
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 67, Fasc. 4, 2010, 453–483 6 European Mathematical Society

DOI 10.4171/PM/1873

Intrinsic characteristic classes of a local Lie group
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Abstract. For a local Lie group M we define cohomology classes ½w2kþ1� a H 2kþ1
dR ðM;RÞ.

We show that ½w1� is an obstruction to globalizability and give an example where ½w1�A 0.
We also show that ½w3� coincides with Godbillon–Vey class in a particular case. These
classes are secondary as they emerge when curvature vanishes.
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1. Introduction

The problem studied in this paper emerged from a general framework which we

will outline in the next two paragraphs.

Let M be a di¤erentiable manifold with dimM ¼ nb 2. Let p; q a M and

jkð f Þp;q be the k-jet of a local di¤eomorphism f with f ðpÞ ¼ q. We call jkð f Þp;q
a k-arrow (from p to q). A 0-arrow is an ordered pair ðp; qÞ. Now let G be a

connected Lie group which acts e¤ectively on G=H. Following a program out-

lined in [21], we defined in [1] the geometric order m of the (global) Klein geometry

G=H: G=H has order m, if any g a G, as a transformation of G=H, is determined

by any of its m-arrows and m is the smallest such integer. Therefore m ¼ 0 if and

only if H ¼ feg. For any integer mb 0, there exists a compact Klein geometry

G=H of order m. In fact, we can choose GH SLðm;RÞ and H ¼ the Borel sub-

group of upper triangular matrices [1]. If DHG is a discrete subgroup with

DBH ¼ feg, we obtain a pseudogroup on the discrete quotient DnG=H with the

*We are indebted to the anonymous referee for giving the counterexample SOð3;RÞ to our conjecture
that ½w2kþ1�dR is an obstruction to globalizability also for kb 1, and for pointing out that our ‘‘primary
classes’’ vanish. We are also indebted to Gregor Weingart for finding a serious mistake in the original
version of this paper and for his stimulating remarks. Last but not least, we express our heartfelt gratitude
to P. J. Olver for his kind support and encouragement for this work.



property that its local di¤eomorphisms are determined on their domains by any of

their m-arrows. In this way we obtain pseudogroups which are finer than a‰ne or

projective pseudogroups. These pseudogroups exist even on Riemann surfaces but

they are always subordinate to an a‰ne or projective structure in this case.

Abstracting the arrows of the action of G on G=H, we introduced in [22] the

concept of a pre-homogeneous geometric structure of order m on a manifold M

and the curvature of such a structure. For m ¼ 0, such a structure is absolute par-

allelism studied in this paper. Riemannian structures arise for m ¼ 1 by abstract-

ing the 1-arrows of the action of SOðnÞmRn on
�
SOðnÞmRn

�
=SOðnÞ ¼ Rn. If

G=H has order m, then g is determined also by its ðmþ 1Þ-arrows. This fact

implies the existence of some canonical splittings and associates some canonical

‘‘torsionfree connections’’ to such structures. As in this paper, curvature vanishes

if and only if ðmþ 1Þ-arrows integrate to a pseudogroup on M. If further the

geometry is complete, then M becomes a discrete quotient of a global model

G=H (see Proposition 7.4). Therefore, curvature is a measure of how much the

geometry deviates from some local homogeneous model. This way of looking at

curvature parallels the one proposed in the recent works [2], [3].

This paper is motivated by our attempt to do something globally interesting

with the curvature in [22] for m ¼ 0. This simplest case incorporates all the the

main ideas and technical aspects of the above approach. The main technical result

of this paper is the construction of certain characteristic classes in the Lie algebra

cohomology, (therefore also in the de Rham cohomology) of a local Lie group M.

These characteristic classes emerge when this curvature vanishes and are therefore

secondary. It turns out that the first two classes are actually well known: w1 is

the character of the adjoint representation and therefore ½w1� is an obstruction to

unimodularity. We show that ½w1� is also an obstruction to globalizability. The

condition w3 ¼ 0 is the well-known Cartan criterion for solvability and the class

½w3� is constructed first in [5] to show the nonvanishing of the third cohomology

group of a semisimple Lie algebra (see Proposition 8.4). We find it surprising

that ½w1�, ½w3� are not regarded, to our knowledge, as the first two of a sequence

of secondary characteristic classes in the literature. On the other hand it is shown

in [20] that the theory of local Lie groups is not a simple consequence of the global

theory but has its own set of interesting and delicate geometric structures. In this

direction, we show here that it is possible to free the concept of a local Lie group

from being local in such a way that it contains the theory of global Lie groups as a

special case.

This paper is organized as follows. In Section 2 we recall the bracket ½ ; � on
sections of J1T ¼ the algebroid of U1 as defined in [17], [23], [24] and compute the

exterior derivative of 1-forms explicitly in local coordinates.

In Section 3 we formulate the existence of a parallelism on M as a geometric

structure defined by a splitting e of the groupoid projection p : U1 ! U0. The
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splitting e : U0 ! U1 determines two splittings ~GG; ĜG : T ! J1T on the level of

algebroids. The pair ð~GG; ĜGÞ is a dual pair of a‰ne connections as defined in [2],

[3]. In Section 4 we associate two curvatures eRRðeÞ, bRRðeÞ to e and compute them

explicitly in coordinates. We have eRRðeÞ ¼ 0 but not necessarily bRRðeÞ ¼ 0.

In Section 5 we construct a closed 1-form o1 in the algebroid cohomology of

J1T with trivial coe‰cients (see [18], [19], [6], [7], [11] for cohomology of Lie

algebroids). Our local computations uncover the fundamental roles of the Spencer

operator and the algebraic bracket in the construction of this secondary character-

istic class. It seems to us that the construction of o1 may be recast in the more

general framework of secondary characteristic classes for Lie algebroids intro-

duced recently in the works [6], [7], [11]. If this is the case, we hope that our

approach will have something to add to these works. However, our main concern

here is not o1 but its restriction to ~GGðTÞH J1T which pulls back to a 1-form w1 in

de Rham complex, not necessarily closed. We prove dw1 ¼ Tr bRRðeÞ (Proposition
5.2). Our approach gives a totally new way of looking at torsion, a point empha-

sized first in [28] in a somewhat di¤erent setting.

In Section 6 we show that bRRðeÞ ¼ 0 if and only if M is a local Lie group

(Proposition 6.1). Therefore the 1-form w is closed on a local Lie group and the

problem is to understand the obstruction to its exactness.

In Section 7 we define another curvature RðeÞ which is the curvature men-

tioned in the second paragraph above. We show RðeÞ ¼ 0 , bRRðeÞ ¼ 0. It turns

out that the implication bRRðeÞ ¼ 0 ) RðeÞ ¼ 0 is equivalent to the traditional

form of the third fundamental theorem of Lie. We construct an explicit local

primitive of the closed form w1 (Proposition 7.10). This fact implies the main re-

sult of this section (Proposition 7.11) that if ½w1�A 0 in H 1
dRðM;RÞ then M is not

globalizable. We give an example where ½w1�A 0. Definitely, there is a relation

between the cohomology class ½w1� and the modular class introduced in [10] and

studied further in [29]. As shown in [20], the concepts of globalizability and global

associativity are equivalent for local Lie groups. Many explicit and nontrivial ex-

amples of local Lie groups are constructed in [20] which fail to be globalizable.

One of these examples is even simply connected but this pathology can not occur

if M is complete in view of Corollary 7.8. We plan to take up the study of these

examples in some future work.

In Section 8 we define the higher order analogs of the closed forms o1 and w1.

If G ¼ SLð2;RÞ, DHG a cocompact discrete subgroup and F is the standard

codimension one foliation on the local Lie group G=D, we show (Proposition

8.3) that ½w3� a H 3ðG=D;RÞ coincides with the Godbillon–Vey class GVðFÞ and
therefore ½w3�A 0 by the well-known Roussarie calculation (see [4]). We find this

example particularly interesting since our construction of ½w3� is independent of

any foliation. It is natural to expect that these higher classes are also obstructions

to globalizability. We give an example, communicated to us by the referee, which

455Intrinsic characteristic classes of a local Lie group



shows that this expectation is unjustified and the geometric meaning of these

higher classes remains to be clarified.

Therefore, generalizing the construction of the characteristic classes in this

paper to arbitrary geometric order m, showing their nontriviality and clarifying

their geometric meaning remain as challenging problems.

2. The algebroid J1T

Let M be a (connected) di¤erentiable manifold with dimM ¼ nb 2. Let p; q a M

and jkð f Þp;q be the k-jet of a local di¤eomorphism f with f ðpÞ ¼ q. We call

jkð f Þp;q a k-arrow (from p to q). Note that a 0-arrow is an ordered pair ðp; qÞ.
Let U

p;q
k denote the set of all k-arrows on M from p to q. We define the set

Uk ¼def 6
p;q AM U

p;q
k . We have the composition map U

q; r
k �U

p;q
k ! U

p; r
k defined

by jkðgÞq; r � jkð f Þp;q ¼def jkðg � f Þp; r. The di¤erentiable structure on M induces a

di¤erentiable structure on Uk and Uk is a transitive Lie equation (in finite form),

which is a very special groupoid (see [17], [23], [24] for Lie equations in finite and

infinitesimal forms and [18], [19] and the references therein for Lie groupoids and

algebroids). Note that U0 is the pair groupoid M �M. We have the projection

map pk; j : Uk ! Uj, ja k þ 1, induced by the projection of jets and pk; j is a mor-

phism of groupoids, that is, it preserves composition and inversion of arrows. In

this paper we need only U0 and U1.

Recall that the algebroid of U0 is the tangent bundle T ! M. We now recall

the algebroid of U1 (see [23], [24] for further details). Let J1T ! M be the vector

bundle whose fiber over p a M consists of 1-jets of vector fields at p. We denote

sections of J1T ! M by X , Y and sections of T ! M by x, h. We sometimes use

the same notation for a section and its value at a point. We also use the same

notation E for both the total space of a vector bundle E ! M and for the space

of global sections of E ! M.

Now a section X of J1T ! M over ðU ; xiÞ is of the form
�
X iðxÞ;X i

j ðxÞ
�
and

the projection p : J1T ! T is given by ðX i;X i
j Þ ! ðX iÞ. We have the Spencer

operator D : J2T ! T � n J1T locally given by ðX i;X i
j ;X

i
jkÞ ! ðqjX i � X i

j ;

qkX
i
j � X i

kjÞ. We have the algebraic bracket f ; gp : ðJ2TÞp � ðJ2TÞp ! ðJ1TÞp
whose coordinate formula is obtained by di¤erentiating the usual formula for

the bracket of two vector fields twice, evaluating at p and replacing derivatives

with jet coordinates. Finally, we have the Spencer bracket ½ ; � on sections of

J1T ! T defined by

½X ;Y � ¼ f ~XX ; ~YYg þ ipXDð ~YYÞ � ipYDð ~XXÞ: ð1Þ

In (1), ~XX , ~YY are arbitrary lifts of X and Y to sections of J2T and ipX de-

notes contraction with respect to the vector field pX . The bracket ½X ;Y � does
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not depend on the lifts ~XX , ~YY . If X ¼ ðX i;X i
j Þ and Y ¼ ðY i;Y i

j Þ, using (1) we

compute

½X ;Y � i ¼ X a qY
i

qxa
� Y a qX

i

qxa
;

½X ;Y � ij ¼ X a
j Y

i
a � Y a

j X
i
a þ X a

qY i
j

qxa
� Y a

qX i
j

qxa

ð2Þ

where we use summation convention in (2). With the bracket given by (2), J1T ! T

becomes the Lie algebroid of the Lie groupoid U1. Note that p : J1T ! T be-

comes a homomorphism of algebroids in view of (2).

As shown in [7], [3], for any Lie algebroid A, there is a unique Lie algebroid

structure on J1A compatible with A. If A ¼ T , then the bracket of J1A as

defined in these works coincides with (2), even though the role of the Spencer

operator is not evident at first sight.

We use the same notation ½ ; � for the brackets of J1T and T . For a vector

field x, let j1x denote the first prolongation of x. In coordinates, if x ¼ ðX iÞ,
then j1x ¼

�
X i; qXi

qx j

�
a J1T . We have

j1½x; h� ¼ ½ j1x; j1h� ð3Þ

that is, ½ ; � respects prolongation. (3) is easily checked using (2).

We now define a representation of J1T on ClðMÞ by Xð f Þ ¼def LpX ð f Þ where
LpX denotes Lie derivative with respect to the vector field pX and consider the

cohomology of J1T with respect to this representation (see [18], [19], [6], [7], [11]

for cohomology of Lie algebroids). Up to Section 8, we will be interested only in

1-forms. Let ðJ1TÞ� ! M be the dual bundle of J1T ! M.

Definition 2.1. A 1-form (of the algebroid J1TÞ is a (smooth) section of

ðJ1TÞ� ! M.

So a 1-form o pairs linearly with sections of J1T to functions on M. The

1-form o is locally of the form
�
oiðxÞ;o i

j ðxÞ
�
and the pairing is given by

oðXÞ ¼def X aðxÞoaðxÞ þ X a
b ðxÞob

a ðxÞ: ð4Þ

It is easy to derive the transformation laws of the components of X and o

which we will not do here. These transformation laws show that ðX i; 0Þ has no
invariant meaning whereas ð0;X i

j Þ does and belongs to KerðpÞ. In contrast,

ðo i; 0Þ does have invariant meaning and represents an ordinary 1-form as a

cochain in the deRham complex whereas ð0;o i
j Þ has no invariant meaning. There-

fore o reduces to an ordinary 1-form if and only if o i
j ¼ 0.
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Now we want to compute the exterior derivative dðoÞ of o in coordinates.

Di¤erentiating (4) and contracting with the vector field pX , we get

LpXoðYÞ ¼ X c qoðYÞ
qxc

¼ X c qY
a

qxc
oa þ X cY a qoa

qxc
þ X c qY

a
b

qxc
ob

a þ X cY a
b

qob
a

qxc
: ð5Þ

Interchanging X and Y in (5) and subtracting the resulting formula from (5),

we get

LpXoðYÞ �LpYoðXÞ ¼ ðX cY a � Y cX aÞ qoa

qxc
þ ðX cY a

b � Y cX a
b Þ

qob
a

qxc

� ðX c
b Y

a
c � Y c

b X
a
c Þob

a þ X c qY
a

qxc
� Y c qX

a

qxc

� �
oa

þ X c
b Y

a
c � Y c

b X
a
c þ X c qY

a
b

qxc
� Y c qX

a
b

qxc

� �
ob

a ð6Þ

where we added and subtracted ðX c
b Y

a
c � Y c

b X
a
c Þob

a in the LHS of (6). In view of

(2) and (4), the sum of the last two terms in (6) is h½X ;Y � so that (6) becomes the

well-known formula

LpXoðYÞ �LpYoðXÞ ¼ doðX ;YÞ þ o½X ;Y � ð7Þ

where

doðX ;YÞ ¼ ðX cY a � Y cX aÞ qoa

qxc
þ ðX cY a

b � Y cX a
b Þ

qob
a

qxc

� ðX c
b Y

a
c � Y c

b X
a
c Þob

a : ð8Þ

If o i
j ¼ d ij , note that the last term in (8) vanishes since TrðabÞ ¼ TrðbaÞ where

Tr denotes trace.

3. Parallelism as splitting

Definition 3.1. A splitting of p1;0 : U1 ! U0 is a morphism of groupoids

e : U0 ! U1 such that p1;0 � e ¼ id.

So a splitting e assigns to any ordered pair ðp; qÞ a 1-arrow from p to q and this

assignment preserves composition and inversion of arrows. We will denote eðp; qÞ
by ep;q. Further, e is di¤erentiable and eðU0Þ is an imbedded submanifold of U1.

Note that ep;p ¼ 1-arrow of the identity map at p. Also, a 1-arrow f p;q from p to
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q determines an isomorphism ð f p;qÞ� : Tp ! Tq and two 1-arrows are identical if

and only if they determine the same isomorphism. This observation supplies the

proof of the following simple

Lemma 3.2. The following are equivalent:

(i) There exists a splitting e : U0 ! U1.

(ii) M is parallelizable.

Henceforth, we always assume that M is parallelizable with a splitting e which

we fix once and for all. The splitting e is the analog of a torsionfree connection.

Note that geometry (¼ parallelism) and connection (¼ e) are identical objects in

the present framework.

Let ðU ; xiÞ, ðV ; yiÞ be any two coordinate patches on M. The splitting e is

of the form e ij ðx; yÞ on U � V . We call the di¤erentiable functions e ij ðx; yÞ the

components of e on U � V . The isomorphism ðex;yÞ� is given by X iðxÞ !
e ij ðx; yÞX jðxÞ ¼ Y iðyÞ in coordinates. We will repeatedly use the local formulas

e iaðy; zÞeaj ðx; yÞ ¼ e ij ðx; zÞ, e ij ðx; xÞ ¼ d ij in the following sections.

4. The curvatures eRR(e), bRR(e)

Let p a ðU ; xiÞ. We choose xðpÞ a Tp arbitrarily and define a vector field x ¼ ðX iÞ
on ðU ; xiÞ by

X iðxÞ ¼def e iaðp; xÞX aðpÞ: ð9Þ

Definition 4.1. A vector field Q is called e-invariant if ðep;qÞ�QðpÞ ¼ QðqÞ,
p; q a M.

We denote the Lie algebra of vector fields on M by XðMÞ and the vector space

of e-invariant vector fields by XeðMÞ. Clearly x a XeðMÞ is uniquely determined

by xðpÞ for any p a M and therefore dimXeðMÞ ¼ dimM. However, XeðMÞ need
not be a Lie algebra, that is, we may not have ½XeðMÞ;XeðMÞ�HXeðMÞ. Some

x ¼ ðX iÞ a XeðMÞ is given by (9) on ðU ; xiÞ.
Di¤erentiating (9) and evaluating at x ¼ p, we obtain

qX i

qx j
ðpÞ ¼ qe iaðp; xÞ

qx j

� �
x¼p

X aðpÞ ð10Þ

We define

G i
jkðxÞ ¼def qe ikðx; yÞ

qy j

� �
y¼x

: ð11Þ
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Note that G i
jkðxÞ need not be symmetric in j, k. This fact will be of fundamen-

tal importance below. (10), (11) show that ðG i
jkÞ define a map of vector bundles

~GG : T ! J1T ; X i 7! ðX i;G i
jaX

aÞ: ð12Þ

We have the exact sequence

0 ! KerðpÞ ! J1T !p T ! 0 ð13Þ

where KerðpÞUT � nT . So p � ~GG ¼ idT and ~GG defines a splitting of the extension

(13).

Now let Q ¼ ðX iÞ be a vector field. We have the PDE on XðMÞ defined by

j1ðQÞ ¼ ~GGðQÞ; qX i

qx j
¼ G i

jaX
a: ð14Þ

We define eRRðeÞ by

eRRðeÞ irj;k ¼def
qG i

jk

qxr
þ Ga

rkG
i
ja

" #
½r; j�

ð15Þ

where ½rj� denotes alternation. It is easy to show that eRRðeÞ a 52ðT �ÞnT �nT .

A straightforward computation using (14) shows that eRRðeÞ ¼ 0 is the integrability

condition of (14). Equivalently, we can define e‘‘jX
i ¼def qX i

qx j � G i
jaX

a a T � nT

which gives e‘‘r
e‘‘jX

i � e‘‘j
e‘‘rX

i ¼ eRRðeÞ irj;aX a. Note that the sign of G i
jaX

a we use

in e‘‘jX
i is the opposite of the one in tensor calculus: we could define G i

jkðxÞ byh
qe i

k
ðx;yÞ
qx j

i
y¼x

. Di¤erentiating e iaðy; xÞeaj ðx; yÞ ¼ d ij and evaluating on the diagonal

we get
h
qe i

k
ðx;yÞ
qy j

i
y¼x

¼ �
h
qe i

k
ðx;yÞ
qx j

i
y¼x

.

Lemma 4.2. x a XðMÞ belongs to XeðMÞ if and only if it is a solution of (14). In

particular eRRðeÞ ¼ 0.

Proof. Since p is arbitrary in (10), any x a XeðMÞ is a solution of (14). ThereforeeRRðeÞ ¼ 0 by the definition of eRRðeÞ. Conversely, let Q a XðMÞ be a solution of (14).

We choose p a ðU ; xiÞ and extend QðpÞ to an e-invariant x on M. Now Q, x both

solve (14) and have the same initial condition at p. By uniqueness, Q ¼ x on some

neighborhood p a U HU . Therefore, the set A ¼def fp a M j QðpÞ ¼ xðpÞgA j is

both open and closed in M and we conclude A ¼ M. r

To clarify the relation between (12), (14), (15) and the formalism of connec-

tions on principal bundles, we now choose p a ðU ; xiÞ and define

G i
jkðp; xÞ ¼def qe

i
bðp; xÞ
qx j

ebkðx; pÞ: ð16Þ
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We claim that G i
jkðp; xÞ is independent of p. Di¤erentiating e iaðq; xÞeaj ðp; qÞ ¼

e ij ðp; xÞ, we obtain

qe iaðq; xÞ
qxk

eaj ðp; qÞ ¼
qe ij ðp; xÞ
qxk

: ð17Þ

Multiplying (17) with e ibðq; pÞebj ðx; qÞ ¼ e ij ðx; pÞ and summing over j gives

G i
jkðq; xÞ ¼ G i

jkðp; xÞ as claimed. Now setting p ¼ x in (16), we conclude

G i
jkðp; xÞ ¼ G i

jkðxÞ: ð18Þ

We now fix p a M and a coordinate system around p once and for all and con-

sider the principal bundle U
ðpÞ
1 ¼def 6

x AM Up;x ! M with structure group Up;pU
GLðn;RÞ. This principal bundle can be identified (not canonically) with the prin-

cipal frame bundle of M. Now e trivializes this bundle as x ! ep;x and therefore

defines a flat connection with trivial monodromy. The components of this connec-

tion are given by (18) and its curvature is eRRðeÞ. However, the horizontal lift to the

principal bundle U
ðpÞ
1 ! M is not given by (12) but by (21) below. We define the

Lie algebra bundle L ¼def 6
q AM LðUq;qÞ where LðUq;qÞ denotes the Lie algebra

of Uq;q. Since LUT � nT , we have eRRðeÞ a 52ðT �ÞnL. This flat connection

determines a flat connection on the associated tangent bundle which is given by

(12). This gives another reason (more familiar than Lemma 4.2) why we should

have eRRðeÞ ¼ 0.

Now

G i
jk � G i

kj ¼
def

T i
jk ¼ torsion: ð19Þ

As for bRRðeÞ, following ½23� (see also ½3� for a di¤erent but equivalent definition)

we define

LXx ¼def ½pX ; x� þ ixDðXÞ ð20Þ

where D : J1T ! T � nT is Spencer operator locally given by ðX i;X i
j Þ !

ðqX i

qx j � X i
j Þ. Therefore LX : T ! T is a first order di¤erential operator. To em-

phasize the analogy with eRRðeÞ, we denote LGðq=qxiÞ by ‘̂‘i. Using (2) and (20) we

find ‘̂‘jX
i ¼ qX i

qx j � G i
ajX

a which gives another splitting ĜG of (13) defined by

ĜG : T ! J1T ; X i 7! ðX i;G i
ajX

aÞ: ð21Þ

If T i
jk ¼ 0, then clearly ~GG ¼ ĜG. We define

bRRðeÞ irj;k ¼def
qG i

kj

qxr
þ Ga

krG
i
aj

" #
½r; j�

ð22Þ
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and check that bRRðeÞ ¼ 0 is the integrability condition of qX i

qx j ¼ G i
ajX

a. It

is also straightforward to check b‘‘r
b‘‘jX

k � b‘‘j
b‘‘rX

k ¼ bRRðeÞkrj;aX a. Like eRRðeÞ,bRRðeÞ a 52ðTÞnT � nT .

Clearly ~GG½x; h� � ½~GGx; ~GGh� a KerðpÞ for x; h a XðMÞ. The same statement holds

for ĜG. Now a straightforward computation using (2), (12) and (21) gives the

formulas

ð~GG½x; h� � ½~GGx; ~GGh�Þ ij ¼ bRRðeÞ iab; jX aY b ð23Þ

ðĜG½x; h� � ½ĜGx; ĜGh�Þ ij ¼ eRRðeÞ iab; jX aY b ¼ 0 ð24Þ

where x ¼ ðX iÞ, h ¼ ðY iÞ.
Now (24) shows that ĜGðTÞH J1T is a subalgebroid which is the algebroid

of eðU0ÞHU1. In fact, the splitting x ! ĜGx is the horizontal lift to the principal

bundle U
ðpÞ
1 ! M which is trivialized by e. On the other hand, the splitting (12) is

conceptually di¤erent as we will see in Sections 5, 6. The pair ð~GG; ĜGÞ is a dual

pair of a‰ne connections according to [2], [3]. Clearly, T i
jk ¼ 0 implies bRRðeÞ ¼eRRðeÞ ¼ 0, but bRRðeÞ need not vanish in general as we will see below.

Finally, using (2) and (20) it is easy to check

LXLYx�LYLXx ¼ L½X ;Y �x: ð25Þ

Therefore (25) defines a representation of J1T on T . More generally, Jkþ1T

has a representation on JkT (called association in [23], see Definition 8.1 on

p. 362) defined by LXx ¼def ½p1X ; x� � ip2xDðXÞ where X , x are sections of

Jkþ1T ! M, JkT ! M; and p1 : Jkþ1T ! JkT , p2 : Jkþ1T ! T are projections

([23], Lemma 8.32). This association is used in [23] to study deformation coho-

mology and rigidity as the culmination of this book (p. 354–393). These concepts

are studied also in [8] for a general Lie algebroid A, but it seems to us that the

theory introduced in [8] reduces to [23] if AH JkT .

5. A closed 1-form

We define

Tr bRRðeÞ ¼def bRRðeÞarj;a ¼
qGa

aj

qxr

� �
½r; j�

: ð26Þ

The second equality in (26) follows from (22) since ½Ga
brG

b
aj �½r; j� ¼ 0.

We will now define a special 1-form o of J1T . Recall the algebraic bracket

f ; gp : ðJ1TÞp � ðJ1TÞp ! Tp: ð27Þ
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A section X of J1T defines the linear map

XðpÞ : Tp ! Tp; xðpÞ 7!
�
XðpÞ; ~GG

�
xðpÞ

��
p
:

We define o by

oðXÞ ¼def TrðXÞ: ð28Þ

Clearly o is a 1-form of J1T .

Proposition 5.1. o is closed but not locally exact.

Proof. If X ¼ ðX i;X i
j Þ, Y ¼ ðY i;Y i

j Þ, then (27) is given by

fX ;Yg i ¼ X aY i
a � Y aX i

a : ð29Þ

Thus we get fx; ~GGhg i ¼ X aG i
abY

b � Y aX i
a where x ¼ ðX iÞ, h ¼ ðY iÞ. So the

the linear map (28) is ðX i;X i
j Þ : Y i ! X aG i

abY
b � Y aX i

a and we deduce

TrðXÞ ¼ X aGb
ab � X a

a : ð30Þ

Now (4), (28) and (30) show

o ¼ ðo i;o i
j Þ ¼ ðGa

ia;�d ij Þ: ð31Þ

Substituting (31) into (8), we get

doðX ;YÞ ¼ X aY c qGb
ab

qxc
� qGb

cb

qxa

� �
¼ Tr eRRðeÞðpX ; pYÞ ¼ 0: ð32Þ

If df ¼ o locally, (31) implies
� qf

qxi ; 0
�
¼ ðGa

ia;�d ij Þ, an equality which does not

hold for any f . r

Proposition 5.1 shows that the complex computing the cohomology of an

algebroid need not be locally exact at the level of 1-forms, which, we believe, is a

serious defect from the point of view of characteristic classes since a closed form in

such a complex has no interpretation as an obstruction. This fact makes o un-

interesting from our standpoint and we will use it as a tool for a more relevant

construction. For this purpose, note that the algebraic bracket (27) defines the

alternating bilinear map

½ ; �p : Tp � Tp ! Tp;
�
xðpÞ; hðpÞ

�
7!

�
~GG
�
xðpÞ

�
; ~GG

�
hðpÞ

��
p
: ð33Þ
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We define an ordinary 1-form w on M by

wðxÞ ¼def Tr½x; � �: ð34Þ

Clearly, wðxÞ ¼ oð~GGxÞ,

Proposition 5.2. dw ¼ Tr bRRðeÞ.

Proof. (34), (33) and (29) give wðxÞ ¼ ðGb
ab � Gb

baÞX a or

wi ¼ Ga
ia � Ga

ai: ð35Þ

Using (35), we compute

ðdwÞji ¼
qGa

ia

qx j
� qGa

ai

qx j

� �
½ j; i�

¼ qGa
ai

qx j

� �
½ j; i�

since
qGa

ia

qx j

� �
½ j; i�

¼ Tr
� eRRðeÞ

�
ji
¼ 0

¼ Tr bRRðeÞji by ð26Þ:

ð36Þ

r

The derivation of (35) shows that T i
jkðpÞ ¼ G i

jkðpÞ � G i
kjðpÞ is a HomðTp;TpÞ-

valued 1-form in the present framework: j is the 1-form index and i, k are the

matrix indices. This interpretation of torsion will be of fundamental importance

in the construction of secondary characteristic classes in Section 8.

Therefore, w is closed in the de Rham complex if and only if Tr bRRðeÞ ¼ 0. If

we assume T i
jk ¼ 0, then dw ¼ Tr bRRðeÞ ¼ Tr eRRðeÞ ¼ 0. In fact, (19) and (35) show

that T i
jk ¼ 0 implies w ¼ 0! The condition T i

jk ¼ 0 is very strong: If M is com-

pact, it forces M to be of the form G=D where G is the a‰ne linear group

ALðn;RÞ and DHG is a discrete subgroup (see [16], Theorem 4.2). However,

our assumption in the next section will allow G to be any connected Lie group.

6. From Lie algebroid to Lie algebra

Proposition 6.1. The following are equivalent:

(i) bRRðeÞ ¼ 0:

(ii) ~GGðTÞH J1T is a subalgebroid.

(iii) ½XeðMÞ;XeðMÞ�HXeðMÞ.

Proof. The equivalence (i) , (ii) follows from (23).

464 E. Abadoğlu and E. Ortaçgil



(iii) ) (i): Let x; h a XeðMÞ. We have j1½Q; g� ¼ ½ j1Q; j1g� for any Q; g a XðMÞ
by (3). By Lemma 4.2, j1Q ¼ ~GGðQÞ for any Q a XeðMÞ and therefore j1½x; h� ¼
~GGð½x; h�Þ since ½x; h� a XeðMÞ. So we deduce ~GGð½x; h�Þ ¼ ½~GGx; ~GGh� x; h a XeðMÞ. If

ðxiÞ is a basis for XeðMÞ, any Q a XðMÞ can be written as Q ¼ f ixi for some func-

tions f i on M and the conclusion follows since bRRðeÞðQ; gÞ is linear in its arguments

Q, g.

(i) ) (iii): Let x; h a XeðMÞ. Now (3), (23) and Lemma 4.2 give j1½x; h� ¼
~GGð½x; h�Þ. Therefore ½x; h� is a solution of (14) and the conclusion follows from

Lemma 4.2. r

We will denote the conditions of Proposition 6.1 by A. Propositions 5.2, 6.1

now give

Corollary 6.2. A implies dw ¼ 0.

If xðiÞ is a basis of XeðMÞ, then ½xðiÞ; xð jÞ�k ¼ caijx
k
ðaÞ for some functions caij on M.

These functions are constant if and only if (iii) of Proposition 6.1 holds. We now

make the following

Definition 6.3. If a di¤erentiable manifold M admits a splitting e such that A

holds, then M together with e is called a local Lie group.

Our definition of local Lie group coincides with the one given in [20] in view of

Theorem 18 in [20] and Proposition 6.1. For a local Lie group M, we will con-

struct in Section 7 a Lie group ~GG (see the proof of Proposition 7.4) whose Lie

algebra can be identified with XeðMÞ.
Henceforth in this section we assume that M is a local Lie group. Therefore

½w� a H 1
dRðM;RÞ. Recalling the formula wðxÞ ¼ oð~GGxÞ, we may identify w with

the restriction of o to ~GGðTÞ. Unlike o, w is clearly locally exact and can be also

globally exact in the de Rham complex. Our main concern in Section 7 will be the

following

Question: What is the obstruction to the exactness of w?

We now define the evaluation map

e : XeðMÞ ! Tp; x ! xðpÞ; ð37Þ

where p a M is arbitrary. Recalling the alternating bilinear map ½ ; �p defined by

(33), we have

Proposition 6.4. e preserves brackets and is a Lie algebra isomorphism.

Proof. This is a straightforward verification using (9) and (33). r
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Proposition 6.4 shows that the Lie algebra structure of XeðMÞ is determined

at any point p a M in terms of ½ ; �p. The Jacobi identity imposes now restric-

tions on the components G i
jkðpÞ which we do not write down explicitly as we

do not use them. It is not di‰cult to check that we now have ðep;qÞ�½x; h�p ¼
½ðep;qÞ�x; ðep;qÞ�h�q and w is e-invariant: wp

�
xðpÞ

�
¼ wq

�
ðep;qÞ�xðpÞ

�
.

7. [w] as an obstruction to globalizability

When is a manifold a Lie group? This question is quite old and studied by several

authors, for instance, see [12], [13], [26] for proofs based on the formalism of

Maurer–Cartan forms. A di¤erent proof is outlined in [2] which is more in the

spirit of this paper: assuming A, the dual pair of flat a‰ne connections ð~GG; ĜGÞ
imposes a local Lie group structure on M by Theorem A in [2]. We will give a

slightly di¤erent proof of this fact in this section which unifies the dual pair

ð~GG; ĜGÞ as the single object e and the curvatures eRRðeÞ, bRRðeÞ as RðeÞ which is the

curvature of e from our standpoint. Our proof will also interpret the obstruction

½w� to globalizability of a local Lie group as a secondary characteristic class in

view of Corollary 6.2 and Proposition 5.2.

By the definition of a 1-arrow, for any p a ðU ; xiÞ and q a ðV ; yiÞ, there exists
a local di¤eomorphism f with f ðpÞ ¼ q satisfying

qf i

qx j
ðpÞ ¼ e ij

�
p; f ðpÞ

�
: ð38Þ

Thus the splitting e determines a global PDE on U0 ¼ M �M which is locally

given by (38). Note that f in (38) depends on the point ðp; qÞ and we may not be

able to find some f which works for all p a U as the PDE (38) may not admit any

local solutions. The integrability condition of (38) is given by

qe ij ðx; yÞ
qxk

þ
qe ij ðx; yÞ

qya
eakðx; yÞ

" #
½kj�

¼def RðeÞ ikjðx; yÞ ¼ 0: ð39Þ

If (38) admits a solution f with f ðpÞ ¼ q for any ðp; qÞ a U � V , then clearly

RðeÞ ikjðx; yÞ ¼ 0 on U � V . Conversely, by the well-known existence and unique-

ness theorem for first order systems of PDE’s, if RðeÞ ikjðx; yÞ ¼ 0 on U � V , then

we may assign any 1-arrow in eðU0Þ with source at p a U and target at q a V as

initial condition and solve (38) uniquely for some f on U HU satisfying f ðpÞ ¼ q.

Definition 7.1. e is flat if for any p; q a M, there exist neighborhoods p a ðU ; xiÞ,
q a ðV ; yiÞ such that RðeÞðx; yÞ ¼ 0 on U � V .
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It is easy to check that RðeÞðp; qÞ a L2ðT �
p ÞnTq. In particular, flatness has

a meaning independent of coordinates. Note that RðeÞ is defined on M �M and

not on M. Also, RðeÞðp; pÞ ¼ 0 since identity di¤eomorphism is the unique solu-

tion of (38). So RðeÞ vanishes identically on the diagonal of M �M.

Now suppose e is flat. Since e preserves the composition and inversion of

1-arrows, the local di¤eomorphisms which integrate these 1-arrows form a

pseudogroup with the property that any local di¤eomorphism of this pseudogroup

is determined on its domain by any of its 1-arrows. We denote this pseudugroup

by Se. Clearly, if f a Se, then all 1-arrows of f belong to eðU0Þ by (38).

Now let f1 a Se with domain U1 and aðtÞ, 0a ta 1, a (continuous) path in M

with að0Þ a U1. Suppose there exist open sets Ui, 1a ia k, which cover the im-

age of a and fi a Se with domain Ui such that fi ¼ fj on Ui BUj. We will call this

data a continuation of f1 along a. The continuation of f a Se along a is unique

with the obvious meaning of uniqueness. Since f a Se is determined by its

1-arrows, continuing f is the same as continuing its 1-arrow with source at að0Þ.

Definition 7.2. Suppose e is flat. If all elements of Se can be continued along

paths, then e is complete.

Lemma 7.3. If M is compact, then e is complete.

Proof. Let f a Se with domain U and aðtÞ be a path with að0Þ ¼ p a U . Let

f ðpÞ ¼ q and f p;q denote the 1-arrow of f . Therefore f p;q has a (unique) contin-

uation f aðtÞ; f ðaðtÞÞ for small t. Let t0 ¼def supft a ð0; 1� j f p;q has a continuation on

ð0; tÞg. Let bðtÞ denote the curve traversed by the targets of the 1-arrows as their

source is continued along a. Since b is locally the image of a by a local di¤eomor-

phism belonging to Se, b is continuous. Letting tn ! t�0 , bðtnk Þ ! r a M since M

is compact. Since b is continuous, we conclude bðtÞ ! r as t ! t�0 . Thus we

obtain a 1-arrow gaðt0Þ; r which belongs to eðU0Þ since eðU0ÞHU1 is closed. Since

RðeÞ ¼ 0, we can assign gaðt0Þ; r as initial condition and solve (38) uniquely for

some g a Se such that the 1-arrow of g is gaðt0Þ; r, which will give a contradiction

unless t0 ¼ 1. r

Now let ~GG be any connected Lie group and DH ~GG a discrete subgroup. We

call the left coset space ~GG=D a discrete quotient.

The geometric meaning of flatness is clarified by the following

Proposition 7.4. If M is a discrete quotient, then M posesses a canonical flat e.

Conversely, let e be a flat splitting. If e is complete, then M is a discrete quotient.

Proof. For the first statement, let p : ~GG ! ~GG=D ¼ M be the covering map. It

is well known that M is parallelizable. In fact, let p; q a M. Since the action
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of D on ~GG commutes with p, any 1-arrow on ~GG (induced by the action of some

g a ~GG) with source in p�1ðpÞ and target in p�1ðqÞ projects to the same 1-arrow

on M from p to q. So we get a splitting e on M. Now RðeÞ ¼ 0 because the

action of ~GG on itself projects locally to M giving a pseudogroup on M whose

local di¤eomorphisms integrate these 1-arrows on M (clearly, this pseudugroup

is SeÞ.
For the converse, let p : ~MM ! M be the universal covering map. Se pulls back

to a pseudogroup ~SSe on ~MM with the same property: any ~ff a ~SSe is determined on

its domain by any of its 1-arrows. Let ~ff a ~SSe and let ~aaðtÞ, 0a ta 1, be a path

with ~aað0Þ a Domð ~ff Þ. Now ~ff and ~aaðtÞ project to f a Se and aðtÞ (restricting

Domð ~ff Þ if necessary) and we can translate f along a by Definition 7.2, obtaining

some g a Se with að1Þ a DomðgÞ. Lifting this ‘‘analytic continuation’’ to ~MM, we

obtain some ~gg a ~SSe with ~aað1Þ a Domð~ggÞ. Since ~MM is simply connected, the stan-

dard monodromy argument shows that this analytic continuation is independent

of the choice of the path from ~aað0Þ to ~aað1Þ. Therefore, any ~ff a ~SSe extends

uniquely to a global di¤eomorphism ~ff e on ~MM. We define ~GG ¼def f ~ff e j ~ff a ~SSg and

check that ~GG is a group. Clearly ~GG acts simply transitively on ~MM. In fact, it is not

di‰cult to show that ~GG is a Lie group so that ~MM is the underlying manifold of ~GG.

Letting D ¼ ðdeck transformations on ~MMÞUp1ðMÞ, we get ~GG=D ¼ M and M is a

discrete quotient. r

The next proposition will add another equivalent condition to the conditions of

Proposition 6.1 which we denoted by A.

Proposition 7.5. RðeÞ ¼ 0 if and only if A holds.

Proof. Suppose RðeÞ ¼ 0 on M �M. We di¤erentiate the LHS of (39) with re-

spect to y and set y ¼ x, which gives bRRðeÞ ¼ 0 after some computation using

(11). For the converse, we first observe that RðeÞ ¼ 0 on M �M if and only if

RðeÞ ¼ 0 on some neighboorhood U �U of ðp; pÞ for any p a M. To see this,

let p; q a M and consider the 1-arrow ep;q. We choose any path from p to q and

take a covering ðUiÞ of this path such that RðeÞ ¼ 0 on Ui �Ui. We subdivide this

path into small paths such that each small path is contained in some Ui. Let pk,

pkþ1 be the initial and terminal points of the k 0th small path. The composition of

the 1-arrows epk ; pkþ1 is ep;q and each 1-arrow epk ; pkþ1 integrates by assumption to a

local di¤eomorphism which is a solution of (38). Now the composition of these

local diffeomorphisms integrates ep;q and therefore is a solution of (38) which

shows RðeÞðp; qÞ ¼ 0, proving the claim.

Now suppose bRRðeÞ ¼ 0 and let ðU ; xiÞ be any coordinate patch. We choose

some p a U , a basis of the tangent space at p and extend this basis to e-invariant

vector fields xðiÞ on U , 1a ia n. Now ½xðiÞðxÞ; xð jÞðxÞ� ¼ caijðxÞxðaÞðxÞ for some
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functions caijðxÞ on U . Since bRRðeÞ ¼ 0, the functions caijðxÞ are constant by

Propositions 6.1 and 7.5. By Lie’s Third Fundamental Theorem (LTFT), there

exists a local Lie group acting on U (shrinking U if necessary) with infinitesimal

generators xðiÞ. Now the proof of LTFT (see [25], p. 398–415) shows that the

1-arrows of the local di¤eomorphisms induced by this local Lie group action coin-

cide with the 1-arrows of eðU0Þ. ThusRðeÞ ¼ 0 onU �U and therefore onM �M

since U is arbitrary. r

In view of Propositions 6.1, 7.5, a local Lie group is a di¤erentiable manifold

M together with a flat splitting e. We do not know whether a parallelizable man-

ifold M can be a local Lie group in di¤erent ways, that is, whether it can admit

two flat splittings e, e with nonisomorphic Lie algebras XeðMÞ, XeðMÞ. Hence-

forth, the statement ‘‘M is a local Lie group’’ will always refer to M together

with its flat splitting which we fix once and for all.

Proposition 6.1 shows that the condition bRRðeÞ ¼ 0 is equivalent to the hypoth-

esis of LTFT and the proof of Proposition 7.5 shows that RðeÞ ¼ 0 is equivalent

to its conclusion. Therefore, the program outlined in the Introduction is nothing

but a natural generalization of LTFT from simply transitive actions (where the

geometric order m ¼ 0) to transitive and e¤ective actions (where m is arbitrary).

As we see from the proof of Proposition 7.5, ~SSe globalizes to the Lie group ~GG

with underlying manifold ~MM. However, Se may globalize to a Lie group G

already on M, that is, e may have ‘‘trivial monodromy’’ already on M (on the

other hand, recall that e, as the trivialization of the principal bundle U
ðpÞ
1 ! M,

has necessarily trivial monodromy).

Definition 7.6. A local Lie group M is globalizable if any f a Se extends (neces-

sarily uniquely) to a global di¤eomorphism of M.

So M is globalizable if and only if there are no obstructions to the existence of

global solutions of (38) in which case the global di¤eomorphisms of Se act simply

transitively on M and have the structure of a Lie group G. In this case, we simply

say that M is a Lie group. Observe that the statement ‘‘M is a Lie group’’ refers

to two di¤erent objects: the pair ðG;MÞ where G is a transformation group of M

which acts simply transitively and the abstract Lie group G. We can identify G

and M by choosing some point e a M and map g a G to its 0-arrow from e to

gðeÞ. Clearly, this map G ! M is a bijection, in fact, a di¤eomorphism, but there

is no canonical identification. We will continue to make such identification as we

did already in the proof of Proposition 7.4.

Definition 7.6 of globalizability coincides with the one given in [20] if M is

complete.
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Using the notation and setting of Proposition 7.4, the next proposition charac-

terizes globalizability of M in terms of the discrete subgroup DH ~GG.

Proposition 7.7. M is a Lie group if and only if DH ~GG is a normal (hence central)

subgroup.

Proof. If DH ~GG is a normal subgroup, then p : ~GG ! ~GG=D ¼ M is a homomor-

phism of Lie groups and surely M is globalizable.

For the converse, suppose that M is globalizable. Let pðeÞ ¼ x, g a ~GG,
pðgÞ ¼ y. Clearly p

�
dð0Þ

�
¼ x for all dð0Þ a D. Now the action of g on ~GG defines

a local di¤eomorphism which maps a neighborhood of the identity e to a

neighborhood of g. This local di¤eomorphism projects to some f ð1Þ a Se with

f ð1ÞðxÞ ¼ y. We choose a path AðsÞ, 0a sa 1 with Að0Þ ¼ e, Að1Þ ¼ dð0Þ and
consider the loop p � A ¼ A at x. We now continue f ð1Þ along the loop A turning

the source x to its initial value. Thus the target f ð1ÞðxÞ ¼ y traces a curve starting

from y. Since f ð1Þ globalizes by assumption, y also turns to its initial value

and this curve is also a loop at y. We lift this loop to a curve BðsÞ, 0a sa 1,

which starts from Bð0Þ ¼ g. Since p
�
Bð1Þ

�
¼ p

�
Bð0Þ

�
¼ y, there exists a unique

dð1Þ a D with Bð1Þ ¼ dð1Þg. We now lift the continuation of f ð1Þ a Se to ~GG as

in the proof of Proposition 15. Since the action of g is a global di¤eomorphism

and g remains the same during this continuation, we conclude gAðsÞ ¼ BðsÞ for

all s. Therefore gdð0Þ ¼ gAð1Þ ¼ gBð1Þ ¼ dð1Þg. We claim that dð0Þ ¼ dð1Þ.
This will finish the proof since g and dð0Þ are both arbitrary in gdð0Þ ¼ dð0Þg.

The prove the claim, we choose a path gðtÞ with gð0Þ ¼ e, gð1Þ ¼ g. Replacing

g ¼ gð1Þ, f ð1Þ a Se with gðtÞ, f
�
p
�
gðtÞ

�
a Se and repeating the above argu-

ment, we obtain a loop at p
�
gðtÞ

�
which lifts to a curve Hðs; tÞ, 0a sa 1

with Hð0; tÞ ¼ gðtÞ. Clearly, Hðs; 0Þ ¼ AðsÞ and Hðs; 1Þ ¼ BðsÞ. By construction,

Hðs; tÞ is continuous on ½0; 1� � ½0; 1� and therefore Hð1; tÞ is a curve from dð0Þ to
dð1Þg. Since p

�
Hð0; tÞ

�
¼ p

�
Hð1; tÞ

�
, there exists a unique dðtÞ a D satisfying

dðtÞgðtÞ ¼ Hð1; tÞ. We define F ðtÞ ¼def Hð1; tÞgðtÞ�1 a D for all t. Since D is dis-

crete and FðtÞ is continuous, F ðtÞ is constant which proves the claim. r

Recalling Definition 6.3, a Lie group is clearly a complete local Lie group.

The proof of the next corollary is immediate from the proof of Proposition

7.4.

Corollary 7.8. A simply connected and complete local Lie group is a Lie group.

Henceforth in this section, we assume that M is a complete local Lie group and

therefore a discrete quotient in view of Proposition 7.4.

Now, since the 1-form w is closed by Corollary 6.2, it is locally exact and our

aim is to find an explicit local primitive of w. For this purpose, we fix some e a M
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and a simply connected coordinate patch e a ðU ; xiÞ. For a; b a U , we define

ab a M as follows: since RðeÞ ¼ 0, the 1-arrows ee;a and ee;b integrate to local dif-

feomorphisms f ; g a Se with f ðeÞ ¼ a and gðeÞ ¼ b and f , g are both defined on

U since U is simply connected and e is complete. We define

ab ¼def ð f � gÞðeÞ ¼ f ðbÞ a M: ð40Þ

In (40) we adhere to the standard convention of composing from right to left.

Note that (40) depends on our choice of the base point e and ab may not be in U

unless a, b are su‰ciently close to e. At this point, it is worthwhile to observe that

the classical concept of local Lie group is modeled on this local structure, that is,

the set U together with the local multiplication (40), whereas a local Lie group M

according to Definition 6.3 is essentially a global concept. In particular, it may be

misleading to imagine a local Lie group M as an open neighborhood of identity in

some global Lie group G. In fact, the reader may have observed that it is possible

to define a Lie group as a globalizable local Lie group.

The local multiplication (40) determines the local left and right translations La,

Ra defined by LaðxÞ ¼ ax and RaðxÞ ¼ xa where a; x a U . Thus we may consider

the 1-arrows of La and Ra with source at e and target at a, that is j1ðLaÞe;a and

j1ðRaÞe;a which we want to compute now in coordinates.

Let f a Se, f ðeÞ ¼ a and f be defined on U . Also, for any x a U , let gx a Se

such that the di¤eomorphism y ! gxðyÞ is defined on U and is the unique solution

of (38) in the variable y satisfying the initial condition gxðeÞ ¼ x. We also have

geðyÞ ¼ y since the only solution of (38) which fixes e is identity on U . Now (40)

gives LaðxÞ ¼ ax ¼ ð f � gxÞðeÞ ¼ f ðxÞ and therefore

½ j1ðLaÞe;a� ij ¼
qf iðxÞ
qx j

� �
x¼e

¼ e ij ðe; aÞ: ð41Þ

We see from (41) that the assumption A is not needed to define j1ðLaÞe;a and

the ‘‘local left 1-arrows’’ are actually global as they coincide with the 1-arrows of e.

Similarly

½ j1ðRaÞe;a� ij ¼
q
�
ðgx � f ÞðeÞ

� i
qx j

" #
x¼e

¼
qgi

x

�
f ðeÞ

�
qx j

� �
x¼e

¼ qgi
xðaÞ
qx j

� �
x¼e

: ð42Þ

We see from (42) that the definition of j1ðRaÞe;a depends essentially on A and

‘‘right 1-arrows’’ are local and defined only on U . The following points are worth

mentioning: if a a M, b a U , then ab is still defined by (40), whereas to define

ba we must continue the domain of f so that it contains the point b, but continu-
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ations along di¤erent paths may give di¤erent values for f ðbÞ and it may be

impossible to define ba uniquely. Equivalently, we have the multiplication map

M �U ! M but not necessarily U �M ! M, in contrast to the classical defini-

tion of a local Lie group. It is due to this fact that left 1-arrows are global whereas

right 1-arrows are not. Also, left and right are reversed if we change our conven-

tion of composition from right to left in (40), which shows that left and right are

nonconcepts for the local Lie group M (even if it is globalizable!) whereas they are

honest concepts for the Lie group G.

We now define the function Ade : U ! Ue; e
1 by

AdeðaÞ ¼def ½ j1ðLaÞe;a��1 � j1ðRaÞe;a: ð43Þ

We call Ade the local adjoint map based at e. Using (41) and (42) we get

½AdeðaÞ� ij ¼ e ibða; eÞ
qgb

xðaÞ
qx j

� �
x¼e

: ð44Þ

Since AdeðeÞ ¼ ide; e, det
�
AdeðxÞ

�
is positive at x ¼ e and therefore positive on

U since it is nonzero and continuous.

Lemma 7.9. Let AðxÞ ¼ ½a i
j ðxÞ� be an n� n matrix whose entries are smooth func-

tions on an open set U HRn. Suppose that AðxÞ is invertible on U with inverse

BðxÞ ¼ ½b i
j ðxÞ�. Then

ðdetAÞ�1 q detðAÞ
qx j

¼ qac
b

qx j
b b
c : ð45Þ

Proof. (45) follows easily from the cofactor expansion of detðAÞ (see [27], p. 8,

formula 7.2). r

Note that the RHS of (45) is Tr
�
qA
qx j A

�1
�
. If detðAÞ is positive on U , then the

LHS of (45) is equal to

q log
�
detðAÞ

�
qx j

:

Proposition 7.10. �d
�
logðdetAdeÞ

�
¼ w on U .

Proof. We first show that �d
�
logðdetAdeÞ

�
and w have the same values at x ¼ e.

Using (44), Lemma 7.9, (11) and (35) we compute
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�
	
d
�
logðdetAdeÞ

�
ðeÞ



i
¼ � q

qyi
log det e

j
bðy; eÞ

qgb
xðyÞ
qxk

� �� �
x¼e;y¼e

¼ � q

qyi
ecbðy; eÞ

qgb
xðyÞ
qxd

� �� �
x¼e;y¼e

ðddc Þ

¼ � q

qyi
ecbðy; eÞ

qgb
xðyÞ
qxc

� �� �
x¼e;y¼e

¼ � qecbðy; eÞ
qyi

qgb
xðyÞ
qxc

þ ecbðy; eÞ
q2gb

xðyÞ
qyiqxc

" #
x¼e;y¼e

¼ � qecbðy; eÞ
qyi

� �
y¼e

ðdbc Þ � ðdcbÞ
q

qxc

qgb
xðyÞ
qyi

� �
x¼e;y¼e

¼ Gb
ibðeÞ �

q

qxb

qgb
xðyÞ
qyi

� �
x¼e;y¼e

¼ Gb
ibðeÞ �

qebi ðe; xÞ
qxb

� �
x¼e

¼ Gb
ibðeÞ � Gb

biðeÞ
¼ ½wðeÞ�i;

(46)

which proves the claim. Now let e a U another base point. It is easy to check

that

log
�
detAdeðxÞ

�
¼ log

�
detAdeðxÞ

�
þ log

�
detAdeðeÞ

�
: ð47Þ

Di¤erentiating (47) at x ¼ e and using (46), we get

�d
�
logðdetAdeÞ

�
ðeÞ ¼ wðeÞ; ð48Þ

which finishes the proof since e is arbitrary. r

Note that (43) defines Ad by the formula x ! g�1xg rather than the standard

one x ! gxg�1 which accounts for the minus sign in Proposition 7.10. The reason

for our choice is that it was easier to invert the local formula for j1ðLaÞe;a.
Now let M be a Lie group, that is, M be globalizable. We fix some e a M

and define the function Ad : M ! Ue; e
1 by (43). Observe that Ad is now defined

on M since right 1-arrows are globally defined since M is globalizable. Thus we

have

Proposition 7.11. w is exact on a Lie group M with primitive �d
�
logðdetAdeÞ

�
.
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We refer the reader to [15], Propositions 6.29, 6.34 for an intriguing relation of

the primitive �logðdetAdeÞ to the Maslov index. See also [9] for another interpre-

tation of Ade in �logðdetAdeÞ as a Nijenhuis tensor.

Proposition 7.12. Let f : M ! N be a smooth covering map. If N is a local Lie

group, then f determines a local Lie group structure on M and f �wN ¼ wM .

Proof. Straightforward using definitions. r

Proposition 7.13. Let ~GG be a connected Lie group, DH ~GG a discrete subgroup

and p : ~GG ! ~GG=D ¼ M the covering map. Then wM is exact if and only if

log
�
detðAd ~GGÞ

�
ðaxÞ ¼ x, a a D, x a ~GG, that is, the function log

�
detðAd ~GGÞ

�
is auto-

morphic with respect to D.

Proof. log
�
detðAd ~GGÞ

�
is constant on the orbits of D if and only if there exists

a function h on M ¼ ~GG=D with h � p ¼ log
�
detðAd ~GGÞ

�
. We choose an open

set U HH such that p : U ! V HM is a di¤eomorphism. Now w ~GG ¼
d log

�
detðAd ~GGÞ

�
¼ dðh � pÞ ¼ p�ðdhÞ on U . Therefore ðp�Þ�1ðw ~GGÞ ¼ wM ¼ dh

on V by Lemma 7.12. Since V is arbitrary, we conclude dh ¼ wM on M and the

conclusion follows. r

Recall that a connected Lie group is called unimodular if detðAdÞ ¼ 1. G is

unimodular if and only if it admits a nonzero invariant n-form.

Corollary 7.14. If M is the discrete quotient of a connected and unimodular Lie

group ~GG, then wM ¼ 0.

Proof. By Proposition 7.12 and Proposition 7.11, we have p�wM ¼ w ~GG ¼
d logðdetAdÞ ¼ 0. Therefore wM ¼ 0 since p is a local di¤eomorphism. r

Many important Lie groups are unimodular: abelian, nilpotent, compact,

semisimple and reductive. Now let BH SLð2;RÞ the Borel subgroup of upper

triangular matrices. An easy computation shows det ad a
0

b
c

	 
� �
¼ c

a
. Let DHB

be the subgroup of matrices of the form
	
2n

0
0
2�n



where n is an integer. Clearly D

is a discrete subgroup and detðAdÞ is not constant on D so that ½wB=D�A 0.

In (40) and therefore in Proposition 7.10 we assumed completeness of M.

However this assumption can be dropped since we can choose U su‰ciently small

in (40) so that all 1-arrows with source and target in U integrate to local di¤eo-

morphisms defined on U . Therefore ½w� is in force also if e is not complete.

Many explicit and nontrivial examples of incomplete local Lie groups are con-
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structed in [20] which fail to be globalizable. The example on p. 49 in [20] is even

simply connected! But such pathology can not occur if M is complete in view of

Corollary 7.8. We will postpone the study of these examples to some future work.

We will conclude this section with three remarks:

(1) If e is complete, A forces M to be a discrete quotient by Proposition 7.4 and

hence analytic. Therefore A is a strong condition. On the other hand, we only

need Tr bRRðeÞ ¼ 0 to prove dw ¼ 0 and not A. However, we are unable to attach

a separate geometric meaning to the condition Tr bRRðeÞ ¼ 0.

(2) We fix some e a M and a coordinate patch around e once and for all and

write e ij ðx; yÞ ¼ e iaðe; yÞeaj ðx; eÞ. Using the notation of [23], [24], we define a geo-

metric object w (not to be confused with the 1-form wÞ with components wi
j ðxÞ

over ðU ; xiÞ defined by wi
j ðxÞ ¼def e ij ðx; eÞ so that we have

e ij ðx; yÞ ¼ wi
aðyÞwa

j ðxÞ; wi
aðyÞwa

j ðyÞ ¼ d ij : ð49Þ

Replacing derivatives with jet sections in the transformation rule wi
j ðxÞ ¼

wi
aðyÞ

qya

qxi gives

wi
j ðxÞ ¼ wi

aðyÞ f a
i ðxÞ ð50Þ

which describes the association of the object w with the groupoid U1. Now (50) is

taken as the basis of the Maurer–Cartan form in [23], [24] (see [23], pp. 212–221,

316–317, [24], pp. 27–32, 246–249). Substituting (50) into (39), a straightforward

computation shows that the condition Rðx; yÞ ¼ 0 is equivalent to the second for-

mula on p. 28 in [24] which is

wa
j ðyÞwb

kðyÞ
qwi

bðyÞ
qya

� qwi
aðyÞ
qyb

� �
¼ wa

j ðxÞwb
kðxÞ

qwi
bðxÞ
qxa

� qwi
aðxÞ
qxb

� �
: ð51Þ

Thus both sides of (51) must be equal to the same constants cijk. It is shown in

[24] that (50) is formally integrable if and only if (51) holds. Thus we see that (50)

is a consequence of the existence of the splitting e and and the formal integra-

bility of (50), a concept which plays a fundamental role in the works [23], [24], is

equivalent to the condition RðeÞ ¼ 0.

Note that (16), (18) and (49) give

G i
kjðyÞ dyk ¼ qwi

aðyÞ
qyk

wa
j ðyÞ dyk: ð52Þ

The 1-form on the left-hand side of (52) has only local meaning. On the other

hand, wi
j ðyÞ ¼ e ij ðy; eÞ uniquely determines some g a Se in view of (40) and there-

fore we may write the right-hand side of (52) as ðdgÞg�1.
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(3) Let M be parallelizable with the splitting e. We fix e a ðU ; xiÞ, a tangent

vector Xe at e, and define the ODE for the unknown curve xðtÞ, 0a ta �,

xð0Þ ¼ e, by ðee;xÞ�ðXeÞ ¼ _xxðtÞ for x a U . In coordinates,

dxi

dt
¼ e iaðe; xÞX a; 1a ia n: ð53Þ

We call local solutions of (53) left 1-parameter curves. Di¤erentiating (53) at

x ¼ e and using (11), we get

d 2xi

dt2
ðeÞ � G i

abðeÞ
dxb

dt
ðeÞ dx

a

dt
ðeÞ ¼ 0 ð54Þ

which are the equations for geodesics (note again the minus sign in (54) which

arises from our convention of di¤erentiating with respect to the second argument

in (11)). Thus we can define left geodesic completeness of M. If M is a local Lie

group, then we can define locally also right 1-parameter curves and therefore

1-parameter subgroups. It is an interesting problem to study the relations between

these well-known objects (which is done to some extent in [14], pp. 26–47, 97–131)

and the relation between the concepts of completeness according to Definition 7.2

and geodesic completeness.

8. Odd degree forms

In this section we will define the higher order analogs of the closed 1-forms o and

w.

Turning back to (28), let X1; . . . ;Xk be sections of J1T . We define the k-form

ok of J1T by

okðX1; . . . ;XkÞ ¼def 1
k

X
s ASk

sgnðsÞTrðXsð1Þ � Xsð2Þ � � � � � XsðkÞÞ: ð55Þ

Clearly, o1 ¼ o.

Proposition 8.1. o2m ¼ 0, mb 1.

Proof. Consider the set K of k-tuples
�
sð1Þ; sð2Þ; . . . ; sðkÞ

�
where s is a

permutation. We define an equivalence relation P on K :
�
sð1Þ; . . . ; sðkÞ

�
P�

tð1Þ; . . . ; tðkÞ
�
if
�
sð1Þ; . . . ; sðkÞ

�
¼

�
tðiÞ; tði þ 1Þ; . . . tðkÞ; tð1Þ; . . . ; tði � 1Þ

�
for

some i, that is, two permutations are equivalent if they di¤er by a cyclic
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permutation. This equivalence relation is imposed by TrðabÞ ¼ TrðbaÞ. Now con-

sider the formal sum X
s ASk

sgnðsÞ
�
sð1Þ; sð2Þ; . . . ; sðkÞ

�
: ð56Þ

The proof reduces to the following combinatorial statement: If k is even and

we identify the equivalent k-tuples in (56), then (56)) vanishes. To prove this, we

choose two odd integers a, b with k ¼ aþ b. For some fixed s, we have

sgnðsÞ
�
sð1Þ; . . . ; sðaÞ; sðaþ 1Þ; . . . sðaþ bÞ

�
¼ ð�1Þab sgnðsÞ

�
sðaþ 1Þ; . . . sðaþ bÞ; sð1Þ; . . . ; sðaÞ

�
and all terms in (56) cancel in pairs. r

Using 1-arrows of e we can define e-invariant k-forms on M. Following our

convention for composition in Section 8, we will call these forms left invariant.

Exterior derivative of a left invariant form need not be left invariant, but this is

so if RðeÞ ¼ 0, that is, if M is a local Lie group. Thus we get a complex whose

cohomology H ��XeðMÞ
�
coincides with the Lie algebra cohomology of XeðMÞ.

The left invariant forms can be localized at any point p a M and we obtain a com-

plex at p with cohomology H �
p

�
XeðMÞ

�
. Since the evaluation map ep in (38) is

an isomorphism of Lie algebras, it induces an isomorphism e�p : H �
p

�
XeðMÞ

�
!

H ��XeðMÞ
�
. If q a M is another point, there exists a unique f a Se with

f ðpÞ ¼ q. Since the local di¤eomorphism f commutes with the exterior deriva-

tive, it induces an isomorphism f � : H �
q

�
XeðMÞ

�
! H �

p

�
XeðMÞ

�
and we obtain

the commutative diagram

H ��XeðMÞ
�

H �
q

�
XeðMÞ

� �������!f �

H �
p

�
XeðMÞ

�
:

ð57Þe �q e �p���! ���!

Now, we pull back the forms o2kþ1 defined by (55) to w2kþ1 on the local Lie

group M. Let X1;X2; . . . ;Xk be left invariant vector fields on M. Proposition

6.4, the derivation of (35) and (55) give the formula.

wkðX1; . . . ;XkÞ ¼
1

k

X
s ASk

sgnðsÞ tr
�
adðXsð1ÞÞ � � � � � adðXsðkÞÞ

�
: ð58Þ

As we noted at the end of Section 6, w1 is left invariant and (58) shows that

w2kþ1 is left invariant for all kb 0. Therefore the exterior derivative of w2kþ1

can be computed algebraically.
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Proposition 8.2. dw2kþ1 ¼ 0, kb 0.

Proof. If h1 � h2 � � � � � hk is a composition of some linear maps and s a Sk, we

define the composition

s � ðh1 � h2 � � � � � hkÞ ¼def hsð1Þ � hsð2Þ � � � � � hsðkÞ ð59Þ

and extend � linearly over sums of compositions. Using the notation (59), we now

have (omitting the constant factors),

dwkðX1; . . . ;Xkþ1Þ

¼
X
ia jþ1

ð�1Þ iþj
wkð½Xi;Xj�; . . . ; X̂Xi; . . . ; X̂Xj; . . . ;Xkþ1Þ

¼
X
ia jþ1

ð�1Þ iþj
X
s ASk

sgnðsÞ tr½s � ðad½Xi;Xj� � � � � � adXkþ1Þ�

¼
X
ia jþ1

ð�1Þ iþj
X
s ASk

sgnðsÞ tr½s � ð½adXi; adXj� � � � � � adXkþ1Þ�

¼
X
ia jþ1

ð�1Þ iþj
X
s ASk

sgnðsÞ tr
	
s �

�
ðadXi � adXjÞ � � � � � adXkþ1

�

�

X
ia jþ1

ð�1Þ iþj
X
s ASk

sgnðsÞ tr
	
s �

�
ðadXj � adXiÞ � � � � � adXkþ1

�

:

(60)

Now each term in the last sums in (60) contains a composition of k linear maps.

The value of trace does not change if we apply some k-cycle to its arguments. If

k is odd and s a Sk is a k-cycle, then sgnðsÞ ¼ 1. Using these facts, a straight-

forward computation shows that all terms in the last sum in (60) cancel in pairs.

We will omit the details. r

Observe that (58) and Proposition 8.2 define odd order characteristic classes in

the Lie algebra cohomology of any abstract Lie algebra g. We will denote these

classes by ½w2kþ1�g a H 2kþ1ðgÞ. In fact, one can replace ad with any representation

r : g ! V and still define these classes which however will depend on the represen-

tation as in [6]. We will not pursue this more general approach here.

If DHG a discrete subgroup, then ½w2kþ1�dR a H 2kþ1ðM;RÞ is defined in view

of Proposition 8.2. We also have ½w2kþ1�XðeÞ a H 2kþ1
�
XeðMÞ

�
. It is worthwhile

to observe that these cohomology classes are intrinsic characteristic classes

of the local Lie group M and are defined regardless of any foliation. If

½w2kþ1�XðeÞ ¼ 0, then clearly ½w2kþ1�dR ¼ 0 but the converse is false as shown by

our noncompact example in Section 8: ½w1�XðeÞ ¼ 0 if and only if w1 ¼ 0 whereas

we may have ½w1�dR ¼ 0 with nonconstant primitive �logðdetAdeÞ and therefore

w1A 0.
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Now let G ¼ SLð2;RÞ, DHG a cocompact discrete subgroup and F the

codimension one foliation on M defined by the left invariant vector fields

X ¼ 0 1

0 0

� �
, H ¼ 1 0

0 �1

� �
. Let GVðFÞ a H 3ðM;RÞ denote the Godbillon–

Vey class of this foliation (see [4], pp. 62–64 for details). To distinguish between

w2kþ1 on the local Lie groups G and M ¼ G=D, we will use the notations wG
2kþ1

and wM
2kþ1.

Proposition 8.3. ½wM
3 �dR ¼ GVðFÞ.

Proof. It su‰ces to check that wG
3 is a nonzero multiple of an invariant volume

form on SLð2;RÞ. Let X , H, Y be the basis of left invariant vector fields on

SLð2;RÞ where Y ¼ 0 0

1 0

� �
and X , H are as above. We define the invariant

volume form n on SLð2;RÞ by n ¼ X �bH �bY � where X �, H �, Y � are the dual

1-forms. On the other hand, (60) gives

wG
3 ðX ;H;YÞ ¼ 1

3
fTrðadX � adH � adYÞ þ TrðadY � adX � adHÞ

þ TrðadH � adY � adXÞ � TrðadX �AdY � adHÞ
� TrðadH � adX � adYÞ � TrðadY � adH � adXÞg

¼ TrfadX � adH � adYÞ � ðadX �AdY � adHÞg:

(61)

We have

½H;X � ¼ 2X ; ½H;Y � ¼ �2Y ; ½X ;Y � ¼ H: ð62Þ

Using (61) and (62), an easy computation gives wG
3 ðX ;H;YÞ ¼ �8 ¼

�8vðX ;H;YÞ and therefore wG
3 ¼ �8n. r

Proposition 8.3 gives rise to a natural and, we believe, intriguing question. Let

HHG be a subgroup of codimension k. The cosets of H foliate G and this

foliation descends to a foliation F on G=D with Godbillon–Vey class GVðFÞ a
H 2kþ1ðG=D;RÞ. On the other hand we also have ½w2kþ1�dR a H 2kþ1ðG=D;RÞ
which is defined even if G does not have any subgroup of codimension k.

Question: What is the relation between GVðFÞ and ½w2kþ1�dR?
Since ½w1�dR is an obstruction to globalizability, it is natural to expect that this

is true for all ½w2kþ1�dR, that is, ½w2kþ1�dR ¼ 0 if M is globalizable as we first

conjectured. However, the following example communicated to us by the referee
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shows that this conjecture is false: let G ¼ SOð3;RÞ with the Lie algebra suð3;RÞ
generated by

A ¼
0 1 0

�1 0 0

0 0 0

24 35; B ¼
0 0 1

0 0 0

�1 0 0

24 35; C ¼
0 0 0

0 0 1

0 �1 0

24 35: ð63Þ

We have

½A;C� ¼ B; ½B;A� ¼ C; ½C;B� ¼ A: ð64Þ

As in the proof of Proposition 8.3, (62) together with (59) gives wG
3 ðA;B;CÞ ¼

16A 0. Therefore wG
3 is again a volume form and is not exact since G is compact.

The above examples slð2;RÞ, suð3;RÞ are particular instances of a general

phenomenon. To see this, we continue to compute with the last equality in (62)

by replacing X , H, Y with arbitrary elements x, y, z in some abstract Lie algebra

g:

w3ðx; y; zÞ ¼ Tr
�
ðad x � ad y � ad zÞ � ðad x � ad z � ad yÞ

�
¼ Tr

�
ad x � ðad y � ad z� ad z � ad yÞ

�
¼ Trðad x � ad½y; z�Þ
¼ kðx; ½y; z�Þ

(65)

where k is Killing form.

Proposition 8.4. (i) ½w3�gA 0 if g is semisimple.

(ii) w3 ¼ 0 if and only if g is solvable.

Proof. (i) This follows from (65) and the proof of Theorem 21.1 in [5].

(ii) This is again (65) together with the well-known Cartan criterion for solv-

ability. r

The proof of Theorem 21.1 in [5] shows that w3 is not only left invariant but

also right invariant, that is, invariant, and this is easy to show for all w2kþ1 so that

Proposition 8.2 is a consequence.

In view of Proposition 8.4, ½w3�g may be interpreted as an obstruction to the

solvability of the Lie algebra g. Recalling that the concept of solvability origi-

nated in Galois theory in an attempt to solve polynomial equations by radicals,

this interpretation is clearly far from being satisfactory unless we clarify what is

to be solved in the present framework.

We would like to conclude with an amusing speculation about an intriguing

relation between local Lie groups and the Poincaré conjecture and a related
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question. Let M be a compact, simply connected 3-manifold together with its

unique di¤erentiable structure. It is well known that M is parallelizable and there-

fore admits splittings by Lemma 3.2. If M admits a flat splitting, then it will be

a local Lie group and therefore a Lie group by Lemma 7.3 and Corollary 7.8, but

S3 is the only compact, simply connected 3-dimensional Lie group. Therefore, the

Poincaré conjecture (now a theorem thanks to the deep works of Hamilton and

Perelman) is equivalent to the assertion that M admits a flat splitting. This fact

suggests, we believe, that the Poincaré conjecture may have a short and metric-

independent proof.

The characteristic classes ½w2kþ1�dR are secondary since they arise when M ad-

mits a splitting e with RðeÞ ¼ 0. The natural question arises whether there exist

any primary classes in the present framework.

Question: Are there any obstructions to the existence of a flat splitting on a paral-

lelizable manifold?
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