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Abstract. We consider the Benedicks–Carleson quadratic maps and prove that the tail of
Hyperbolic Times, introduced in [5], decays exponentially fast. This improves a previous
work [14], where subexponential estimates for this tail were obtained and allows to use
the theory developed by Alves et al as another approach to recover statistical properties of
these maps like exponential Decay of Correlations, Large Deviations, Central Limit Theo-
rem, Statistical Stability and continuity of metric entropy.
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1. Introduction

In [14], the author studied statistical properties of the quadratic family of maps

given by faðxÞ ¼ 1� ax2, where a belongs to the Benedicks–Carleson set of pa-

rameters BC, introduced in [9]. Namely, it was obtained the continuous variation

of the SRB measure (Statistical Stability) and continuity of metric entropy within

BC. This was achieved by estimating the tail of Hyperbolic Times. Essentially,

this tail was split into two components, the first corresponding to the points that

do not reach exponential growth of the derivative su‰ciently fast (Expansion Tail )

and the second corresponding to the points whose early iterates went too close to

the critical point (Recurrence Tail ). The main results in [14] assert that the volume

(or Lebesgue measure) of the Expansion Tail decays exponentially fast (Theorem

A) and the volume of the Recurrence Tail falls o¤ subexponentially fast (Theorem

B). This was enough to obtain the Statistical Stability and continuous variation of
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metric entropy, since the results by Alves et al require only polynomial (sum-

mable) tails.

The purpose of this paper is to improve [14], Theorem B and obtain that the

volume of the Recurrence Tail decays exponentially fast, which gives, together

with [14], Theorem A, that the volume of the tail of Hyperbolic Times decays

exponentially fast. We take the opportunity to correct a problem with the combi-

natorics in the proof of [14], Proposition 6.1, which estimates the measure of the

points whose orbits go near the critical point. This a¤ected in particular [14],

Lemma 8.1 and in general the final proofs of [14], Theorems A and B.

Hyperbolic Times were introduced in [1] and have revealed as a useful tool to

study non-uniformly hyperbolic systems. They can be seen as check points at

which the system presents good hyperbolic behaviour and have been used to study

statistical properties such as: the existence of SRB measures ([1], [4]), Decay of

Correlations, Central Limit Theorems ([5], [17]), Statistical Stability, continuous

variation of metric entropy ([7], [2], [6]), Stochastic Stability Stability, ie, robust-

ness of the SRB measures under small random noise ([3]).

The existence of Hyperbolic Times has been shown for systems that present

non-uniformly expanding behaviour in the unstable direction. In the 1-

dimensional setting and in this particular case where the source of non-uniform

hyperbolic behaviour is the presence of a critical point, their existence is a conse-

quence of the following two conditions almost everywhere (a.e.), with respect to

Lebesgue measure (which we denote by Leb):

(NUE) Non-uniform expansion: lim infn!l
1
n

Pn�1
i¼0 log

�� f 0
a

�
f i
a ðxÞ

��� > d, for some

d > 0;

(SRCS) Slow recurrence to the critical set: For every � > 0, there exists g > 0 such

that lim supn!l
1
n

Pn�1
j¼0 �log distg

�
f j
a ðxÞ; 0

�
< �,

where distgðx; yÞ ¼ jx� yj if jx� yja g and distgðx; yÞ ¼ 1 otherwise.

In [5], [17] the authors used Hyperbolic Times to build inducing schemes

like the ones in [23], [24] and showed how the tail of the inducing return times re-

lates with the tail of Hyperbolic Times, introduced in [5] and which we define next.

Let

EaðxÞ ¼ min
n
Nb 1 :

1

n

Xn�1

i¼0

log
�� f 0

a

�
f i
a ðxÞ

��� > d for all nbN
o
;

RaðxÞ ¼ min
n
Nb 1 :

1

n

Xn�1

j¼0

�log distg
�
f j
a ðxÞ; 0

�
< � for all nbN

o
;

which are both defined and finite Leb-a.e. under the assumptions that (NUE) and

(SRCS) hold Leb-a.e. We define the Expansion Tail at time n, as the set of points
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that, up to this time, resist to present exponential growth of the derivative along

their orbits ETðnÞ ¼ fx a I : EaðxÞ > ng; and the Recurrence Tail at time n, as the

set of points that in its early iterates could not be satisfactorily kept way from the

critical point RTðnÞ ¼ fx a I : RaðxÞ > ng. The Tail of Hyperbolic Times at time

n, is just the union of ETðnÞ and RTðnÞ, ie, the set of points:

GðnÞ ¼ fx a I : EaðxÞ > n or RaðxÞ > ng:

We are now in conditions of stating our main results.

Theorem 1.1 (Theorem A of [14]). Assume that a a BC. Then fa satisfies

ðNUEÞ Leb-a.e. Moreover, there are positive real numbers C1 and t1 such that

Leb
�
ETðnÞ

�
aC1e

�t1n, for all n a N.

Theorem 1.2. Assume that a a BC. Then fa satisfies ðSRCSÞ Leb-a.e. Moreover,

there are positive real numbers C2 and t2 such that Leb
�
RTðnÞ

�
aC2e

�t2n, for

all n a N.

Remark 1.3. The constants d in (NUE), �, g in (SRCS), can be chosen uniformly

on BC. Moreover, the constants C1, t1 given by theorem 1.1 and the constants

C2, t2 given by theorem 1.2 do not depend on the parameter a a BC. Thus, we

may say that f faga ABC is a uniform family in the sense considered in [2].

Both theorems easily imply that Leb
�
GðnÞ

�
a const e�tn, for some t > 0,

const > 0 and all n a N. This allows to deduce immediately the following conclu-

sions, which, despite not being new, illustrate what can be obtained from fitting

the Benedicks–Carleson quadratic maps in the theory developed by Alves et al

about Hyperbolic Times. This theory has also been applied to infinite modal

maps to obtain the same conclusions in [8].

Corollary 1.4. The Benedicks–Carleson family of quadratic maps has the following

properties:

(1) each fa admits a unique SRB invariant measure ma which is absolutely continu-

ous with respect to Lebesgue ([9], [10]),

(2) each fa has exponential decay of correlations ([22], [19]),

(3) each fa satisfies a Central Limit Theorem ([22], [19]),

(4) each fa admits an exponential estimate for Large Deviations ([19]),

(5) is Statistically Stable in the strong sense, meaning that the map BC C a 7!
dma=d Leb is continuous in the L1-norm ([14]),

(6) the metric entropy with respect to ma varies continuously within BC ([14]).
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We say that fa has exponential decay of correlations if for every observable

functions j, c in some appropriate functional spaces, there exists C > 0 and

0 < t < 1 such that j
Ð
jc � f n

a dma �
Ð
j dma

Ð
c dmajaCtn; for all n a N: The

Central Limit Theorem holds for fa if for every j in some appropriate functional

space and s > 0, we have ma
� ffiffiffi

n
p

ð1
n

Pn�1
i¼0 j � f i �

Ð
j dmaÞa x

�
! Fðx=sÞ; as

n ! l; where F is the standard Gaussian distribution function. Finally, fa
admits an exponential estimate for large deviations if for ervery j in some appro-

priate functional space and every e > 0, there exists C > 0 and 0 < t < 1 such that

ma
���1

n

Pn�1
i¼0 j � f i �

Ð
j dma

�� > e
�
aCtn, for all n a N. The precise statements

corresponding to (2), (3) and (4) can be found in the cited references.

We remark that the existence of absolutely continuous invariant measures for a

positive Lebesgue measure set of parameters had already been shown in [18], [12].

The proofs of the above properties follow from the exponential volume decay

of the tail of Hyperbolic Times together with: [5], Theorem 2 for (1) and (3), [17],

Theorem 1.1 for (2), [17], Theorem 1.1 and [20], Theorem 2.1 for (4) [2], Theorem

A for (5) and [6], Corollary C for (6).

2. Benedicks–Carleson quadratic maps

In this section we describe succinctly the Benedicks–Carleson quadratic maps and

its main features. These can be found in [9], [10], [21], [13], [14], [15], just to cite a

few, but we refer to [14] for most proofs since the setting and notation is practi-

cally the same.

The Benedicks–Carleson Theorem (see [9] or Section 2 of [10]) states that there

exists a positive Lebesgue measure set of parameters, BC, verifying

there is c > 0 ðcQ log 2Þ such that
��Df n

a

�
fað0Þ

���b ecn for all nb 0; ðEGÞ
there is a small a > 0 such that j f n

a ð0Þjb e�an for all nb 1: ðBAÞ

The condition (EG) is usually known as the Collet-Eckmann condition and it was

introduced in [12].

We define the critical region as the interval ð�d; dÞ, where d ¼ e�D > 0 is cho-

sen small but much larger than 2� a. This region is partitioned into the inter-

vals ð�d; dÞ ¼ 6
mbD

Im; where Im ¼ ðe�ðmþ1Þ; e�m� for m > 0 and Im ¼ �I�m for

m < 0; then each Im is further subdivided into m2 intervals fIm; jg of equal

length inducing the partition P0 of ½�1; 1� into ½�1;�dÞA6
m; j

Im; j A ðd; 1�.
Given J a P, let nJ denote the interval n times the length of J centred at J and

define Um :¼ ð�e�m; e�mÞ, for every m a N.

2.1. Expansion outside the critical region. There is c0 > 0 and M0 a N such

that
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(1) If x; . . . ; f k�1
a ðxÞ B ð�d; dÞ and kbM0, then jDf k

a ðxÞjb ec0k;

(2) If x; . . . ; f k�1
a ðxÞ B ð�d; dÞ and f k

a ðxÞ a ð�d; dÞ, then jDf k
a ðxÞjb ec0k;

(3) If x; . . . ; f k�1
a ðxÞ B ð�d; dÞ, then jDf k

a ðxÞjb dec0k.

While the orbit goes through a free period its iterates are always away from the

critical region which means that the above estimates apply and it experiences an

exponential growth of the derivative. However, it is inevitable that the orbit

of almost every x a ½�1; 1� makes a return to the critical region. We say that

n a N is a return time of the orbit of x if f n
a ðxÞ a ð�d; dÞ. Every free period of x

ends with a free return to the critical region. We say that the return has a depth

m a N if f n
a ðxÞ a Iem. Once in the critical region, the orbit of x initiates a binding

with the critical point.

2.2. Bound period definition and properties. Let b ¼ 14a. For x a ð�d; dÞ de-
fine pðxÞ to be the largest integer p such that j f k

a ðxÞ � f k
a ð0Þj < e�bk, Ek < p.

Then

(1) 1
2 jmja pðxÞa 3jmj, for each x a Im;

(2) jDf p
a ðxÞjb ec

0p, where c 0 ¼ 1�4b

3
> 0.

The orbit of x is said to be bound to the critical point during the period 0a k < p.

We may assume that p is constant on each Im; j. Note that during the bound

period the orbit of x may return to the critical region. These instants are called

bound return times.

2.3. Bookkeeping, essential and inessential returns. A sequence of partitions

P0 0P1 0 � � � is built with the following properties (see [14], Section 4). For

Lebesgue almost every x a I , fxg ¼ 7
nb0 onðxÞ, where onðxÞ is the element of

Pn containing x. For such x there is a sequence t1; t2; . . . corresponding to the

instants when the orbit of x experiences a free essential return situation, which

means Im;k H f ti
a

�
oti�1ðxÞ

�
for some jmjbD and 1a kam2. We have that

onðxÞ ¼ oti�1
ðxÞ, for every ti�1a n < ti and f ti

a

�
otiðxÞ

�
¼ o0

�
f tiðxÞ

�
, except for

the points at the two ends of f ti
a

�
oti�1

ðxÞ
�
for which it may occur an adjoining to

the neighbouring interval. If ti is an essential return situation for x, then it is either

an essential return time for x, which means that there exists mbD and 1a kam2

such that Im;k H f ti
a

�
otiðxÞ

�
H 3Im;k; or an escaping time for x, which is to say

that IðD�1Þ;1 H f ti
a

�
otiðxÞ

�
H ðd; 1� or I�ðD�1Þ;1 H f ti

a

�
otiðxÞ

�
H ½�1;�dÞ, where

IeðD�1Þ;1 is the subinterval of IeðD�1Þ closest to 0.

We remark that every point in o a Pn has the same history up to n, in the

sense that they have the same free periods, return to the critical region simultane-

ously, with the same depth and their bound periods expire at the same time.
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We say that v is a free return time for x of inessential type if f v
a

�
ovðxÞ

�
H 3Im;k,

for some jmjbD and 1a kam2, but f v
a

�
ovðxÞ

�
is not large enough to contain

an interval Im;k for some jmjbD and 1a kam2.

2.4. Distortion of the derivative. The sequence of partitions described above is

designed so that we have bounded distortion in each element of the partition Pn�1

up to time n. To be more precise, consider o a Pn�1. There exists a constant C

independent of o, n and the parameter a such that for every x; y a o,

jDf n
a ðxÞj

jDf n
a ðyÞj

aC: ð1Þ

See [14], Lemma 4.2 for a proof.

2.5. Growth of returning and escaping components. Let t be a return time for

o a Pt, with f t
a ðoÞH 3Im;k for some mbD and 1a kam2. If n is the next free

return situation for o (either essential or inessential) then

j f n
a ðoÞjb ec0qeð1�5bÞjmjj f z

a ðoÞj and if t is essential then j f n
a ðoÞjb ec0qe�5bjmj; ð2Þ

where q ¼ n� ðtþ pÞ. See [14], Lemma 4.1.

Suppose that o a Pt is an escape component. Then, in the next return situa-

tion for o, at time t1, we have that

j f t1
a ðoÞjb e�bD: ð3Þ

See [13] or [15], Lemma 4.2.

3. Depths of bounded and inessential returns

As we have already mentioned, there are three types of returns: essential, bounded

and inessential, whose instants of occurrence we denote by t, u and v respectively.

The usual picture is the following: we start with an essential return at time t with

depth h and bound period pðhÞ. After tþ p the orbit goes into a free period and

then, possibly, enters a cycle of inessential returns, say i inessential returns at times

v1; . . . ; vi, with depths h1; . . . hi with bound periods p1ðh1Þ; . . . ; pkðhiÞ, before a new

essential return occurs at time t 0 > vi þ pi. Of course that after each essential

or inessential return, bounded returns may occur during the respective bound

periods.

We mention that by [14], Lemma 5.3, the length of the cycle is bounded by h,

namely t 0 � ta 5jhj. The purpose of this section is to show that the depths of the
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inessential and bounded returns are also controlled by the depth h of the essential

return that initiated the cycle at time t. We start with two more simple observa-

tions:

(1) The depth of the inessential returns is less than the depth of the essential return

that initiated the cycle, i.e., jhija jhj, for all i ¼ 1; . . . ; i; [14], Lemma 5.1.

(2) The depth of any bounded return is always less than the depth of the re-

turn (essential or inessential) that originated the bound period; [14], Lemma

5.2.

The next two propositions are the cornerstone of the improvement on the esti-

mates that allows us to get the exponential decay of the tail of hyperbolic times.

In the proof of the following proposition we will use a condition known as the free

assumption for the critical orbit. This condition, which was proved by a large

deviations argument in [10], Section 2 (see also [21], condition FAðnÞ), essentially
asserts that the set of Benedicks–Carleson parameters is built in such a way that

the amount of time spent by the critical orbit in bound periods totally makes up a

small fraction of the whole time.

Proposition 3.1. Let t be a free return time (either essential or inessential) for

o a Pt with f t
a ðoÞH 3Ih;k. Let p ¼ pðhÞ be the bound period associated with this

return. Let S1 denote the sum of the depths of all the bound returns plus the depth

of the return that originated the bound period. Then S1aC1h, with constant

C1 ¼ C1ðaÞ.

Proof. Recall that by Section 2.2 (1) we know that 1
2 ha pa 3h. Let x a o. We

say that a bound return is of level i if, at the moment of this bound return, x has

already initiated exactly i bindings to the critical point x0 and all of them are still

active. By active we mean that the respective bound periods have not finished yet.

To illustrate, suppose that u1 is the first time between t and tþ p that the orbit of x

enters UD. Obviously, at this moment, the only active binding to x0 is the one ini-

tiated at time t. Thus, u1 is a bounded return of level 1. Now, at time u1, the orbit

of x establishes a new binding to the critical point which ends at the end of the

corresponding bound period that we denote by p1 which depends on the depth h1
of the bound return in question. During the period from u1 to u1 þ p1 new returns

may occur and their level is at least 2 since there are at least 2 active bindings: the

one initiated at t and the one initiated at u1. If u1 þ p1 < tþ p then new bound

returns of level 1 may occur after u1 þ p1.

We may redefine the notion of bound period so that the bound periods are

nested (see [10], section 6.2). This means that we may suppose that no binding

of level i extends beyond the bound period of level i � 1 during which it was

initiated.
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Taking into account the free assumption condition for the critical orbit we may

assume that in a period of length n a N, the time spent by the critical orbit in

bound periods is at most an (see [21], condition FAðnÞ).
Since, when a point initiates a binding with x0, it shadows the early iterates of

the critical point, the same applies to any of these points x a o bounded to x0.

Thus in the period of time from t to tþ p, the orbit of x can spend at most the

fraction of time ap in bound periods. So if l denotes the number of bound returns

of level 1, u1; . . . ; ul their instants of occurrence, h1; . . . hl their respective depths

and p1; . . . ; pl their respective bound periods, then we have

1

2

Xl
i¼1

hi a
Xl
i¼1

pi a apa 3ah

from where we easily obtain
Pl

i¼1 hi a 6ah. The same argument applies to the

bound returns of level 2 within the i-th bound period of level 1. So if li denotes

the number of bounded returns of level 2 within the i-th bound period of level

1, ui1; . . . ; uili their instants of occurrence, hi1; . . . hili their respective depths and

pi1; . . . ; pili their respective bound periods, then we have

1

2

Xli
j¼1

hij a
Xli
i¼1

pij a api a 3ahi

from where we easily obtain
Pl

i¼1

Pli
j¼1 hij a ð6aÞ2h. Observing that by choice of

a we have 6a < 1, a simple induction argument then yields S1a
Pl

i¼0ð6aÞ
iha

C1h; where C1 ¼ 1
1�6a . r

Proposition 3.2. Let t be an essential return time for o a Pt with Ih;k H
f t
a ðoÞH 3Ih;k. Let p denote the associated bound period. Let S2 denote the sum

of the depths of all the free inessential returns before the next essential return

situation. Then S2aC2h, with constant C2 ¼ C2ðbÞ.

Proof. Suppose that i is the number of inessential returns before the next es-

sential return situation of o, which occur at times v1; . . . ; vi, with respective

depths h1; . . . ; hi and respective bound periods p1; . . . ; pi. Also denote by viþ1 the

next essential return situation of o. For j ¼ 1; . . . i, let sj ¼ f
vj
a ðoÞ. By (2) we

have

js1jb ec0qe�5bjhj and
jsjþ1j
jsjj

b ec0qieð1�5bÞjhi j;
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where q ¼ v1 � ðtþ pÞ, qj ¼ vjþ1 � ðvj þ pjÞ, for j ¼ 1; . . . ; i. Since jsiþ1ja 2 and

jsvþ1j ¼ js1j
Yv
i¼1

jsiþ1j
jsij

;

we get exp
�
c0q� 5bhþ

P i
i¼1

�
c0qi þ ð1� 5bÞhi

��
a e, which implies that

Xi

i¼1

�
c0qi þ ð1� 5bÞhi

�
a 5bhþ 1:

Finally, one easily derives that S2aC2h, where C2 ¼ 5b

1�5b
. r

4. Probability of an essential return reaching a certain depth

Since, as we have seen in the previous section, the depth of the essential returns

plays a prominent role, in this section, we study the probability of these returns

hitting very high depths. We call the attention for the fact that there is a problem

with the combinatorics in [14], Proposition 6.1 and the correct statement is as fol-

lows.

For each x a I , let unðxÞ denote the number of essential return situations of

x between 1 and n, snðxÞ be the number of those which are actually essential return

times and Sn the number of the latter that correspond to deep essential returns

of the orbit of x, i.e, with return depths above a threshold YbD. Observe that

unðxÞ � snðxÞ is the exact number of escaping situations of the orbit of x, up to n.

Given the integers 0a sa 2n=Y, sa ua n and the s integers g1; . . . ; gs, each

greater than or equal to Y, we define the event:

Au; s
g1;...; gs

ðnÞ ¼ x a I : unðxÞ ¼ u;SnðxÞ ¼ s and the depth of the i-th deep

essential return is gi for all i ¼ 1; . . . ; s

� �
:

Remark 4.1. Observe that the upper bound 2n=Y for the number of deep essen-

tial returns up to time n derives from the fact that each deep essential return

originates a bound period of length at least Y=2 (see Section 2.2) and no essential

return can occur during bound periods.

Proposition 4.2. Given the integers 0a sa 2n=Y and sa ua n, consider s inte-

gers g1; . . . ; gs, each greater than or equal to Y. If Y is large enough, then

Leb
�
Au; s

g1;...;gs
ðnÞ
�
a

u

s

	 

Exp

n
�ð1� 6bÞ

Xs
i¼1

gi

o
:
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See [16], Proposition 5.2, for a proof.

Fix n a N, the integers 1a sa 2n=Y, sa ua n and ja s. Given an integer

rbY, consider the event

A
u; s
r; j ðnÞ ¼

x a I : unðxÞ ¼ u;SnðxÞ ¼ s and the depth of the j-th deep

essential return is r

� �
:

Corollary 4.3. If Y is large enough, then

Leb
�
A

u; s
r; j ðnÞ

�
a

u

s

	 

e�ð1�6bÞr:

Proof. Since A
u; s
r; j ðnÞ ¼ 6ribY

iAj

Au; s
r1;...;rj�1;r;rjþ1;...;rs

ðnÞ, then by Proposition 4.2 we

have

Leb
�
A

u; s
r; j ðnÞ

�
a

u

s

	 

e�ð1�6bÞr

�Xl
h¼Y

e�ð1�6bÞh
�s�1

a
u

s

	 

e�ð1�6bÞr;

as long as Y is su‰ciently large so that
Pl

h¼Y e�ð1�6bÞha 1. r

Remark 4.4. Observe that the bound for the probability of the event Au; s
r; j ðnÞ does

not depend on the ja s chosen.

Remark 4.5. Observe that Proposition 4.2 and Corollary 4.3 also apply when

Y ¼ D in which case we have Sn ¼ sn.

5. Non-uniform expansion

The proof of Theorem 1.1 follows the one in [14], Theorem A except for the nec-

essary adjustments due to the changes in the estimates given by Proposition 4.2.

So, following the strategy in [14], Section 3, the proof of Theorem 1.1 reduces to

show that for some constants D1; t1 > 0, eventually depending on a, b and D, we

have Leb
�
E1ðnÞ

�
aD1e

�t1n, where

E1ðnÞ ¼ fx a I : bi a f1; . . . ; ng; j f i
a ðxÞj < e�ang: ð4Þ

In fact, one realizes that fx a I : EaðxÞ > kgH6
nbk

E1ðnÞ. The idea is that we

have exponential growth of the derivative during free periods and even at the end

of the bound periods. Besides, just after the serious setbacks at the returns we can

count on (EG) to regain growth of the derivative. Hence, the crucial thing to do is
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to make sure that the cut o¤ at the returns is not that serious which is the case for

points in I � E1ðnÞ.
In this section we consider that the threshold Y ¼ D. Also remember that

unðxÞ � snðxÞ is the exact number of escaping situations the orbit of x goes through

until time n. We define the following events:

Au; s
r ðnÞ ¼ x a I : unðxÞ ¼ u; snðxÞ ¼ s and there is one essential return

reaching the depth r

� �
;

for fixed n a N, sa n and rbD;

ArðnÞ ¼ fx a I : bta n : t is essential return time and j f t
a ðxÞj a Irg;

for fixed n and rbD. Now, because Au; s
r ðnÞ ¼ 6s

j¼1 A
u; s
r; j ðnÞ, by Corollary 4.3, we

have

Leb
�
Au; s

r ðnÞ
�
a
Xs
j¼1

Leb
�
A

u; s
r; j ðnÞ

�
a s

u

s

	 

e�ð1�6bÞr: ð5Þ

Observing that ArðnÞ ¼ 62n=D

s¼1
6n

u¼s
As

rðnÞ, then by (5) we get

Leb
�
ArðnÞ

�
a
X2n=D
s¼1

Xn
u¼s

Leb
�
Au; s

r ðnÞ
�
a
X2n=D
s¼1

Xn
u¼s

s
u

s

	 

e�ð1�6bÞr

a ne�ð1�6bÞr
X2n=D
s¼1

s
n

s

	 

a

4n3

D

n

2n=D

	 

e�ð1�6bÞr:

Using the Stirling formula, if we choose D large enough we have

n

2n=D

	 

a const 1þ

2
D

1� 2
D

 !
1þ

1� 2
D

2
D

 !ð2=DÞ=ð1�2=DÞ
0
@

1
A
ðn�2n=DÞ

a const ehðDÞn;

where hðDÞ ! 0, as D ! l. The last inequality derives from the fact that each

factor in the middle expression can be made arbitrarily close to 1 by taking D suf-

ficiently large.

Since, from Section 3, we know that the depths of inessential and bounded

returns are not greater than the depth of the essential return preceding them, we

have for all large n,

E1ðnÞ ¼ fx a I : bi a f1; . . . ; ng; j f i
a ðxÞj < e�angH 6

l

r¼an

ArðnÞ:
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Consequently, taking t1 ¼ ð1�6bÞa
4 and D large so that hðDÞa ð1�6bÞa

2

Leb
�
E1ðnÞ

�
a const

4n3

D
ehðDÞn

Xl
r¼an

e�ð1�6bÞr

a const
4n3

D
ehðDÞne�ð1�6bÞan

a const e�t1n:

6. Slow recurrence to the critical set

We define for a point x a I and n a N,

TnðxÞ ¼
1

n

Xn�1

j¼0

� log distg
�
f j
a ðxÞ; 0

�
; ð6Þ

where g ¼ e�Y is the same of condition (SRCS). We note that the only points of

the orbit of x that contribute to the sum in (6) are those considered to be deep re-

turns with depth above the threshold YbD, which is to be determined below. Let

FnðxÞ ¼
PSn

i¼1 hi; where Sn is the number of essential returns with depths above Y

that occur up to n and hi their respective depths. Using Propositions 3.1 and 3.2

we get

TnðxÞa
C3

n
FnðxÞ; ð7Þ

where C3 ¼ C3ða; bÞ ¼ ðC1 þ C1C2Þ.
For every n a N, let E2ðnÞ ¼ fx a I : TnðxÞ > �g. We will show that for all

n a N and every given �, we may choose a small g ¼ e�Y such that

LebfE2ðnÞgaLeb x : FnðxÞ >
�n

C3

� �
a const e�t2n;

for some t2 ¼ t2ð�;YÞ > 0. We will do this through a large deviation argument

for which we start by estimating the moment generating function of Fn. In what

follows Eð�Þ denotes expectation with respect to Leb.

Lemma 6.1. Take 0 < ta
1�6b
3 . If Y is su‰ciently large, then there exists

N a N such that for all nbN we have Eðe tFnÞa ehðYÞn. Moreover hðYÞ ! 0, as

Y ! l.
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Proof.

Eðe tFnÞ ¼ Eðe tT
s

i¼1 hiÞ ¼
X

u; s; ðr1;...;rsÞ
e tT

s

i¼1 ri Leb
�
Au; s

r1;...;rs
ðnÞ
�

a
X

u; s; ðr1;...;rsÞ
e tT

s

i¼1 ri
u

s

	 

e�3tT

s

i¼1 ri ; by Proposition 4:2

a
X
u; s;R

u

s

	 

zðs;RÞe�2tR;

where zðs;RÞ is the number of integer solutions of the equation x1 þ � � � þ xs ¼ R

satisfying xi bY for all i. We have

zðs;RÞaafsolutions of x1 þ � � � þ xs ¼ R; xi a N0g ¼ Rþ s� 1

s� 1

	 

:

Using the Stirling formula, we have

Rþ s� 1

s� 1

	 

a const

ðRþ s� 1ÞRþs�1

RRðs� 1Þs�1
:

So, if we choose Y large enough we have

zðs;RÞa const1=R 1þ s� 1

R

	 

1þ R

s� 1

	 
ðs�1Þ=R
 !R

a e tR:

The last inequality derives from the fact that sYaR, and so each factor in the

middle expression can be made arbitrarily close to 1 by taking Y su‰ciently

large. Hence,

Eðe tFnÞa
X
u; s;R

u

s

	 

e tRe�2tR

a
X
u; s;R

u

s

	 

e�tR

a
X
u; s

u

s

	 

;

for Y su‰ciently large. Now, we have

X
u; s

u

s

	 

a
X2n=Y
s¼1

Xn
u¼s

u

s

	 

a n

X2n=Y
s¼1

n

s

	 

a n

X2n=Y
s¼1

n
2n
Y

	 

a

2n2

Y

n
2n
Y

	 

:
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Using the Stirling formula, if we choose Y large enough we have

n

2n=Y

	 

a const 1þ

2
Y

1� 2
Y

 !
1þ

1� 2
Y

2
Y

 !ð2=YÞ=ð1�2=YÞ
0
@

1
A
ðn�2n=YÞ

a const eh
�ðYÞn;

where h�ðYÞ ! 0, as Y ! l. The last inequality derives from the fact that each

factor in the middle expression can be made arbitrarily close to 1 by taking Y suf-

ficiently large. This means that we may take N ¼ NðYÞ a N su‰ciently large so

that for all nbN we have Eðe tFnÞa ehðYÞn; where hðYÞ ! 0, as Y ! l. r

If we take t ¼ 1�6b
3 and Y large enough so that t2 ¼ t�

C3
� hðYÞ > 0, then, using

Markov–Tchebychev’s inequality and Lemma 6.1, we have

Leb Fn >
�n

C3

	 

a e�tð�n=C3ÞEðe tFnÞa e�t�n=C3ehðYÞn

a e�t2n;

for any n > N2. Consequently, LebfE2ðnÞga const e�t2n, which implies thatP
nbk Leb

�
E2ðnÞ

�
a const e�t2k. Hence, applying Borel Cantelli’s lemma, we get

LebðE2Þ ¼ 0, where E2 ¼ 7
kb16nbk

E2ðnÞ and finally conclude that (SRCS)

holds on the full Lebesgue measure set I � E2: Observe that fx a I : RaðxÞ > kg
H6

nbk
E2ðnÞ, and thus, for all n a N,

Leb
�
fx a I : RaðxÞ > ng

�
a const e�t2n:
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