Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 68, Fasc. 1, 2011, 1-17 © European Mathematical Society
DOI 10.4171/PM/1878

Denseness of ergodicity for a class of
volume-preserving flows

Mario Bessa* and Jorge Rocha

(Communicated by José Ferreira Alves)

Abstract. We consider the class of C! partially hyperbolic volume-preserving flows with
one-dimensional central direction endowed with the C!'-Whitney topology. We prove
that, within this class, any flow can be approximated by an ergodic C? volume-preserving
flow and so, as a consequence, ergodicity is dense.
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1. Introduction

To find the foundations of ergodic theory we must go back to the nineteen century
and to the remarkable work of L. Boltzmann. In the context of the dynamic
theory of gases he formulated a principle fundamental in statistical physics—the
ergodic hypothesis. In roughly terms, this principle says that time averages equal
space averages at least for typical points. This principle can be formalized by say-
ing that the y-invariant flow ¢’ : M — M must satisfy the following equality

im 1 [ o) = ) duca),

t—+ow [ 0

for u-a.e. x € M and any continuous observable /' : M — R. Another equivalent
definition of ergodicity says that any ¢’-invariant set, for all ¢, must have zero or
full y-measure.

A central question is to decide if a given system (flow or diffeomorphism) is
ergodic and, even more, if the system is stably ergodic, that is it remains ergodic
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after small perturbations. It is well known that there are examples of open sets of
systems such that

e all the elements of the open set are ergodic (Anosov [1], examples with hyper-
bolic behavior),

e there are no ergodic systems in the open set (KAM theory, see for instance
[24], examples with elliptical behavior).

These examples are far from a complete description of the situation so it is rel-
evant to obtain properties of systems that assure ergodicity or stable ergodicity. In
this context accessibility and partial hyperbolicity have played an important role in
the development of this theory.

Based on results related with this central question Pugh and Shub conjectured
that, in broad terms, partial hyperbolicity should guarantee denseness of stable
ergodicity among conservative systems [19]. For related results we refer the reader
to the survey [22] and to the book [8] and the references there in.

In the context of partially hyperbolic discrete time systems which preserves
a symplectic form, Avila, Bochi and Wilkinson [4], proved that ergodicity is
C!-generic.

We also mention the recent and remarkable results of Burns and Wilkinson
[13] and of F. Rodriguez-Hertz, M. Rodriguez-Hertz and Ures [23] in the discrete
time setting. Despite the fact that their results are more general (in the discrete
case) than the one we get (for the continuous case), we observe that our approach
is more direct, and to obtain the equivalent of their results it will be necessary to
transpose or adapt to the framework of flows all the machinery developed there.

Settling the Pugh and Shub conjecture Bonatti, Matheus, Viana and Wilkinson
[9] proved that there exists a C' open and dense subset, U, of the partially
hyperbolic and volume-preserving diffeomorphisms with one-dimensional central
bundle, such that the C? diffeomorphisms of U are ergodic. In ([23], Theorem A
and Theorem B) is obtained a generalization of the previous result to the C" set-
ting, r > 2. These results did not allow to deduce denseness of ergodic systems
among the C! partially hyperbolic and volume-preserving diffeomorphisms with
one-dimensional central bundle because it was unknown whether the C" diffeo-
morphisms were C'-dense in the set of C! volume-preserving diffeomorphisms.
However, recently Avila [3] announced the proof of the C'-density of C*
volume-preserving diffeomorphisms among C! volume-preserving diffeomor-
phisms.

In this paper, we obtain the counterpart of their result for the continuous-time
setting, considering the space of C! partially hyperbolic divergence-free vector
fields, PHlﬂ(M ) (where u denotes the Lebesgue measure), endowed with the usual
Whitney topology. In this context, combining our result with a theorem of Zuppa
[25], we obtain that ergodic vector fields are C'-dense.
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Let us now state the fundamental result of this article.

Theorem 1. Ler X € P’H;,(M ) be a vector field with one-dimensional central direc-
tion and V be an arbitrary neighborhood of X in the C'-Whitney topology. There
exists a C' open set U = V such that any C? vector field Z € U N PH;I(M) is
ergodic.

We point out that by a result of Zuppa [25] the subset of C? divergence-free
vector fields is C'-dense in the space of C! divergence-free vector fields. In partic-
ular U N P’Hj(M ) is nonempty, where I/ is the set given by Theorem 1.

This theorem has a global formulation. In fact define

A= U (U uwm).

XeP “VeNy

where Ny denotes the set of all neighborhoods of X, P is the subset of vector
fields of PH;(M ) having unidimensional central direction, and /() is the open
set given by the theorem applied to the pair X, #. The set An P is open and
dense in P and if Z € A P is of class C? then Z is ergodic. In particular ergo-
dicity is dense in P.

One of the steps of the proof of the theorem consists in a continuous time ver-
sion of (23], Theorem A) and as a consequence we obtain the following corollary.

Corollary 1. There exists an open and dense subset T < PH}I(M ) such that X is
transitive, for all X € T.

We observe that, in [6], the first author proved that the elements of a residual
subset of the C'-divergence-free vector fields are topological mixing.

This paper is organized as follows. In Section 2 we introduce some definitions
and results. In Section 3 we obtain the main theorem as a consequence of another
three theorems. In Sections 4, 5 and 6 we explain how these three results are
obtained. Corollary 1 is proved in Section 5.

2. Preliminaries and basic results

Let M be a compact, connected and boundaryless smooth Riemannian manifold,
with dimension 7 > 4, and let x4 denote the Lebesgue measure induced by a fixed
volume form on M. We say that the flow ¢ is volume-preserving if ¢’ is a volume-
preserving diffeomorphism for all ¢ € R.

There exists a natural correspondence between flows and vector fields. Clearly
given a C” vector field X : M — TM the solution of the equation x’ = X'(x) gives
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rise to a C” flow, ¢, by the other side given a C” flow we can define a C’~! vector
field by X,,(x) = d(”c;fx) | .o+ Observe that, by Liouville formula, a flow ¢ is volume-
preserving if and only if the corresponding vector field, X,, is divergence-free.

Let X" (M) denote the space of C” vector fields and we consider the usual C*
Whitney topology on this space. Let Per(X) denote the set of closed orbits of the
flow py.

Given a vector field X we denote by Sing(X) the set of singularities of X, say
the points x € M such that X(x) = 0. Let R := M\Sing(X) be the set of regular
points. Given x € R we consider its normal bundle N, = X (x)l c T.M and
define the associated linear Poincaré flow by PX(x):= [y () © Dpy(x) where
Iy () 0 Ty M — Nyt (v is the projection along the direction of X (py(x)). A
PX-invariant splitting N = N' @ - -- @ N* is called a /-dominated splitting for the
linear Poincaré flow if there exists /€ N such that, for all xe M and
0<i<j<k, wehave

1P ()
m(PX(x)lx;)

)

N —

<

where m(-) denotes the co-norm of an operator, that is m(4) = ||[4~"[~". We
say that the subbundle N' is hyperbolic if there exists k € N such that either
| (P (x) - u)71 || < 1/2 (expanding), for all x € M and any unit vector u € N'(x),
or ||P{¥(x) - u|| < 1/2 (contracting), for all x € M and any unit vector u € N’(x).

Given a vector field X, let A = M\Sing(X) be a ¢/ -invariant set. We say that
X is (uniformly) partially hyperbolic for the linear Poincaré flow on A if there exists
a P,X -invariant dominated splitting N = N*@ N @ N* in A such that N* is
hyperbolic expanding and N* is hyperbolic contracting; moreover these two sub-
bundles are not trivial.

On the other hand, X is (uniformly) partially hyperbolic on A if there exists a
Dy, -invariant and a continuous splitting

T.M = E! ® E{ ® E},

being each subbundle of constant dimension with £ and EY nontrivial, and there
exists Z € N such that for all x € A one has

e (domination)

D4l 1 1D0% ()],
<- and —F—2<

m(Df(x)]g) ~ 2 m (Do (X))

)

N —

e (hyperbolicity) ||(Dp%(x) - u)71 | <1/2 (expanding) for any unit vector
ue E", and ||Dg%(x) - v|| < 1/2 (contracting) for any unit vector v € E?.
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We observe that RX (x) c E¢ for all x € A. If this central bundle is unidimen-
sional then A is a hyperbolic set. We also note that if X is partially hyperbolic on A
then the diffeomorphism ¢} is partially hyperbolic on A for all ¢ # 0 (for the defini-
tion of partial hyperbolicity in the diffeomorphisms context see, for example, [8]).

Definition 2.1. We say that X is partially hyperbolic, respectively partially hyper-
bolic for the linear Poincaré flow, if X is partially hyperbolic on M, respectively
partially hyperbolic for the linear Poincaré¢ flow on M.

Note that if the vector field X is partially hyperbolic then it does not have
singularities. For each x € M, we write E{ = & @ RX(x), where the subbundle
6 1s continuous on x.

Definition 2.2. We say that a partially hyperbolic vector field X has a one-
dimensional central direction if dim E¢ = 2, that is, &€ is a one-dimensional sub-
bundle.

We also observe that, when A is compact, the partial hyperbolicity of X on A
implies the partial hyperbolicity for the linear Poincaré flow of X on A. This fact
follows from the fact that the condition of domination also holds if we switch E¢
by & and the fact that the continuity of the splitting and compactness of the set A
guarantee that the angles between E°, E¥ or £ and RX (x) are bounded away
from zero, thus allowing to define N7 as the orthogonal projection of E? onto
RX(x)", 0 = u,s, and N¢ as the orthogonal projection of &°.

Hyperbolic divergence-free vector fields or suspensions of volume-preserving
partially hyperbolic diffeomorphisms are natural examples of partially hyperbolic
divergence-free flows. Another kind of examples, using a weaker definition of par-
tial hyperbolicity, are obtained in [14] motivated by the study of the X-geodesic
flows corresponding to mechanical systems with constraints.

We denote by PHL‘ (M) the space of partially hyperbolic C* divergence-free
vector fields defined on M, k € N. This space is an open subset of the space of
the CK divergence-free vector fields. Also the condition of the central subbundle
to have dimension equal to one is an open condition.

3. Proof of Theorem 1

The proof of the Theorem 1 is based in the strategy used by Bonatti, Matheus,
Wilkinson and Viana [9] to obtain C'-denseness of ergodicity for C? partially
hyperbolic and conservative diffeomorphisms having one-dimensional central
direction. This strategy is based in three results of Bonatti and Baraviera [5], fol-
lowed by [7], of F. Rodriguez-Hertz, M. Rodriguez-Hertz and Ures ([23], Theo-
rem A), and of Burns, Dolgopyat and Pesin [12], being the last two adapted to
the flow setting.
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In this section we present the flow formulation of these results and then deduce
the main theorem. If the reader is not familiar with some notions involved we
suggest the previous reading of the Sections 4, 5 and 6.

In the stable ergodic context the first result allows us to remove zero central
Lyapunov exponents for flows for X e P’HZ(M ) and with one-dimensional central
direction.

Theorem 3.1. Let X € P’H!lt(M ) be a vector field with one-dimensional central
direction. Then, for every ¢ > 0, there exists Y € PHﬁ (M) e-C'-close to X, such
that

JM log|| Do}, el du(x) # 0.

The second result shows that accessibility is a C'-generic property on the space
of C'-conservative partially hyperbolic flows equipped with the C! topology and
with one-dimensional central direction.

Theorem 3.2. Accessibility holds in a C'-open and dense subset of P’H,/L(M ), if the
central manifold is one-dimensional.

To obtain this result we adapt the main ingenious ideas of the proof of ([23],
Theorem A), to the flow setting. We remark that we obtain this result only in the
C'! topology while their result holds for any C*.

We notice that, for conservative diffeomorphisms, when the central direction
has dimension equal to two, recent results (see [21]) guarantee abundance of
ergodicity. Moreover, before that Dolgopyat and Wilkinson (see [15]) proved
that accessibility is C'-dense among the setting of volume-preserving partial
hyperbolic diffeomorphisms with central bundle with arbitrary dimension. Their
proof is very technical and intricate and, despite the fact that we have a powerful
perturbation result (the pasting lemma [2]), its not clear for us how to adapt it to
the flows context.

Finally, the third result allows us to obtain ergodicity from the so called mostly
contracting condition, first introduced by Bonatti and Viana [10], and the accessi-
bility property.

Theorem 3.3. Let Z € PH/%(M ). Assume that Z has the accessibility property and
that

|| toglDpbcl dut) <.

Then Z is ergodic.
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Let us now explain how one gets the Theorem 1 from the three previous
theorems.

Proof. Fix a vector field X € PH;(M ) with unidimensional central direction and
choose an arbitrary neighborhood of X in the C!-Whitney topology, denoted by
V. Observe that if we take ) small then every Z € V is also partially hyperbolic
with one-dimensional central direction. Theorem 3.1 applied to X guarantees that
there exists ¥ € VN PHZ(M ) such that

du(x) # 0.

107) = | toglDob,:
; ,

We assume that 7(Y) < 0; otherwise we consider the vector field — Y instead of
Y. As the map

Z e PHM) = | logldet Dyl dutx) = 1(2)

is continuous for the C! topology, we can fix a C!-open subset W such that
YeWc Vand I(Z) <0, forevery Z € Wn PH,‘I(M).

Applying Theorem 3.2 to the pair ¥ and W we get a C? vector field Z € W
with the accessibility property. Moreover, we have that I(Z) < 0; hence, by
Theorem 3.3, Z is ergodic, which ends the proof. O

In Section 4 we prove Theorem 3.1. In Section 5 we explain how to adapt the
proof of ([23], Theorem A) in order to get Theorem 3.2. Finally, in Section 6 we
deduce Theorem 3.3.

4. Proof of Theorem 3.1

In this section we derive Theorem 3.1. In [7], transposing to the vector field sce-
nario a previous result of Baraviera and Bonatti [5], we proved that a divergence-
free C! vector field X, which is partially hyperbolic for the linear Poincaré map
and stably ergodic, can be C!-perturbed in order to obtain a C? vector field whose
sum of the central Lyapunov exponents is nonzero. The stable ergodicity hypoth-
esis was only used to get that the sum of the central Lyapunov exponents is equal
to

J log|det P .| du(x),
M X



8 M. Bessa and J. Rocha

and then we proved that this integral becomes nonzero after a particular perturba-
tion; hence, without the stable ergodicity assumption what we prove in fact is that

J log|det P! || du(x) #0
M *

for a C? vector field Y C'-arbitrary close to X.
The next lemma jointly with [7], Theorem 1, ends the proof of Theorem 3.1.

Lemma 4.1. Let Y € P?—l}l(M) be a vector field with one-dimensional central
direction. Then one has

|| togldet Py dux) = | toglDp} el dut).

Proof. As the bundle N¢ is unidimensional and using the definition of the linear
Poincaré¢ flow, we choose a unit vector v € N{ and we get

|| togldet P!y, dutx) = | tog]lPY ()] dute
M : M
= | ToglMy i Do} 0 ).

Now we write v = o,0¢ + v¥, where v¢ is a unit vector of the unidimensional space
&¢, 0" e RY(x) and o € Ris given by cos(y,) = 5-, where y, = 4 (&), NY) (partial
hyperbolicity implies that this angle is always less and bounded away from 7).
Therefore

| 1ol ) Db (0 ) = | (tog(las) + 108y © Do} (o)1) )

) dpu(x)

Dy (v°)

= <log(|ocx|) + log
M

%ol (x)

= M(log(IaxI) — log|o,1 () du(x)

+ JM log|| Doy | s¢|| dp(x)

=J log|| Doy ||l dp(x),

Iy .

where the last equality follows directly applying the change of variables theorem
to the first integral and observing that |det(Dgl)| = 1 because Y is divergence-

free. This ends the proof of the lemma. O
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We note that the one-dimensional assumption also implies that

[M log]| Dy || dia(x) = jM logldet D} || du(x).

5. Abundance of accessibility on P'H}l(M )

Although part of the results of this section holds in PH lll(M ), here we assume that
the central bundle is one-dimensional.

Let X € PH;(M ) be a vector field and recall that both hyperbolic subbundles
are nontrivial. For x € M, the accessibility class of x, denoted by AC(X, x), is the
set of points y such that there exists a C! path from x to y whose tangent vectors
belong to E* U E* and vanishes at most finitely many times. This path is called an
us-path and consists of a finite number of local stable and unstable manifolds,
called legs. This notion defines an equivalence relation and we say that the vector
field X has the accessibility property if AC(X,x) = M, for any x € M. The formal
definition of accessibility for flows, as far as we know, first appears in [16].

Following the ideas in [23] and adapting the notations to the setup of flows, let
@y be a flow which preserves a (sectional) foliation #" such that 7% = E < N.
Let also #7(x) be the leaf through x contained in N (where TNV = N) and

We(x):={yeyc#(x)|xeyand |y <e},

where y is a curve and |y| denotes its arc-length.

Figure 1. Connecting x to the orbit of y by us-paths



10 M. Bessa and J. Rocha

Let also V' be a transversal disk to # in N such that dim(E) + dim(V) =
n—1=dim(N), and
e the cylinder B,(V) := ), #:(») and
e the cylinder with a hole C,(V) := Bs,(V)\B.(V).

The proof of [23], Lemma A.4.2, can be directly adapted in order to obtain the
following result.

Lemma 5.1 (Keepaway lemma for flows). Assume that E is expanded by ¢, say
Doyt gl < u < 1. Let k be such that y™* >'5. Given a small disk transverse to W’
and ¢ > 0, if

oY (C.(V)) nB(V)=0 forallte0,Kk|,
then given any y € V, there exists z € Ws,(y)\W:(y) such that
oy (z) € B.(V) forall t >0.

Assume that X is partially hyperbolic and let #,"(x) (respectively, #,°(x))
denote the local unstable (respectively, stable) manifold of x of size &. We define
W (W (x)) = Uzew;'“(x) W (2).

Now we can obtain, as in [23], Corollary A.1, the next result.

Corollary 5.2. Assume that ¢y leaves invariant an expanding foliation W". Then:
e For every x € M the forward nonrecurrent points in ‘W (x) are dense.

e [f oy is a partially hyperbolic flow, then for any x € M and every ¢ > 0 there is
ye ”f/;(“f/s”(x)) such that y is a forward and backward nonrecurrent point.

Next result is a crucial step in the proof of Theorem 3.2, and borrows ([23],
Lemma A.4.3) and its proof. Let I'(X) denote the closed and invariant set of
points of M whose accessibility class is not open.

Lemma 5.3 (Unweaving lemma for flows). For any x € Per(X) there exists Y,
C'-close to X, such that x € Per(Y) and AC(Y,x) is open.

Proof. We will give a sketch of the proof. Take x € Per(X) nT'(X), we will per-
turb X in order to obtain Y such that x € Per(Y) and x ¢ T'(Y), thus proving the
lemma.

Since x € I'(X) we have a product structure (cf. [23]), Remark 3.1, that
is, for all y e #5.(x) and for all z € #,).(x) sufficiently close to x we have
Wit (2) A Wise () # 0.

Fixing ¢ > 0, we use Lemma 5.1 to obtain a ‘“forward keepaway’ point
y € Wi(x) and a “backward keepaway” point z € %7, (x) (see Figure 2).
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Figure 2. The perturbation scheme of Lemma 5.3

Then, as we need be close to x, in order to control the (invariance) con-
stant 0 associated to the size given by the central manifold theorem, we
choose properly a backward iterate of y, »’, and a forward iterate of z, z’ (see
Figure 2).

As x € I'(X) we can take a three legs su-path connecting z’ into x. Our main
goal is to break this connection by a small conservative perturbation in a neigh-
borhood U of the point w = #4.(z") N #5.(»'). The neighborhood U must be
sufficiently small in order to have ¢} (U) n U = 0.

The perturbation is defined in the following way; take some vector ¥ transverse
to the bundle £} ® E* ® RX (w), U a small neighborhood of w and contained
in U. Applying the Arbieto and Matheus Pasting Lemma ([2], Theorem 3.2) we
obtain a divergence-free vector field Z such that Z(a) =5 if a € U, and Z(a) = 0
if ae M\U. Now we define the divergence-free vector field ¥ by Y(a):=
X(a) + Z(a); observe that if ||g|| is small then Y is close to X, x € Per(Y),
Ye PH;(M ) and its central bundle is one-dimensional.

Moreover, as a consequence of the construction, we have that

® "//ss<x7 X) - %S(x’ Y)r
* Wl (x, X)=W"(x,Y),
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* W5z, X) = W§'(z', Y), and
* W\ X) WPy, Y)=0.

From this it follows that x ¢ I'(Y"), which ends the proof of the lemma. O
In order to end the proof of Theorem 3.2 let us define
9 :={X¢€ P’H}I(M) | AC(X, x) is open for all x € Per(X)}.

For any n € N, let Per,(X) denote the set of closed orbits of X with period less
or equal to n, and XS, the subset of P’HL(M ) defined by the vector fields X such
that all the closed orbits of X with period less or equal to n are hyperbolic. By
Robinson’s version of the Kupka—Smale theorem [20] KS, is open and dense.
Moreover, if X € S, then it has only a finite number of closed orbits of period
bounded by n. So, applying Lemma 5.3 a finite number of times, one gets that

Iy ={X € PHL(M) | AC(X, x) is open for all x € Per,(X)} nKS,

is open and dense in PH;(M ). Finally, as Z = (), _ Zn, it follows that & con-
tains a residual subset of PH:((M ).

Considering the one-dimensional bundle &, for all x € M, the arguments used
in ([23], Proposition A.5), can be adapted to get the following result.

Lemma 5.4. If0 #T(X) # M, then T(X) nPer(X) # 0.

For the sake of completeness we will give a sketch of the proof of Lemma 5.4.

Recall that #;°(x) denotes a local central manifold associated to the one-
dimensional central subbundle & . The first step is the following classic result on
invariant manifolds which is a reformulation of ([23], Lemma A.5.1), for the flow
setting.

Lemma 5.5. Given any ¢ > 0, there exists 0 >0 such that if d(y,z) <J and
z € Wy (x), then there exists a small t € R such that W5, (X' (y)) 0 W (W' (x))
# 0 (see Figure 3).

The next step is to fix a point x € 0T'(X) such that I = Jay, c[ = #5.(x)\I'(X)
where a, = x and ¢, ¢ ['(X). Then one constructs an (n — 1)-dimensional box
V=w7 ("> (I)) such that V' nI(X)=%,(#,"(x)) = dI'(X). Notice that
I can be taken sufficiently small in order to assure that for any y e V' and
zel, W5 (y) W2 (W' (2)) # 0. Given a small > 0, define W = {X'(V) |t e
[—7,7]}. As the nonwandering set is the whole manifold, there exist w € W and



Denseness of ergodicity for a class of volume-preserving flows 13

W (W, (x))

(n+2)—dim
’

X (W (y)

Figure 3. Illustration to Lemma 5.5

t,, > 0 such that X" (w) € W. Now, applying Lemma 5.5, there are #, and #; such
that

(X0 00) AW () = wo

loc
and

toe (X (W) A (W (x)) = wr,

Finally, one can prove that w; = X1~ (w) and then, applying a suitable
version of the Anosov closing lemma (cf. [23], Lemma A.5.2), conclude that there
exists a closed orbit in I'(X).

Now let us return to the proof of Theorem 3.2. By Lemma 5.4, if X € & then
I'(X)=0 or ['(X)= M. If the first possibility holds then all the accessibility
classes are open, thus, as M is connected, they are all equal, which implies that
X has the accessibility property. If the second case holds then, by Lemma 5.4,
Per(X) = 0.

Let 4 denote the set of vector field of 2 with Per(X) = 0. By the Pugh and
Robinson version of the General Density Theorem [18], for C'-generic X one
has Per(X) = M, so it follows that 4 is a meager set.

Finally, as & contains a residual set, we conclude that accessibility is a
generic property in PH;(M ), assuming, of course, that the central bundle is one-
dimensional.

We are left to prove that accessibility is an open property in PH,]{(M ) (always
assuming that the central bundle is one-dimensional). This follows, as in the dis-
crete time case (see [22], Theorem 4.6) by the upper semicontinuity of the map
X e PH,(M) — T(X).

The proof of Theorem 3.2 is now complete.

We end this section by proving Corollary 1.
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Proof. Let us first recall that a vector field X is transitive if there exists x € M
whose forward orbit by the flow associated to X is dense in M.

Fixa X € PH;(M ) and let W be an arbitrary neighborhood of X. Let Uy
be the C'-open set given by Theorem 3.2. If Y € Uy N PH;,(M) then Y has
the accessibility property and, as it is divergence-free, its non-wandering set is
equal to M. Therefore we can apply a result of Brin (a version for flows of [11],
Theorem 1.2, see the remark immediately after this theorem) to conclude that Y is
transitive. Finally, we take

T= U (U uw).

XePH, (M) WeN(X)

where NV (X) denotes the set of all neighborhoods of X. O

6. From the mostly contracting and the accessibility conditions to ergodicity

Theorem 3.3 is just a weaker flow formulation of a theorem of Burns, Dolgopyat
and Pesin ([12], Theorem 4). Also its proof is a direct adaptation of their
arguments. Nevertheless, for the sake of completeness, we present an overline of
the proof.

Letus fix Z € P’Hi(M ) such that Z has the accessibility property and choose
o < 0 such that

JM log|| Dy sl du(x) < o (1)

Consider the set

1

t
-— 1 — 1 -
Az = {x e M| IETw l,[o log||DgoZ|gw(%m I ds < a}.

This set is ¢/ -invariant and, as a consequence of the Birkhoff Ergodic theorem
applied to the observable function f(x) = log||DgL|.|| and of inequality (1), it
has positive Lebesgue measure. ’

As &¢ is 1-dimensional, it is not difficult to obtain that

R 1
ol = Jim < | 10elDoll, s,

1 ,
Jim —log|| Doy ;

which implies that the Lyapunov exponent of Z in the direction & is negative, for
any point x € Ay.
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From the last assertion we deduce that every ergodic component of Az is open
(mod 0) and so is Az.

In fact, let # be the full measure set of Birkhoff’s regular points, i.e., points
such the backwards and forwards time means coincide for any continuous observ-
able function. Fix x € A7 N %; the set

A= U ex( Y )

te[-n,n yeve(x

is a neighborhood of x, where 7“(x) is the central-stable disk associated to nega-
tive Lyapunov exponents, V¥(y) is the local strong unstable manifold of y and
n > 0.

Now define

A= U ee( U 7).

telnnl  \yeve()ng

The set .4 (x) is a full measure subset of ./"(x) and the Hopf argument allows
us to conclude that, for any continuous observable function, the backwards
Birkhoff mean is constant on .4 (x). Therefore .#"(x) is contained in the ergodic
component of Ay that contains the point x, which proves that this component is
open (mod 0).

Therefore, by a result of Brin (see [17], Theorem 8.3, and also [16]), there exists
a full measure set R such that if x € R then {p,(x)|? € R} is dense in M. This
result together with the fact that Ay is ¢, -invariant for all ¢, that it has positive
measure, and that each ergodic component of ¢Z|, is open (mod0) imply that
Az has full Lebesgue measure and that Z is ergodic.

Acknowledgments. The authors would like to thank Carlos Matheus and the two
referees for suggestions and corrections given.
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