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Abstract. This note extends the classical theorem of Minkowski on lattice points and con-
vex bodies in Rn to 2-step simply connected nilpotent Lie groups with a Q-structure. This
includes all groups of Heisenberg type. More generally (and more naturally), it works for
any simply connected nilpotent Lie group with a Q-structure whose Lie algebra admits a
grading of length 2. Here a new invariant associated with the grading occurs which we
call the degree. It explains why some directions are more equal than others.
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In this note we extend the classical theorem of Minkowski on convex bodies in Rn

(see for example Chapter 8 of [1]) to simply connected nilpotent Lie groups, G,

with a Q-structure whose Lie algebra, g, admits a length 2 grading. This includes

all groups of Heisenberg type. A new invariant associated with the grading occurs

which we call the degree. This note is a continuation of a program, initiated in

[10], of extending classical theorems on lattices in Euclidean space to more general

groups. For another generalization of Minkowski’s theorem to certain locally

compact abelian groups see [9].

A Lie algebra g is said to admit a grading (see [4]) if there is a finite family of

subspaces V1; . . . ;Vr with g ¼ V1a � � �aVr satisfying ½Vi;Vj�JViþj for all i, j.

The integer r is its length. Of course if g is abelian, then we can just take g itself as

the sole V . Another example of a graded Lie algebra is the Heisenberg algebra, or

more generally any 2-step nilpotent algebra, g. Here one takes V1 to be any vector

space complement to the center, zðgÞ ¼ V2. Since ½V1;V1�J zðgÞ, this is a grading.
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If g is a graded Lie algebra, define for t a R�,

atðv1; . . . ; vrÞ ¼ ðtv1; t2v2; . . . ; trvrÞ:

We leave to the reader the easy check that each at is a Lie algebra automor-

phism of g. For t ! 0 these are the so called shrinking automorphisms (see [8]).

We note that because of these automorphisms, the theorem of [8] implies that if g

admits a grading it must be nilpotent.

The degree of a graded Lie algebra, g (or the associated real Lie group) is

defined by

degðgÞ ¼
Xr

1¼1

i dimVi:

So, for example, if g is abelian, then degðgÞ ¼ dimðgÞ, while if g is 2-step nilpo-

tent, degðgÞ ¼ dimðgÞ þ dim
�
zðgÞ

�
.

Of course a given nilpotent Lie algebra may have several gradings. For exam-

ple, if g is abelian one can take a basis, fX1; . . . ;Xng, of g and Vi the line through

Xi. Then g is the direct sum of the Vi and since ½Vi;Vj� ¼ ð0Þ, this is in Viþj. Here

deg ¼
Pn

i¼1 i ¼
nðnþ1Þ

2 which is always bigger than n ¼ dimðgÞ, unless n ¼ 1. As we

shall see, our extension of Minkowski’s theorem, below, will be optimal when the

grading produces a degree that is minimal.

Finally, we define a homogeneous norm on a graded Lie algebra g as a func-

tion, k � k : g ! R, satisfying the following conditions.

(1) k � kb 0 and is 0 only at 0.

(2) kXk ¼ k�Xk for all X a g.

(3) katðXÞk ¼ jtj kXk, for all t a R and X a g.

(4) kX þ Yka kXk þ kYk for all X and Y a g.

Given a homogeneous norm, k � k we have open and closed ‘‘balls’’ centered at

the origin: BðcÞ ¼ fX a g : kXk < cg and BðcÞ� ¼ fX a g : kXka cg. Evidently

these are symmetric and have the same volume. We now calculate vol
�
BðcÞ

�
as a

function of c > 0.

Proposition 1. For a ball BðtÞ centered at 0 in g, vol
�
BðtÞ

�
¼ tdegG vol

�
Bð1Þ

�
.

More generally, vol
�
BðtcÞ

�
¼ tdegG vol

�
BðcÞ

�
.

Proof. Observe that for all t; c > 0 we have at
�
BðcÞ

�
¼ BðtcÞ. Hence vol

�
BðtcÞ

�
¼ jdet dðatÞj vol

�
BðcÞ

�
. But jdet dðatÞj ¼ tn1 � t2n2 � . . . � trnr ¼ tn1þ2n2þ���þrnr ¼ tdegG.

Thus vol
�
BðtcÞ

�
¼ tdegG vol

�
BðcÞ

�
. Taking c ¼ 1 gives the first conclusion. r

542 M. Moskowitz



Definition 2. We shall say a closed ball BðcÞ� is convex in the sense of shrinking

automorphisms if given X and Y a BðcÞ�, then asðXÞ þ a1�sðYÞ a BðcÞ� for all

s a ½0; 1�.

Proposition 3. Balls in k � k centered at 0 are convex in the sense of shrinking auto-

morphisms.

Proof. Suppose kXk and kYk are botha c and 0a sa 1. Then

kasðXÞ þ a1�sðYÞka kasðXÞk þ ka1�sðYÞk
¼ jsj kXk þ j1� sj kYka scþ ð1� sÞc ¼ c: r

We now compare volumes in G versus g. Let G be a simply connected nilpo-

tent Lie group. Then G is unimodular so we can just speak of Haar measure. The

center ZðGÞ of G is connected and has positive dimension. Using induction on

dimG, and the formula
Ð
G
dg ¼

Ð
G=ZðGÞ dg

� Ð
ZðGÞ dz shows that Haar measure, m,

is Lebesgue measure in appropriate global coordinates. A well-known formula

for the derivative of the exponential map of a Lie group is:

dðexpÞX ¼
Xl
n¼0

ð�1Þn adn
X

ðnþ 1Þ! :

Because G is nilpotent each adX is simultaneously nil-triangular, and this

analytic function is actually a polynomial. Hence dðexpÞX is unipotent and

det
�
dðexpÞX

�
C 1. Since G is simply connected and nilpotent, exp : g ! G is a

global di¤eomorphism [5] and because det
�
dðexpÞx

�
C 1, the change of variable

formula for multiple integrals tells us that if S is a measurable set in g, then

m
�
expðSÞ

�
¼

Ð
S

��det�dðexpÞx��� dn ¼ nðSÞ, where n is Lebesgue measure on the Eu-

clidean space, g. Thus

Corollary 4. If BðcÞ� is a ball centered at 0 in g, then for all c > 0,

m
�
exp

�
BðcÞ�

��
¼ n

�
BðcÞ�

�
:

In general a simply connected nilpotent group G might not have any lattices at

all so we shall have to assume G contains a lattice, G. By this we mean G is a dis-

crete subgroup of G and G=G is compact. As G is simply connected and nilpotent

the well known result of Malcev [6] tells us G contains a lattice if and only if g

has a Q-structure. We call a lattice G in a simply connected nilpotent group a

log-lattice if logðGÞ is a lattice in g, where log denotes the inverse of exp. In [7] it

is proved that if G has a lattice it must have a log lattice. In fact if G is any lattice

in G, then G sits in between two log lattices, G1 JGJG2.
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Now we examine the details behind the classical Minkowski theorem. Let G�

be a log-lattice in G and G ¼ logðG�Þ. Suppose vol
�
BðcÞ�

�
b 2degG volðG=G�Þ.

Let p : g ! g=G. There are two possibilities: either p is injective on a1=2
�
BðcÞ�

�
¼ Bð12 cÞ

�, or it is not. In the latter case there must be a gA 0 so that

gþ x a Bð12 cÞ
� and x a Bð12 cÞ

�. But then using symmetry and subadditivity of

balls we see gþ x� x ¼ g a Bð12 cÞ
� þ Bð12 cÞ

� JBðcÞ�. Thus g is a non trivial lat-

tice point in BðcÞ�.
We will show that the other alternative, namely that p is injective on

Bð12 cÞ
�, is impossible. For if this were so, p would be injective on Bð12 cÞ. Now

vol
�
Bð12 cÞ

�
¼ vol

�
p
�
Bð12 cÞ

��
a volðg=GÞ. But since vol

�
BðcÞ

�
b 2degðgÞ volðg=GÞ,

we know by Proposition 1 that vol
�
p
�
Bð12 cÞ

��
b volðg=GÞ. That is, they are

equal. It follows that p restricted to this set is surjective. For if the image were

smaller, since g=G is of finite (regular) measure, there would be an open set of

positive measure left out, a contradiction. Because p
��
Bð12 cÞ

��
¼ g=G it follows

g ¼ 6
g AG gþ Bð12 cÞ. Since p is also injective and G is a subgroup of g the union

is disjoint. This violates the connectedness of g and proves,

Theorem 5. Let G be a simply connected nilpotent Lie group with a Q-structure

whose Lie algebra admits a grading and G be a log-lattice in G. Let k � k be

any homogeneous norm on g and BðcÞ� be a closed ball in this norm. If

vol
�
BðcÞ�

�
b 2degG volðG=GÞ, then BðcÞ� contains a non-trivial lattice point.

In particular, by Proposition 1, BðcÞ� hits a non-trivial lattice point if

cb 2
�
volðG=GÞ
volðBð1ÞÞ

�1=degG
.

This concludes our treatment of the general Minkowski theorem based on a

homogeneous norm. However, we haven’t yet seen an example of such a norm.

Now a graded Lie algebra, g, possesses natural candidate for a homogeneous

norm as follows:

For X ¼ ðv1; . . . ; vrÞ let

kXk ¼ ðkv1k2r1 þ kv2k2r�2
2 þ � � � þ kvrk2r Þ

1=2r;

where k � ki is the Euclidean norm on each Vi. (Henceforth we shall suppress the

subscript.)

We leave to the reader to check that this norm has properties (1) and (2) above

and that property (3) holds if and only if ra 2. Hence when r ¼ 2 it possesses all

the properties of a homogeneous norm save subadditivity. Of course when r ¼ 1

this is just the Schwarz inequality.

Proposition 6. When r ¼ 2, kX þ Yka kXk þ kYk.
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Our proof below consists of a sequence of equivalent inequalities terminating

with one which is self evidently correct.

Proof. Let X ¼ ðv; zÞ and Y ¼ ðw; zÞ. Then X þ Y ¼ ðvþ w; zþ zÞ and, taking

4th powers, what we have to prove is

kvþ wk4 þ kzþ zk2a ðkXk þ kYkÞ4:

Applying the binomial theorem it is su‰cient to show

kvþ wk4 þ kzþ zk2a kvk4 þ kzk2 þ kwk4 þ kzk2

þ 4ð�Þ3=4ð��Þ1=4 þ 6ð�Þ1=2ð��Þ1=2 þ 4ð�Þ1=4ð��Þ3=4;

where � ¼ kvk4 þ kzk2 and �� ¼ kwk4 þ kzk2, respectively.
Expanding the left side, applying the Schwarz inequality to the two norms, and

cancelling appropriate terms yields

6kvk2kwk2 þ 4kvk3kwk þ 4kvk kwk3 þ 2kzk kzk

a 4ð�Þ3=4ð��Þ1=4 þ 6ð�Þ1=2ð��Þ1=2 þ 4ð�Þ1=4ð��Þ3=4:

Estimating the first and last terms on the right by taking z and z ¼ 0 and can-

celling the second and third terms on the left which they respectively dominate

gives us after dividing by 2

3kvk2kwk2 þ kzk kzka 3ð�Þ1=2ð��Þ1=2:

Now square both sides again getting

9kvk4kwk4 þ 6kvk2kwk2kzk kzk þ kzk2kzk2a 9ðkvk4 þ kzk2Þðkwk4 þ kzk2Þ:

Then multiplying the right side out and again making appropriate cancella-

tions gives,

6kvk2kwk2kzk kzka 9kvk4kzk2 þ 9kwk4kzk2 þ 8kzk2kzk2:

Evidently this inequality is true if any of the norms involved is zero. Hence we

may assume they are all positive. Discarding the term involving 8 and dividing

yields,

6a 9 tþ 1

t

� �

where t ¼ kvk2kzk
kwk2kzk

> 0 and since tþ 1
t
b 2, this is true. r
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Our results apply, for example, to the Lie groups of Heisenberg type since they

are all simply connected and 2-step nilpotent. Moreover, by [3] they each have a

Q-structure. Hence

Corollary 7. Our extension of the Minkowski theorem holds for Lie groups of Hei-

senberg type.

In particular, this is so for the N-part of the Iwasawa decomposition of any real

rank 1, non-compact, simple group (see [2]).
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