regularity of A and of BðAÞ, together with Theorem 4.5

and Theorem 4.6, we have ConAGFils AGFil BðAÞGConBðAÞ. r

Some of these general results provide, under a di¤erent approach, results for

algebras from MB proved by P. Halmos in [13], results for algebras from LM3

proved by A. Monteiro, in the early sixties of the last century (see Chap. VII of

[20]), and similar results for algebras from TM proved by I. Loureiro in [15] and

[17].

5. 1-Cosets and 0-cosets as deductive systems

Generalizing the Boolean implication, A. A. Monteiro introduced, in 1963, the

notion of a weak implication for algebras from LM3 (see [20]; Ch. VII). This op-

eration, denoted !, is induced by the term DPx4y, which also induces a weak

implication on algebras from TM [15]. The weak implication was extended to

algebras from LMn, n > 3, by R. Cignoli in [7]. Gr. C. Moisil considered in

1942 and 1963, the intuitionistic or Heyting implication for algebras from LMn

which gives for any two elements a, b the greatest element in fz a A : zbaa bg.
As is pointed out in §1, the Heyting implication for LM3, denoted ), is induced

by the terms PDx4y4ðDP xbDyÞ ¼ ðDPx4yÞbðPDx4DyÞ. By Remark

1, in §3, we can write:

x) y ¼
�
s01ðxÞ4y

�
b
�
s0ðxÞ4s00ðyÞ

�
¼

�
�s1ðaÞ4y

�
b

�
�s00ðxÞ4s00ðyÞ

�
;

x! y :¼ s01ðxÞ4y ¼ �s1ðxÞ4y:

We will show that for any discriminator variety V interpreting SwL01 (via

ðb;4; s; 0; 1Þ) the weak implication induced by the term s01ðxÞ4y allows us to

extend to these varieties the characterization of 1-cosets, given for algebras from
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LM3 in [20], for algebras from LMn, n > 3, in [7], and for algebras from TM in

[15].

For A a V, and a; b a A, we shall see in the next proposition that there exists a

greatest element in fz a A : zbaa bg whenever a a BðAÞ; in this case, the great-

est element is a) b ¼ �a4b. This is not the case if a B BðAÞ. Noticing that for

a B BðAÞ, s1ðaÞ < a < s00ðaÞ, and ½s1ðaÞ; s00ðaÞ�BBðAÞ ¼ fs1ðaÞ; s00ðaÞg, we could
consider two term operations as weak implications: s0ðxÞ4y ¼ �s00ðxÞ4y and

s01ðxÞ4y ¼ �s1ðxÞ4y. For A a V, y ¼ b a A, and x ¼ a a BðAÞ, both coincide

with the Heyting implication, so they give the Boolean implication if a; b a BðAÞ.
As s1ðxÞa s00ðxÞ, the weak implication,!, induced by �s1ðxÞ4y is more conve-

nient than the other.

Proposition 5.1. For A a V, and a; b a A, let a! b :¼ s01ðaÞ4b ¼ �s1ðaÞ4b,

and a b :¼ s0ðaÞbb ¼ �s00ðaÞbb. Then

a! b ¼ s1ðaÞ) b ¼ maxfz a A : zbs1ðaÞa bg;
a b ¼ s00ðaÞ( b ¼ minfz a A : ba z4s00ðaÞg:

Proof. To prove that �s1ðaÞ4b ¼ maxfz a A : zbs1ðaÞa bg, first note that:
�
�s1ðaÞ4b

�
bs1ðaÞ ¼

�
�s1ðaÞbs1ðaÞ

�
4
�
bbs1ðaÞ

�
¼ bbs1ðaÞa b:

Now let z a A be such that zbs1ðaÞa b. Then

zbs1ðaÞa b , �s1ðaÞ4
�
zbs1ðaÞ

�
a�s1ðaÞ4b

)
�
�s1ðaÞ4z

�
b
�
�s1ðaÞ4s1ðaÞ

�
a�s1ðaÞ4b

) �s1ðaÞ4za�s1ðaÞ4b

) za�s1ðaÞ4b:

Dually for a b. r

In order to give another characterization of the 1-cosets [0-cosets], we need the

notion of a deductive system, introduced by A. Monteiro in 1963 (see [5]; Ch. 9,

§4).

Definition 5.2. A [dual ] deductive system of an algebra A a V relative to the bi-

nary term operation x! y :¼ s01ðxÞ4y [x y :¼ s0ðxÞby] and a constant 1 [0]

is a subset S ½ ~SS � of A such that:

D1. 1 a S [ ~DD1. 0 a ~SS ];

D2. ðEa a AÞ a a S, a! b a S imply b a S. [ ~DD2. ðEa a AÞ a a ~SS, a b a ~SS

imply b a ~SS:]
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Theorem 5.3. For A a V, and F JA ½I JA�, the following are equivalent:

(a) F is a strong filter [I is a strong ideal ].

(b) F ½I � is a deductive system relative to ! and 1 [ and 0].

Proof. (a)) (b) Let F be a strong filter of A. Then F ¼
�
s1ðF Þ

�
. To show that F

is a deductive system relative to ! and 0, let a a F , and �s1ðaÞ4b a F . Then,

s1ðaÞ a F , and s1ðaÞb
�
�s1ðaÞ4b

�
a F . By Proposition 3.2 and Theorem 3.4, we

obtain s1ðaÞbb a F , which implies b a F .

(b)) (a) Let F be a deductive system of A. Let d a F . As �s1ðdÞ4s1ðdÞ ¼
1 a F by S3, we have s1ðdÞ a F , by D2. Thus F is closed under s1. We show now

that F is a filter, i.e., for d1; d2 a A, d1; d2 a F , d1bd2 a F . Let d1; d2 a F . By

Remark 2(a 0), in §2,

1 ¼ �s1ðd2bd1Þ4ðd1bd2Þ ¼ �s1ðd2Þ4�s1ðd1Þ4ðd1bd2Þ a F

)D2 �s1ðd1Þ4ðd1bd2Þ a F )D2 d1bd2 a F :

If d1bd2 a F , then as �s1ðd1bd2Þ4d1 ¼ 1 a F , and �s1ðd1bd2Þ4d2 ¼ 1 a F ,

we obtain by D2, d1; d2 a F . r

For any A a V, any F a Fils A, and a; b a A, we have seen in Theorem 4.3,

that ða; bÞ a YðFÞ i¤ sða; bÞ a F . For the varieties LM3 and TM, the terms given

for sða; bÞ, in Remarks 1, and 2, in §3, will provide descriptions of congruences in

terms of the weak implication, similar to the one for Boolean algebras in terms of

implication.

Theorem 5.4. For A a LM3, and F a Fils A (i.e. F a deductive system),

YðF Þ ¼ fðx; yÞ : x! y a F ; y! x a F ;Dx! Dy a F ;Dy! Dx a Fg:

Proof. From the description of sðx; yÞ given in Remark 2, in §3, we obtain:

ðx; yÞ a YðFÞ , s0ðxÞ4s00ðyÞ a F & s0ðyÞ4s00ðxÞ a F

& s01ðxÞ4s1ðyÞ a F & s01ðyÞ4s1ðxÞ a F :

Now, it su‰ces to notice that: s0ðxÞ4s00ðyÞ ¼ s00ðxÞ ! s00ðyÞ ¼ Dx! Dy, since

s0ðxÞ ¼ s01s00ðxÞ (see table in §3); s01ðxÞ4s1ðyÞ a F , s01ðxÞ4y a F ,
x! y a F , by the strongness of F , the fact that s1 is an endomorphism, and

s1s01ðxÞ ¼ s01ðxÞ. r

A characterization of congruences in terms of the weak implication on algebras

from TM was proved by A. Figallo in [10]. We can now easily obtain such a

characterization, the second in the following theorem.

506 M. Ramalho



Theorem 5.5. For A a TM, and F a Fils A (i.e. F a deductive system),

YðF Þ ¼ fðx; yÞ : ðx4yÞ ! y a F ; ðx4yÞ ! x a F ;

Dx! DðxbyÞ a F ;Dy! DðxbyÞ a Fg
¼ fðx; yÞ : x! y a F ; y! x a F ;

Dx! DðxbyÞ a F ;Dy! DðxbyÞ a Fg:

Proof. From the two ways of describing sðx; yÞ in Remark 1 in §3, we obtain

ðx; yÞ a YðFÞ , s0ðxÞ4s00ðxbyÞ a F & s0ðyÞ4s00ðxbyÞ a F

& s01ðx4yÞ4s1ðyÞ a F & s01ðx4yÞ4s1ðxÞ a F

, s0ðxÞ4s00ðxbyÞ a F & s0ðyÞ4s00ðxbyÞ a F

& s01ðxÞ4s1ðyÞ a F & s01ðyÞ4s1ðxÞ a F :

As in the proof of Theorem 5.4, we have s0ðxÞ4s00ðxbyÞ ¼ Dx! DðxbyÞ, and
s01ðx4yÞ4s1ðyÞ ¼ s1

�
s01ðx4yÞ4y

�
. So s01ðx4yÞ4s1ðyÞ a F , s01ðx4yÞ4

y a F , ðx4yÞ ! y a F . This proves the first description of YðF Þ.
The second description of YðF Þ is obtained analogously. r

Remarks. The quasi-primal tetravalent modal algebra T has height 2. We point

out that for any variety V generated by a set of quasi-primal algebras with under-

lying bounded lattice of height 2, we would obtain the same results as for TM ¼
VðTÞ. An example of such a variety is the discriminator variety generated by the

diamond M3 with the additional ð0; 1Þ-switching operation s. This will be seen in

a forthcoming paper.

The author would like to thank the anonymous referee who provided two

references concerning the possibility of expressing the discriminator by binary

term functions: [9] for algebras with two constants 0 and 1, and [6] for algebras

with only one constant 0.

In [9], a nontrivial algebra A with two distinct constants 0 and 1 is called a

helau (with respect to 0 and 1) if it has two binary terms4 andb, and a unary

term 0 such that xb1 ¼ x, 0bx ¼ 0 ¼ xb0, x40 ¼ x ¼ 04x, 0 0 ¼ 1, 1 0 ¼ 0. A

helau has the two-element Boolean algebra ðf0; 1g;b; 0; 0; 1Þ as a subreduct. In

that paper, a predicate is any term function with values in f0; 1g; the predicate

equal is our ð0; 1Þ-switching term. By Proposition 1.1 in [9], any discriminator

algebra with distinct constants 0 and 1 is a helau; by Theorem 1.6 (iv), (v) in

[9], for any helau, the existence of a discriminator term is equivalent to the exis-

tence of a predicate equal. We observe that such an equivalence holds for algebras

more general than helaus and algebras having a bounded lattice reduct, namely

for algebras with two distinct constant terms 0 and 1, and two binary operations

4andbsuch that 0bx ¼ 0, 1bx ¼ x, 04x ¼ x ¼ x40.
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In [6], a nontrivial algebra A with a constant 0 is called a 0-semihelau if it has

two binary terms4andbsatisfying xbx ¼ x, 0bx¼ 0 ¼ xb0, x40 ¼ x¼ 04x,

and x4y ¼ 0) x ¼ y. An algebra having a bounded lattice reduct is a 0-

semihelau. By Proposition 1 in [6], for any nontrivial 0-semihelau, the existence

of a discriminator term is equivalent to the existence of two specific binary terms.
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