
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 68, Fasc. 1, 2011, 1–17 6 European Mathematical Society

DOI 10.4171/PM/1878

Denseness of ergodicity for a class of
volume-preserving flows

Mário Bessa* and Jorge Rocha

(Communicated by José Ferreira Alves)

Abstract. We consider the class of C1 partially hyperbolic volume-preserving flows with
one-dimensional central direction endowed with the C 1-Whitney topology. We prove
that, within this class, any flow can be approximated by an ergodic C 2 volume-preserving
flow and so, as a consequence, ergodicity is dense.
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1. Introduction

To find the foundations of ergodic theory we must go back to the nineteen century

and to the remarkable work of L. Boltzmann. In the context of the dynamic

theory of gases he formulated a principle fundamental in statistical physics—the

ergodic hypothesis. In roughly terms, this principle says that time averages equal

space averages at least for typical points. This principle can be formalized by say-

ing that the m-invariant flow j t : M ! M must satisfy the following equality

lim
t!þl

1

t

ð t
0

f
�
jsðxÞ

�
ds ¼

ð
M

f ðxÞ dmðxÞ;

for m-a.e. x a M and any continuous observable f : M ! R. Another equivalent

definition of ergodicity says that any j t-invariant set, for all t, must have zero or

full m-measure.

A central question is to decide if a given system (flow or di¤eomorphism) is

ergodic and, even more, if the system is stably ergodic, that is it remains ergodic
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after small perturbations. It is well known that there are examples of open sets of

systems such that

• all the elements of the open set are ergodic (Anosov [1], examples with hyper-

bolic behavior),

• there are no ergodic systems in the open set (KAM theory, see for instance

[24], examples with elliptical behavior).

These examples are far from a complete description of the situation so it is rel-

evant to obtain properties of systems that assure ergodicity or stable ergodicity. In

this context accessibility and partial hyperbolicity have played an important role in

the development of this theory.

Based on results related with this central question Pugh and Shub conjectured

that, in broad terms, partial hyperbolicity should guarantee denseness of stable

ergodicity among conservative systems [19]. For related results we refer the reader

to the survey [22] and to the book [8] and the references there in.

In the context of partially hyperbolic discrete time systems which preserves

a symplectic form, Avila, Bochi and Wilkinson [4], proved that ergodicity is

C1-generic.

We also mention the recent and remarkable results of Burns and Wilkinson

[13] and of F. Rodriguez-Hertz, M. Rodriguez-Hertz and Ures [23] in the discrete

time setting. Despite the fact that their results are more general (in the discrete

case) than the one we get (for the continuous case), we observe that our approach

is more direct, and to obtain the equivalent of their results it will be necessary to

transpose or adapt to the framework of flows all the machinery developed there.

Settling the Pugh and Shub conjecture Bonatti, Matheus, Viana and Wilkinson

[9] proved that there exists a C1 open and dense subset, U , of the partially

hyperbolic and volume-preserving di¤eomorphisms with one-dimensional central

bundle, such that the C2 di¤eomorphisms of U are ergodic. In ([23], Theorem A

and Theorem B) is obtained a generalization of the previous result to the Cr set-

ting, rb 2. These results did not allow to deduce denseness of ergodic systems

among the C1 partially hyperbolic and volume-preserving di¤eomorphisms with

one-dimensional central bundle because it was unknown whether the Cr di¤eo-

morphisms were C1-dense in the set of C1 volume-preserving di¤eomorphisms.

However, recently Avila [3] announced the proof of the C1-density of Cl

volume-preserving di¤eomorphisms among C1 volume-preserving di¤eomor-

phisms.

In this paper, we obtain the counterpart of their result for the continuous-time

setting, considering the space of C1 partially hyperbolic divergence-free vector

fields, PH1
mðMÞ (where m denotes the Lebesgue measure), endowed with the usual

Whitney topology. In this context, combining our result with a theorem of Zuppa

[25], we obtain that ergodic vector fields are C1-dense.
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Let us now state the fundamental result of this article.

Theorem 1. Let X a PH1
mðMÞ be a vector field with one-dimensional central direc-

tion and V be an arbitrary neighborhood of X in the C1-Whitney topology. There

exists a C1 open set U HV such that any C2 vector field Z a U BPH1
mðMÞ is

ergodic.

We point out that by a result of Zuppa [25] the subset of C2 divergence-free

vector fields is C1-dense in the space of C1 divergence-free vector fields. In partic-

ular U BPH2
mðMÞ is nonempty, where U is the set given by Theorem 1.

This theorem has a global formulation. In fact define

A ¼ 6
X AP

�
6

V AN X

U ðVÞ
�
;

where N X denotes the set of all neighborhoods of X , P is the subset of vector

fields of PH1
mðMÞ having unidimensional central direction, and U ðVÞ is the open

set given by the theorem applied to the pair X , U . The set ABP is open and

dense in P and if Z a ABP is of class C2 then Z is ergodic. In particular ergo-

dicity is dense in P .

One of the steps of the proof of the theorem consists in a continuous time ver-

sion of ([23], Theorem A) and as a consequence we obtain the following corollary.

Corollary 1. There exists an open and dense subset T HPH1
mðMÞ such that X is

transitive, for all X a T .

We observe that, in [6], the first author proved that the elements of a residual

subset of the C1-divergence-free vector fields are topological mixing.

This paper is organized as follows. In Section 2 we introduce some definitions

and results. In Section 3 we obtain the main theorem as a consequence of another

three theorems. In Sections 4, 5 and 6 we explain how these three results are

obtained. Corollary 1 is proved in Section 5.

2. Preliminaries and basic results

Let M be a compact, connected and boundaryless smooth Riemannian manifold,

with dimension nb 4, and let m denote the Lebesgue measure induced by a fixed

volume form on M. We say that the flow j is volume-preserving if j t is a volume-

preserving di¤eomorphism for all t a R.

There exists a natural correspondence between flows and vector fields. Clearly

given a Cr vector field X : M ! TM the solution of the equation x 0 ¼ XðxÞ gives
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rise to a Cr flow, jX ; by the other side given a Cr flow we can define a Cr�1 vector

field by XjðxÞ ¼ dj tðxÞ
dt

��
t¼0

. Observe that, by Liouville formula, a flow j is volume-

preserving if and only if the corresponding vector field, Xj, is divergence-free.

Let XrðMÞ denote the space of Cr vector fields and we consider the usual Cr

Whitney topology on this space. Let PerðXÞ denote the set of closed orbits of the

flow jX .

Given a vector field X we denote by SingðXÞ the set of singularities of X , say

the points x a M such that XðxÞ ¼~00. Let R :¼ MnSingðXÞ be the set of regular

points. Given x a R we consider its normal bundle Nx ¼ XðxÞ? HTxM and

define the associated linear Poincaré flow by PX
t ðxÞ :¼ Pj t

X
ðxÞ �Dj t

X ðxÞ where

Pj t
X
ðxÞ : Tj t

X
ðxÞM ! Nj t

X
ðxÞ is the projection along the direction of X

�
j t
X ðxÞ

�
. A

PX
t -invariant splitting N ¼ N 1a � � �aNk is called a l-dominated splitting for the

linear Poincaré flow if there exists l a N such that, for all x a M and

0a i < ja k, we have

kPX
l ðxÞjN j

x
k

m
�
PX
l ðxÞjN i

x

� a 1

2
;

where mð�Þ denotes the co-norm of an operator, that is mðAÞ ¼ kA�1k�1. We

say that the subbundle N i is hyperbolic if there exists k a N such that either���PX
k ðxÞ � u

��1��a 1=2 (expanding), for all x a M and any unit vector u a N iðxÞ,
or kPX

k ðxÞ � uka 1=2 (contracting), for all x a M and any unit vector u a N iðxÞ.
Given a vector field X , let LJMnSingðXÞ be a j t

X -invariant set. We say that

X is (uniformly) partially hyperbolic for the linear Poincaré flow on L if there exists

a PX
t -invariant dominated splitting N ¼ NuaNcaNs in L such that Nu is

hyperbolic expanding and Ns is hyperbolic contracting; moreover these two sub-

bundles are not trivial.

On the other hand, X is (uniformly) partially hyperbolic on L if there exists a

Dj t
X -invariant and a continuous splitting

TxM ¼ Eu
x aEc

x aEs
x;

being each subbundle of constant dimension with Es
x and Eu

x nontrivial, and there

exists l a N such that for all x a L one has

• (domination)

kDjl
X ðxÞjE c

x
k

m
�
Djl

X ðxÞjEu
x

� a 1

2
and

kDjl
X ðxÞjE s

x
k

m
�
Djl

X ðxÞjE c
x

� a 1

2
;

• (hyperbolicity)
���Djl

X ðxÞ � u
��1��a 1=2 (expanding) for any unit vector

u a Eu
x , and kDjl

X ðxÞ � vka 1=2 (contracting) for any unit vector v a Es
x.
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We observe that RXðxÞHEc
x for all x a L. If this central bundle is unidimen-

sional thenL is a hyperbolic set. We also note that if X is partially hyperbolic onL

then the di¤eomorphism j t
X is partially hyperbolic on L for all tA 0 (for the defini-

tion of partial hyperbolicity in the di¤eomorphisms context see, for example, [8]).

Definition 2.1. We say that X is partially hyperbolic, respectively partially hyper-

bolic for the linear Poincaré flow, if X is partially hyperbolic on M, respectively

partially hyperbolic for the linear Poincaré flow on M.

Note that if the vector field X is partially hyperbolic then it does not have

singularities. For each x a M, we write Ec
x ¼ Ec

x aRXðxÞ, where the subbundle

Ec
x is continuous on x.

Definition 2.2. We say that a partially hyperbolic vector field X has a one-

dimensional central direction if dimEc ¼ 2, that is, Ec is a one-dimensional sub-

bundle.

We also observe that, when L is compact, the partial hyperbolicity of X on L

implies the partial hyperbolicity for the linear Poincaré flow of X on L. This fact

follows from the fact that the condition of domination also holds if we switch Ec

by Ec and the fact that the continuity of the splitting and compactness of the set L

guarantee that the angles between Es, Eu or Ec and RXðxÞ are bounded away

from zero, thus allowing to define N s
x as the orthogonal projection of E s

x onto

RXðxÞ?, s ¼ u; s, and Nc
x as the orthogonal projection of Ec

x .

Hyperbolic divergence-free vector fields or suspensions of volume-preserving

partially hyperbolic di¤eomorphisms are natural examples of partially hyperbolic

divergence-free flows. Another kind of examples, using a weaker definition of par-

tial hyperbolicity, are obtained in [14] motivated by the study of the S-geodesic

flows corresponding to mechanical systems with constraints.

We denote by PHk
m ðMÞ the space of partially hyperbolic Ck divergence-free

vector fields defined on M, k a N. This space is an open subset of the space of

the Ck divergence-free vector fields. Also the condition of the central subbundle

to have dimension equal to one is an open condition.

3. Proof of Theorem 1

The proof of the Theorem 1 is based in the strategy used by Bonatti, Matheus,

Wilkinson and Viana [9] to obtain C1-denseness of ergodicity for C2 partially

hyperbolic and conservative di¤eomorphisms having one-dimensional central

direction. This strategy is based in three results of Bonatti and Baraviera [5], fol-

lowed by [7], of F. Rodriguez-Hertz, M. Rodriguez-Hertz and Ures ([23], Theo-

rem A), and of Burns, Dolgopyat and Pesin [12], being the last two adapted to

the flow setting.
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In this section we present the flow formulation of these results and then deduce

the main theorem. If the reader is not familiar with some notions involved we

suggest the previous reading of the Sections 4, 5 and 6.

In the stable ergodic context the first result allows us to remove zero central

Lyapunov exponents for flows for X a PH1
mðMÞ and with one-dimensional central

direction.

Theorem 3.1. Let X a PH1
mðMÞ be a vector field with one-dimensional central

direction. Then, for every e > 0, there exists Y a PH2
mðMÞ e-C1-close to X, such

that ð
M

logkDj1
Y jE c

x
k dmðxÞA 0:

The second result shows that accessibility is a C1-generic property on the space

of C1-conservative partially hyperbolic flows equipped with the C1 topology and

with one-dimensional central direction.

Theorem 3.2. Accessibility holds in a C1-open and dense subset of PH1
mðMÞ, if the

central manifold is one-dimensional.

To obtain this result we adapt the main ingenious ideas of the proof of ([23],

Theorem A), to the flow setting. We remark that we obtain this result only in the

C1 topology while their result holds for any Ck.

We notice that, for conservative di¤eomorphisms, when the central direction

has dimension equal to two, recent results (see [21]) guarantee abundance of

ergodicity. Moreover, before that Dolgopyat and Wilkinson (see [15]) proved

that accessibility is C1-dense among the setting of volume-preserving partial

hyperbolic di¤eomorphisms with central bundle with arbitrary dimension. Their

proof is very technical and intricate and, despite the fact that we have a powerful

perturbation result (the pasting lemma [2]), its not clear for us how to adapt it to

the flows context.

Finally, the third result allows us to obtain ergodicity from the so called mostly

contracting condition, first introduced by Bonatti and Viana [10], and the accessi-

bility property.

Theorem 3.3. Let Z a PH2
mðMÞ. Assume that Z has the accessibility property and

that ð
M

logkDj1
ZjE c

x
k dmðxÞ < 0:

Then Z is ergodic.
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Let us now explain how one gets the Theorem 1 from the three previous

theorems.

Proof. Fix a vector field X a PH1
mðMÞ with unidimensional central direction and

choose an arbitrary neighborhood of X in the C1-Whitney topology, denoted by

V . Observe that if we take V small then every Z a V is also partially hyperbolic

with one-dimensional central direction. Theorem 3.1 applied to X guarantees that

there exists Y a V BPH2
mðMÞ such that

IðYÞ :¼
ð
M

logkDj1
Y jE c

x
k dmðxÞA 0:

We assume that IðYÞ < 0; otherwise we consider the vector field �Y instead of

Y . As the map

Z a PH1
mðMÞ 7!

ð
M

logjdetðDj1
ZjE c

x
Þj dmðxÞ ¼ IðZÞ

is continuous for the C1 topology, we can fix a C1-open subset W such that

Y a W HV and IðZÞ < 0, for every Z a W BPH1
mðMÞ.

Applying Theorem 3.2 to the pair Y and W we get a C2 vector field Z a W

with the accessibility property. Moreover, we have that IðZÞ < 0; hence, by

Theorem 3.3, Z is ergodic, which ends the proof. r

In Section 4 we prove Theorem 3.1. In Section 5 we explain how to adapt the

proof of ([23], Theorem A) in order to get Theorem 3.2. Finally, in Section 6 we

deduce Theorem 3.3.

4. Proof of Theorem 3.1

In this section we derive Theorem 3.1. In [7], transposing to the vector field sce-

nario a previous result of Baraviera and Bonatti [5], we proved that a divergence-

free C1 vector field X , which is partially hyperbolic for the linear Poincaré map

and stably ergodic, can be C1-perturbed in order to obtain a C2 vector field whose

sum of the central Lyapunov exponents is nonzero. The stable ergodicity hypoth-

esis was only used to get that the sum of the central Lyapunov exponents is equal

to

ð
M

logjdetPX
1 jN c

x
j dmðxÞ;
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and then we proved that this integral becomes nonzero after a particular perturba-

tion; hence, without the stable ergodicity assumption what we prove in fact is thatð
M

logjdetPY
1 jN c

x
j dmðxÞA 0

for a C2 vector field Y C1-arbitrary close to X .

The next lemma jointly with [7], Theorem 1, ends the proof of Theorem 3.1.

Lemma 4.1. Let Y a PH1
mðMÞ be a vector field with one-dimensional central

direction. Then one hasð
M

logjdetPY
1 jN c

x
j dmðxÞ ¼

ð
M

logkDj1
Y jE c

x
k dmðxÞ:

Proof. As the bundle Nc
x is unidimensional and using the definition of the linear

Poincaré flow, we choose a unit vector v a Nc
x and we getð

M

logjdetPY
1 jN c

x
j dmðxÞ ¼

ð
M

logkPY
1 ðvÞk dmðxÞ

¼
ð
M

logkPj1
Y
ðxÞ �Dj1

Y ðvÞk dmðxÞ:

Now we write v ¼ axv
c þ vY , where vc is a unit vector of the unidimensional space

Ec
x , v

Y a RYðxÞ and a a R is given by cosðgxÞ ¼ 1
ax
, where gx ¼KðEc

x ;N
c
x Þ (partial

hyperbolicity implies that this angle is always less and bounded away from p
2).

Thereforeð
M

logkPj1
Y
ðxÞ �Dj1

Y ðvÞk dmðxÞ ¼
ð
M

�
logðjaxjÞ þ logkPj1

Y
ðxÞ �Dj1

Y ðvcÞk
�
dmðxÞ

¼
ð
M

logðjaxjÞ þ log
1

aj1
Y
ðxÞ

Dj1
Y ðvcÞ

�����
�����

 !
dmðxÞ

¼
ð
M

�
logðjaxjÞ � logjaj1

Y
ðxÞj
�
dmðxÞ

þ
ð
M

logkDj1
Y jE c

x
k dmðxÞ

¼
ð
M

logkDj1
Y jE c

x
k dmðxÞ;

where the last equality follows directly applying the change of variables theorem

to the first integral and observing that jdetðDj1
Y Þj ¼ 1 because Y is divergence-

free. This ends the proof of the lemma. r
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We note that the one-dimensional assumption also implies thatð
M

logkDj1
Y jE c

x
k dmðxÞ ¼

ð
M

logjdetDj1
Y jE c

x
j dmðxÞ:

5. Abundance of accessibility on PH1
m(M )

Although part of the results of this section holds in PH1
mðMÞ, here we assume that

the central bundle is one-dimensional.

Let X a PH1
mðMÞ be a vector field and recall that both hyperbolic subbundles

are nontrivial. For x a M, the accessibility class of x, denoted by ACðX ; xÞ, is the
set of points y such that there exists a C1 path from x to y whose tangent vectors

belong to EsAEu and vanishes at most finitely many times. This path is called an

us-path and consists of a finite number of local stable and unstable manifolds,

called legs. This notion defines an equivalence relation and we say that the vector

field X has the accessibility property if ACðX ; xÞ ¼ M, for any x a M. The formal

definition of accessibility for flows, as far as we know, first appears in [16].

Following the ideas in [23] and adapting the notations to the setup of flows, let

jX be a flow which preserves a (sectional) foliation W such that TW ¼ EHN.

Let also WðxÞ be the leaf through x contained in N (where TN ¼ N) and

WeðxÞ :¼ fy a gHWðxÞ j x a g and jgj < eg;

where g is a curve and jgj denotes its arc-length.

Figure 1. Connecting x to the orbit of y by us-paths
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Let also V be a transversal disk to W in N such that dimðEÞ þ dimðVÞ ¼
n� 1 ¼ dimðNÞ, and

• the cylinder BeðVÞ :¼ 6
y AV WeðyÞ and

• the cylinder with a hole CeðVÞ :¼ B5eðVÞnBeðVÞ.

The proof of [23], Lemma A.4.2, can be directly adapted in order to obtain the

following result.

Lemma 5.1 (Keepaway lemma for flows). Assume that E is expanded by jX , say

kDj�1
X jEk < m < 1. Let k be such that m�k > 5. Given a small disk transverse to W

and e > 0, if

j t
X

�
CeðVÞ

�
BBeðVÞ ¼ j for all t a ½0; k�;

then given any y a V, there exists z a W5eðyÞnWeðyÞ such that

j t
X ðzÞ B BeðVÞ for all tb 0:

Assume that X is partially hyperbolic and let Wu
e ðxÞ (respectively, Ws

e ðxÞ)
denote the local unstable (respectively, stable) manifold of x of size e. We define

Ws
e

�
Wu

e ðxÞ
�
:¼ 6

z AWu
e ðxÞ W

s
e ðzÞ.

Now we can obtain, as in [23], Corollary A.1, the next result.

Corollary 5.2. Assume that jX leaves invariant an expanding foliation W. Then:

• For every x a M the forward nonrecurrent points in WðxÞ are dense.

• If jX is a partially hyperbolic flow, then for any x a M and every e > 0 there is

y a Ws
e

�
Wu

e ðxÞ
�
such that y is a forward and backward nonrecurrent point.

Next result is a crucial step in the proof of Theorem 3.2, and borrows ([23],

Lemma A.4.3) and its proof. Let GðXÞ denote the closed and invariant set of

points of M whose accessibility class is not open.

Lemma 5.3 (Unweaving lemma for flows). For any x a PerðXÞ there exists Y,

C1-close to X, such that x a PerðYÞ and ACðY ; xÞ is open.

Proof. We will give a sketch of the proof. Take x a PerðXÞBGðXÞ, we will per-

turb X in order to obtain Y such that x a PerðYÞ and x B GðYÞ, thus proving the

lemma.

Since x a GðXÞ we have a product structure (cf. [23]), Remark 3.1, that

is, for all y a Wu
locðxÞ and for all z a Ws

locðxÞ su‰ciently close to x we have

Wu
locðzÞBWs

locðyÞA j.
Fixing e > 0, we use Lemma 5.1 to obtain a ‘‘forward keepaway’’ point

y a Wu
5eðxÞ and a ‘‘backward keepaway’’ point z a Ws

5eðxÞ (see Figure 2).
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Then, as we need be close to x, in order to control the (invariance) con-

stant d associated to the size given by the central manifold theorem, we

choose properly a backward iterate of y, y 0, and a forward iterate of z, z 0 (see
Figure 2).

As x a GðXÞ we can take a three legs su-path connecting z 0 into x. Our main

goal is to break this connection by a small conservative perturbation in a neigh-

borhood U of the point w ¼ Wu
locðz 0ÞBWs

locðy 0Þ. The neighborhood U must be

su‰ciently small in order to have j1
X ðUÞBU ¼ j.

The perturbation is defined in the following way; take some vector~vv transverse

to the bundle Es
waEu

w aRXðwÞ, ÛU a small neighborhood of w and contained

in U . Applying the Arbieto and Matheus Pasting Lemma ([2], Theorem 3.2) we

obtain a divergence-free vector field Z such that ZðaÞ ¼~vv if a a ÛU , and ZðaÞ ¼~00

if a a MnU . Now we define the divergence-free vector field Y by YðaÞ :¼
XðaÞ þ ZðaÞ; observe that if k~vvk is small then Y is close to X , x a PerðYÞ,
Y a PH1

mðMÞ and its central bundle is one-dimensional.

Moreover, as a consequence of the construction, we have that

• Ws
e ðx;XÞ ¼ Ws

e ðx;YÞ,

• Wu
e ðx;XÞ ¼ Wu

e ðx;YÞ,

Figure 2. The perturbation scheme of Lemma 5.3
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• Wu
d ðz 0;XÞ ¼ Wu

d ðz 0;YÞ, and

• Wu
d ðz 0;XÞBWs

d ðy 0;YÞ ¼ j.

From this it follows that x B GðYÞ, which ends the proof of the lemma. r

In order to end the proof of Theorem 3.2 let us define

D :¼ fX a PH1
mðMÞ jACðX ; xÞ is open for all x a PerðXÞg:

For any n a N, let PernðXÞ denote the set of closed orbits of X with period less

or equal to n, and KSn the subset of PH1
mðMÞ defined by the vector fields X such

that all the closed orbits of X with period less or equal to n are hyperbolic. By

Robinson’s version of the Kupka–Smale theorem [20] KSn is open and dense.

Moreover, if X a KSn, then it has only a finite number of closed orbits of period

bounded by n. So, applying Lemma 5.3 a finite number of times, one gets that

Dn :¼ fX a PH1
mðMÞ jACðX ; xÞ is open for all x a PernðXÞgBKSn

is open and dense in PH1
mðMÞ. Finally, as DI7

n AN Dn, it follows that D con-

tains a residual subset of PH1
mðMÞ.

Considering the one-dimensional bundle Ec
x , for all x a M, the arguments used

in ([23], Proposition A.5), can be adapted to get the following result.

Lemma 5.4. If jAGðXÞAM, then GðXÞBPerðXÞA j.

For the sake of completeness we will give a sketch of the proof of Lemma 5.4.

Recall that Wc
d ðxÞ denotes a local central manifold associated to the one-

dimensional central subbundle Ec
x . The first step is the following classic result on

invariant manifolds which is a reformulation of ([23], Lemma A.5.1), for the flow

setting.

Lemma 5.5. Given any e > 0, there exists d > 0 such that if dðy; zÞ < d and

z a Wc
d ðxÞ, then there exists a small t a R such that Wc

loc

�
X tðyÞ

�
BWs

e

�
Wu

e ðxÞ
�

A j (see Figure 3).

The next step is to fix a point x a qGðXÞ such that I ¼ �ax; cx½HWc
locðxÞnGðXÞ

where ax ¼ x and cx B GðXÞ. Then one constructs an ðn� 1Þ-dimensional box

V ¼ Ws
e

�
Wu

e ðIÞ
�

such that V BGðXÞ ¼ Ws
e

�
Wu

e ðxÞ
�
H qGðXÞ. Notice that

I can be taken su‰ciently small in order to assure that for any y a V and

z a I , Wc
locðyÞBWs

e

�
Wu

e ðzÞ
�
A j. Given a small t > 0, define W ¼ fX tðVÞ j t a

½�t; t�g. As the nonwandering set is the whole manifold, there exist w a W and
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tw > 0 such that X twðwÞ a W . Now, applying Lemma 5.5, there are t0 and t1 such

that

Wc
loc

�
X t0ðwÞ

�
BWs

e

�
Wu

e ðxÞ
�
¼ w0

and

Wc
loc

�
X t1þtwðwÞ

�
BWs

e

�
Wu

e ðxÞ
�
¼ w1:

Finally, one can prove that w1 ¼ X t1þtw�t0ðw0Þ and then, applying a suitable

version of the Anosov closing lemma (cf. [23], Lemma A.5.2), conclude that there

exists a closed orbit in GðXÞ.
Now let us return to the proof of Theorem 3.2. By Lemma 5.4, if X a D then

GðXÞ ¼ j or GðXÞ ¼ M. If the first possibility holds then all the accessibility

classes are open, thus, as M is connected, they are all equal, which implies that

X has the accessibility property. If the second case holds then, by Lemma 5.4,

PerðXÞ ¼ j.
Let B denote the set of vector field of D with PerðXÞ ¼ j. By the Pugh and

Robinson version of the General Density Theorem [18], for C1-generic X one

has PerðXÞ ¼ M, so it follows that B is a meager set.

Finally, as D contains a residual set, we conclude that accessibility is a

generic property in PH1
mðMÞ, assuming, of course, that the central bundle is one-

dimensional.

We are left to prove that accessibility is an open property in PH1
mðMÞ (always

assuming that the central bundle is one-dimensional). This follows, as in the dis-

crete time case (see [22], Theorem 4.6) by the upper semicontinuity of the map

X a PH1
mðMÞ ! GðXÞ.

The proof of Theorem 3.2 is now complete.

We end this section by proving Corollary 1.

Figure 3. Illustration to Lemma 5.5

13Denseness of ergodicity for a class of volume-preserving flows



Proof. Let us first recall that a vector field X is transitive if there exists x a M

whose forward orbit by the flow associated to X is dense in M.

Fix a X a PH1
mðMÞ and let W be an arbitrary neighborhood of X . Let UW

be the C1-open set given by Theorem 3.2. If Y a UW BPH1
mðMÞ then Y has

the accessibility property and, as it is divergence-free, its non-wandering set is

equal to M. Therefore we can apply a result of Brin (a version for flows of [11],

Theorem 1.2, see the remark immediately after this theorem) to conclude that Y is

transitive. Finally, we take

T ¼ 6
X APH1

mðMÞ

�
6

W AN ðXÞ
UW

�
;

where N ðXÞ denotes the set of all neighborhoods of X . r

6. From the mostly contracting and the accessibility conditions to ergodicity

Theorem 3.3 is just a weaker flow formulation of a theorem of Burns, Dolgopyat

and Pesin ([12], Theorem 4). Also its proof is a direct adaptation of their

arguments. Nevertheless, for the sake of completeness, we present an overline of

the proof.

Let us fix Z a PH2
mðMÞ such that Z has the accessibility property and choose

a < 0 such that

ð
M

logkDj1
ZjE c

x
k dmðxÞ < a: ð1Þ

Consider the set

AZ :¼
n
x a M j lim

t!þl

1

t

ð t
0

logkDj1
ZjE c

j s
Z
ðxÞ
k ds < a

o
:

This set is j t
Z-invariant and, as a consequence of the Birkho¤ Ergodic theorem

applied to the observable function f ðxÞ ¼ logkDj1
ZjE c

x
k and of inequality (1), it

has positive Lebesgue measure.

As Ec is 1-dimensional, it is not di‰cult to obtain that

lim
t!el

1

t
logkDj t

ZjE c
x
k ¼ lim

t!þl

1

t

ð t
0

logkDj1
ZjE c

j s
Z
ðxÞ
k ds;

which implies that the Lyapunov exponent of Z in the direction Ec
x is negative, for

any point x a AZ.
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From the last assertion we deduce that every ergodic component of AZ is open

(mod 0) and so is AZ.

In fact, let B be the full measure set of Birkho¤ ’s regular points, i.e., points

such the backwards and forwards time means coincide for any continuous observ-

able function. Fix x a AZ BB; the set

NðxÞ ¼ 6
t A ½�h;h�

j t
Z

�
6

y AV csðxÞ
V uðyÞ

�

is a neighborhood of x, where V csðxÞ is the central-stable disk associated to nega-

tive Lyapunov exponents, V uðyÞ is the local strong unstable manifold of y and

h > 0.

Now define

~NNðxÞ :¼ 6
t A ½�h;h�

j t
Z

�
6

y AV csðxÞBB

V uðyÞ
�
:

The set ~NNðxÞ is a full measure subset of NðxÞ and the Hopf argument allows

us to conclude that, for any continuous observable function, the backwards

Birkho¤ mean is constant on ~NNðxÞ. Therefore ~NNðxÞ is contained in the ergodic

component of AZ that contains the point x, which proves that this component is

open (mod 0).

Therefore, by a result of Brin (see [17], Theorem 8.3, and also [16]), there exists

a full measure set R such that if x a R then fj t
ZðxÞ j t a Rg is dense in M. This

result together with the fact that AZ is j t
Z-invariant for all t, that it has positive

measure, and that each ergodic component of j t
ZjAZ

is open (mod 0) imply that

AZ has full Lebesgue measure and that Z is ergodic.
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Norm. Supér. (4) 42 (2009), 931–979. Zbl 1191.37017 MR 2567746

15Denseness of ergodicity for a class of volume-preserving flows

http://www.emis.de/MATH-item?0176.19101
http://www.ams.org/mathscinet-getitem?mr=0224110
http://www.emis.de/MATH-item?1142.37025
http://www.ams.org/mathscinet-getitem?mr=2358971
http://www.emis.de/MATH-item?1191.37017
http://www.ams.org/mathscinet-getitem?mr=2567746


[5] A. T. Baraviera and C. Bonatti, Removing zero Lyapunov exponents. Ergodic Theory
Dynam. Systems 23 (2003), 1655–1670. Zbl 1048.37026 MR 2032482

[6] M. Bessa, A generic incompressible flow is topological mixing. C. R. Math. Acad. Sci.

Paris 346 (2008), 1169–1174. Zbl 1157.37014 MR 2464259

[7] M. Bessa and J. Rocha, Removing zero Lyapunov exponents in volume-preserving
flows. Nonlinearity 20 (2007), 1007–1016. Zbl 1124.37019 MR 2307891

[8] C. Bonatti, L. J. Dı́az, and M. Viana, Dynamics beyond uniform hyperbolicity. Ency-
clopaedia Math. Sci. 102, Springer-Verlag, Berlin 2005. Zbl 1060.37020 MR 2105774

[9] C. Bonatti, C. Matheus, M. Viana, and A. Wilkinson, Abundance of stable ergodicity.
Comment. Math. Helv. 79 (2004), 753–757. Zbl 1052.37023 MR 2099120

[10] C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose cen-
tral direction is mostly contracting. Israel J. Math. 115 (2000), 157–193.
Zbl 0996.37033 MR 1749677

[11] M. I. Brin, Topological transitivity of one class of dynamical systems and flows
of frames on manifolds of negative curvature. Funktsional. Anal. i Priložen. 9 (1975),
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