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Abstract. In this paper, we investigate the effect of time delays in boundary or internal
feedback stabilization of the Schrodinger equation. In both cases, under suitable assump-
tions, we establish sufficient conditions on the delay term that guarantee the exponential
stability of the solution. These results are obtained by using suitable energy functionals
and some observability estimates.
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1. Introduction

It is well known that certain infinite dimensional damped second order systems
become unstable when arbitrary small time delays occur in the damping (see
e.g. [4]). This lack of stability robustness was first shown to hold for the one-
dimensional wave equation (see [3]). Later, further examples illustrating this
phenomenon were given in [2]: the two-dimensional wave equation with damping
introduced through Neumann-type boundary conditions on one edge of a square
boundary and the Euler—Bernoulli beam equation in one dimension with damp-
ing introduced through a specific set of boundary conditions on the right end
point.

More recently, Xu et al. [17] established sufficient conditions that guarantee the
stability of the one-dimensional wave equation with a delay term in the boundary
feedback. Nicaise and Pignotti [11] extended this result to the multidimensional
wave equation with a delay term in the boundary or internal feedbacks; they
further underline some instability phenomena. Similar results were obtained by
Nicaise and Valein [12] for a class of second order evolution equations in one-
dimensional networks with delay in unbounded feedbacks.
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Motivated by the papers ([17], [11], [12]), we analyze in this paper the effect
of time delays in internal feedback or boundary feedback stabilization of the
Schrédinger equation in general domains of R”.

Let Q@ < R” be an open bounded domain with a boundary I' of class C2. Let
(T, T'1) be a partition of T, i.e., I = Ip T such that To nTj =0, Ty # 0 and
I'1 # 0. In addition to these standard hypotheses, we assume the following.

(A) There exists a real-valued vector field 4 e (C(Q))" such that

(i) A is coercive in Q, that is, there exists « > 0 such that the Jacobian matrix J of
h satisfies

Re(J(x)¢- &) = a/é]* forallxeQ, &eC”,
(i) A(x) - v(x) <0 for all x e I'y,

where v(x) is the unit normal to " at x € I pointing towards the exterior of Q and
Re z means the real part of the complex number z.

Remark 1.1. A particular example of a vector field / satisfying Assumption A
is the radial vector field A(x) = x — xy for some xo € R”. Another example is
given by /1(x) = Vd(x) where d is a real strictly convex function in Q. For further
examples see [15] and the references therein.

In this paper, we are interested in the asymptotic behaviour of the solution of
the initial boundary value problem

yi(x, 1) —iAy(x, 1) =0 in Q x (0,+00),

y(x,0) = yo(x) in Q,

y(x, 1) =0 on I’y x (0,400), (1.1)
%(x7 1) =i y(x, 1) +i,y(x,t —1) on Ty x (0,+00),

y(x,t—1) = fo(x,t—1) on I'y x (0,7),

where :—}v is the normal derivative, 7 is the time delay, 4, and u, are positive real
numbers.

In the absence of delay, that is x4, = 0, Lasiecka et al. [6] have shown that the
solution of (1.1) decays exponentially to zero in the energy space L>(Q). If u, > 0,
according to the results from ([4], [3], [2], [17], [11], [12]), we may expect to
encounter either instability results or stability results according to the value of x,
with respect to y;. The main purpose of this work is to provide sufficient con-
ditions on the coefficients g, and u, that guarantee that the system (1.1) remains
exponentially stable. Indeed, we show as in ([11], [12]) that the exponential stabil-
ity is preserved if

Hy > - (1.2)
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This is done, as in [11], by introducing the energy functional

1 1
£ =5 [ ool as | | poni-m)dpdat, 3
where
Ty <& < T2 — ), (1.4)

and using an energy estimate at the L?(Q) level for a Schrodinger equation with
gradient and potentiel terms stated in [5], Theorem 2.6.1 and established in [6],
Section 10. This result can be summarized as follows: Assume that the hypothesis
(A) holds and let y be a smooth solution of the partial differential equation in
(1.1) satisfying

y(x,2)=0 onT(x(0,7).

Then there exists a constant ¢ > 0 depending on 7 such that

r 0y(x,t
J |y(X,0)|2dXSC(”y”iZ(o:T:Lz(rl)) —l—J J % |y(x, l)\da(x)dt
e o Jr,| v
dy 2
+’6v + ||y||1%‘11((0,T)><Q)>~ (1.5)
H;H((0,T)xTy)

In (1.5), H,'((0, T) x T'y) is the dual space of the space
HI((0,T) x Ty) = H'(0,T; LX(T'1)) n L*(0, T; H'(T')))

with respect to the pivot space L*((0,7) x I'y).

On the other hand, if x4, > y;, we show that some instability results may ap-
pear, namely we show that there exists a sequence of delays for which the system
(1.1) is not asymptotically stable.

To be more precise, our results concerning the system (1.1) are as follows.

Theorem 1.2. Assume that there exists a vector field h satisfying (A), that u; > 1,
(see (1.2)) and that the energy E of the system (1.1) is given by (1.3) with
Ty < &< t(2uy — ). Then there exist constants My > 1 and 0, > 0 such that

E(t) < Mye ™ E(0).

Theorem 1.3. If 1, < u, (ie., (1.2) is not satisfied), then there exists a sequence of
delays for which the problem (1.1) is not asymptotically stable.
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Remark 1.4. Theorem 1.2 remains true if the Laplacian is replaced by a second
order elliptic differential operator with space variable coefficients. To this end,
one invokes the Riemannian geometric approach of [16] and [5], Remark 2.6.2.

In this paper, we also investigate the stability of the Schrodinger equation with
a distributed delay term. More precisely, we consider the system described by

yi(x, 1) = iAp(x, 1) — a(x){ y(x, 1)

+ 1 (x, ) y(x,t— 1)} in Q x (0,+00),
y(x,0) = yo(x) in Q, (1.6)
y(x,1) =0 on I' x (0,400),
y(x,t—1) =go(x,t— 1) in Q x (0,7).

In (1.6) a(-) is an L™ (Q)-function which satisfies
a(x) >0ae.inQ and a(x)>ay>0a.e ino, (1.7)

where w < Q is an open neighborhood of I'y.

In [10], Machtyngier and Zuazua have shown in the case u, =0 that the
L?*(Q)-energy of the solution of (1.6) decays exponentially to zero. Their proof
relies on an observability inequality established previously by the first author in
[9]. We use this inequality together with (1.2) to establish the exponential decay
of the energy of the solution of the system (1.6) defined by

1 & !
FO =5 | bewoPacss| aw ]| vtei- e (18)
Q Q 0
As before if 1, > u;, we construct an explicit sequence of delays that destabilize
the system.
The main results concerning the problem (1.6) can be summarized as follows.

Theorem 1.5. Assume that there exists a vector field h satisfying (A), that u; > 1,
(see (1.2)) and that the energy F of the system (1.6) is given by (1.8) with
Ty < &< t(2uy — 1y). Then there exist constants My > 1 and 55 > 0 such that

F(1) < Mye ™" F(0).

Theorem 1.6. If u; <, (i.e., (1.2) is not satisfied), then there exists a sequence of
delays for which the problem (1.6) is not asymptotically stable.

The paper is organized as follows. Theorem 1.2 and Theorem 1.3 are proved
in Section 2 whereas Section 3 contains the proof of Theorem 1.5 and Theorem
1.6. Both sections start with the study of the well-posedness of the system under
consideration.
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2. Stability of the Schrodinger equation with a delay term in the boundary
feedback

2.1. Well-posedness of system (1.1). In order to be able to manage the bound-
ary condition with the delay term and inspired from ([17], [11]) we introduce the
auxiliary variable z(x, p, ) = y(x, ¢ — 7p). With this new unknown, problem (1.1)
is equivalent to

ye(x, 1) —iAy(x, 1) =0 in Q x (0,+00),

z(x,p,t) +1z,(x,p,0) =0 on I'y x (0,1) x (0, +00),

y(x,0) = yo(x) in Q,

z(x,p,0) = fo(x, —p1) on I'; x (0,1), (2.1)
y(x, 1) =0 on I'y x (0,+0),

Y (x,0) = iy (x, 1) +igpz(x,1,6) on I'y x (0,+00),

z(x,0,1) = y(x,1) on I'j x (0,400).

Let us define on the Hilbert space
H=L*Q) x L*(T'; x (0,1)),

the inner product

<<2>; (y)> =Re | ”(’“)Wd”fReJn J 21(x,p) 22, ) dp do ().

Define further
HL (Q) ={ve H(Q)|u=0on Ty}

Setting Y (¢) = (;F‘f%) (from now on the notation y(-, ¢) (resp. z(-, -, ¢)) means the

function that maps x to y(x, ¢) (resp. the function that maps (x, p) to z(x, p, 1)) we
may rewrite problem (2.1) as follows

Ly(1)=AY(1),
{Y<0> = ().

where f means the function that maps (x, p) to fo(x, —pt) and the operator A is

defined by
iA 0
A= (), (2.3)
z 0 - » z

(2.2)
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with domain D(A) defined by
D(A) = {(y,z) e (H(Q) n HL (Q)) x L*(T; H'(0,1)) |

0
Ay e LZ(Q),ﬁ—)v}: ity +iwz(-,1) on I'y, y = z(-,0) on 1"1}.

Theorem 2.1. For any initial data Yy € H, there exists a unique (weak) solution
Y € C([0,4+00); H) of (2.1). If in addition we assume that Y, € D(A), then the
solution Y € C(0,400;D(A)) n C'(0,+00; H) and is called a strong solution.

Proof. The well-posedness of the problem (2.1) or its abstract version (2.2) follows
via Lumer—Phillips Theorem (see for instance [13], Theorem 1.4.3).

Let Y = <y> € D(A). Then

z

)
~Re | iby(03Tdx— & ' Re Jn jol 2%, p)2(%, ) dp do ().

From Green’s second theorem, we have

1

Re{A4Y,Y) =Re Jr i%(x)mda(x) — ¢t 'Re Jr L z,(x, p)z(x, p) dp do(x).

Integrating by parts in p, we obtain

Jr, Jl zp(x, p)z(x, p) dp do(x) = Jrl j] 2(x,p)z,(x, p) dp do(x)

0 0
] (P = 2 0)) dot),
I

or equivalently

1

2Re| |zl dpdote) = [ (120D = [, 0)1) do).
I Jo I

Therefore

RecAY, Y>:Rej lg—y( )3 dor(x)

_%J 2(x, D|* = |z(x,0)[%) da(x). (2.4)
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Insertion of the boundary conditions of (2.1) into (2.4) yields

Re(AY, Y5 = L Y@ do(x) — i Re Jr 2(x, 1) () dx
&l
2

j (1206, D2 = [2(x,0) ) do(x),

T

from which follows, using the Cauchy—Schwarz inequality

.
Re(AY, T < —(m o<t ) |, e dato

_ (fle _ %) Ll 26, 1) do(x).

From (1.4), we conclude that
Re{AY,Y> <0.

Thus A is dissipative.
Now we show that for a fixed 1 > 0 and (g,h) € H, there exists ¥ = (y,z) €

D(A) such that
aaf2)-(2)

Ly —iAy =g, (2.5)
Jz+tlz, =h (2.6)

or equivalently

Suppose that we have found y with the appropriate regularity, then we can deter-
mine z. Indeed, from (2.6) and the last line of (2.1) we have

zp(x,p) = —daz(x, p) + th(x,p),  xeTy, pe(0,1),
z(x,0) = y(x), xel.

The unique solution of the above initial value problem is given by

; , ,
z(x,p) = y(x)e " + re*;”/’J h(x,0)e* da(x), xely,pe(0,1),
0
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and in particular

1
2(x, 1) = p(x)e ™™ + re*”J h(x,0)e’ do(x), xeTli.
0

The identity (2.5) can be reformulated as follows
J (Ay —iAy)Wwdx = J gwdx forallwe L*(Q). (2.7)
Q Q
Integrating by parts, we get

J (ly —iAy)wdx = J (Ayw +iVyV) dx — iJ o wdo(x)
Q Q r, 0v

= J (Ayw + iVyViv) dx + J (w1 yw + poz(x,1)w) do(x)
Q

r

forall w e H}O(Q). Therefore (2.7) can be rewritten as

J (Ayw +iVyVw) dx + J (g + e ") yiw do(x)
Q

I

_ JQ g dx — L] (e jl h(x, 0)e*"da(x) )W do(x)

0

forallwe HllO(Q). Multiplying this equation by 1 — i, we obtain

(1 —1) Jg(iyw +iVyVin) dx + (1 —1) Jr (g + e ) yiv da(x)

1

—(1-i) JQ gidx — (1 1) Jrl (re’)‘f JO h(x, a)emda(x)) wdo(x) (2.8)

for all w e H{ (Q). Since the left-hand side of (2.8) is coercive on H{, (Q) (in
the sense that if we denote this left-hand side by b5(y,w), then Reb(y,y) >
min{l,}v}Hnyil(Q) for all ye Hllo(Q)), and since the right-hand side defines a
continuous linear form on H{ (Q) (since (g,/4) € H) the Lax—Milgram Theorem
guarantees the existence and uniqueness of a solution y € HY, (Q) of (2.8).

If we consider w € Z(Q) in (2.8), then y has a solution in 2'(Q),

Ly —iAy =g,
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and thus Ay € L?>(Q). Using Green’s formula in (2.8), we get

, 0
J (st + ™) yio dos() (x) + ij V5 do(x)
I I ov

_ Jrl (Tefﬁ‘f Jl h(x, 5)e’™ d;y) Wdo(x),

0
for all w € H{, (Q), from which it follows that
I

+ (g + e ")y = fe*’“J h(x,n)e”™dy onT}.
0

.0y
Yoy

Hence

.
6—);:1(/11y+/¢22(~,1)) on 7.

27

As this right-hand side belongs to L2(I'y), we deduce that 2 e L*(T';) and by [8],
Theorem 2.7.4 we deduce that y € H3/?>(Q) (reminding that T’y and T’y are dis-
joint, this theorem guarantees that if y e H}(’(Q) is such that Ay belongs to
H'2(Q) and & € LX(T')), then y € H**(Q)). So we have found (y,z) € D(A),
which satisfies (2.5) and (2.6). By the Lumer—Phillips Theorem, A is the generator

of a Cy-semigroup of contractions on H.

O

2.2. Boundary feedback stabilization. Theorem 1.2 will be proved for smooth
initial data. The general case follows by a standard density argument. We first

show that the energy E(¢) of every solution of (1.1) is decreasing.

Proposition 2.2. The energy corresponding to any strong solution of the problem

(1.1) is decreasing and there exists C > 0 such that

d

%E(I) < —CLI (|y(x, t)|2 + |y(x,t— r)|2) do(x).

Proof. Differentiating E(z) defined by (1.3) in time, we obtain

d 1

0
1

= ReJ (iAy) ydx + éReJ J yi(x,t —1p)¥(x,t — 1p)dp do(x).
Q I

0

—E(r) = ReJ Vi ydx + fReJ J yi(x,t —1p)¥(x,t — 1p) dp dao(x)
dt 0 r
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Applying Green’s second Theorem and recalling the boundary conditions in (1.1),
we obtain

@) = j (D12 do(x) - s Re j Y%, 1 — 7)3(x, 1) do()

1
+¢Re Jr L yi(x,t —1p)¥(x,t — 1p)dp do(x). (2.9)

Now observe that

yilx, 1 —1p) = =1 'y (x, 1 — 1p),

and
d 5 _
ap V0= ) = 2Re (3,0 = o) 3, 1~ 20) (2.10)

Insertion of (2.10) into (2.9) yields

G0 = = || 190 dots) =y Re |y = 2)5(x.)do)
4 b d 2
- ZL JO Ayt = o) dpdo)
_— j (0 do(x) — Rej Y6, — 0 7(x, 1) do(x)
I I'

- zij (Iy(x,t = 2)> = [y(x,O)) do(x).

I

From Cauchy—Schwarz inequality, we have
d TS 2
—E(1) < — — =4 =
L E0) < <u1 5 +27> Jrl |y(x,0)]" da(x)

B (% _ %) Ll Iy(x, £ — 7)[2 do(x).

This last inequality can be written

GEQ < =C| (0 + e = 0P) do),

I
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where
—mind g R S S A
< _mm{‘“ 2 2% 2 }
which is positive due to the assumption (1.4). O

We now establish an observability inequality which will be used to prove the
exponential decay of the energy E(7).

Proposition 2.3. Let y be a strong solution of (1.1). Then there exists a positive
constant Cy depending on T such that for all T > 1, the following inequality holds

E(0) < G Jo Jr (|y(x, t)|2 + | y(x,t— T)|2) do(x), (2.11)

Proof. Set
E(t) = &(t) + Ei (1),

where

1
(1) = %JQ ly(x,0)|*dx and  E (1) = gjrl Jo ly(x,1—1p)|* dp da(x).

From [5], Theorem 2.6.1 (see (1.5)), we have the following estimate

60) < e [W1220.7.2 *JTJ o et
< L2(0,T,L3(T))) 0 Jr,|0v

6y2

|2

2
+ |y||H1(Q><(O,T))> (2.12)
H:1(Tyx(0,T))

for T > 0 and for a suitable constant ¢ depending on 7.
We now impose the boundary conditions in (2.1). Then (2.12) becomes

o =] | (ol 1y =0 ot + Ilianom). @13

since the H,!'(I'; x (0, T))-norm is dominated by the L?(T'y x (0, T'))-norm.
E;(t) can be rewritten, via a change of variable, as

E\(1) :%L J 1y(x,5)|* ds do(x).

-1
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Hence

0
Ei(0) < ch J |y(x,8)|* dsdo(x). (2.14)

-7
By another change of variable in (2.14), we have

T

E(0) < cJ

; L ly(x, 1 —1)|* do(x) dt, (2.15)

for T > 7. Combining (2.13) and (2.15), for any T > 7, we obtain

EO) =] | (0P + 1yt = 9P) doto)di+ 15l saor). (216)

for a suitable constant ¢ depending on 7.
Naturally, (2.16) implies a fortiori

EO < e[ | (e 0P 1yt 1= 0P) dote) e+ 1o i) 217)

To get the requested inequality (2.11) from (2.17), we need to absorb the lower
order term Hy||ix<07 7.u-1(@)- 1o achieve this, we employ as in [11] and [15], a
compactness/uniqueness contradiction argument.

Suppose that (2.11) does not hold. Then there exists a sequence y, of solutions
of problem (1.1) with y,(x,0) = y,0(x) and y,(x, ¢t —7) = fu.0(x, ¢ — 7) such that

E,(0) > nJO L (Iy(x, O + |y(x, 1 — T)|2) do(x)dt. (2.18)

Here E,(0) is the energy corresponding to y, at time ¢ = 0.
From (2.17), we have

T
E,0) <[ | (o0 + e = ) dot) a

0 Jr,

+ 3l 0,751 ) (2.19)

(2.19) together with (2.18) yield

T
i | ] (e 0P+ G = o) dot)a
0 Jr,

T
<cl] | Qe 0P + st = OF) dot) dt-+ 1l o)

I
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that is,

T
(n— o) L L (e, 0 + Ly, £ = 0)[2) do(x) de < cllyall 2o o vy (220)
1

Renormalizing, we obtain a sequence of solutions of problem (1.1) satisfying

Iyull o701y =1 foralln>c, (2.21)

and

foralln >c. (2.22)

n—=«¢

[]. (el + e ) ooy <
0 JI

From (2.19), (2.21) and (2.22) we deduce that the sequence Y, 0 = (Vno0, fn0) 1S
bounded in H. Thus there is a subsequence still denoted by Y, o which converges
weakly to some Yy = (yo, fo) € H. Let i be the solution of problem (1.1) with
such initial condition Yy. We have

Y e C(0,T:L%(Q))

from Theorem 2.1 and

from Proposition 2.2 for some C > 0. It then follows that

2
W do(x)dt < C

yu— ¥ in L*(0,T;L*(Q)) weak star,
(yu), — ¥, inL*(0,T;H *(Q)) weak star,
and hence
1l Ze0,7. 2200 + 1) llzeo rim2@y < € forallme N, (2.23)

Since the embedding L?(Q) — H~!(Q) is compact, (2.23) implies (see [1] and [14])
that for 0 < 7' < 4o the injection

Z— L*(0,T,H ' (Q))

is also compact, where Z is the Banach space equipped with the norm on the left-
hand side of (2.23), is also compact. As a consequence there is a subsequence still
denoted by y, such that

yu— W in L*(0,T,H'(Q)) strongly.
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Hence by (2.21) we obtain
”l//”LI(O,T;H*l(Q)) =1 (2.24)
On the other hand, we have from (2.22)
Y(x,t)=0 onIyx(0,7).
Thus  satisfies

lpt(xv [) - iAlp(xa t) =0, inQx (03 T),
Y(x,1) =0, onT x(0,7)
Y (x,1) =0, on 'y x (0, 7).

From Holmgren’s uniqueness theorem (see [7], Chapter 1, Theorem 8.2), we con-
clude that

Y(x,t)=0 inQx(0,7),
which contradicts (2.24). This ends the proof of Proposition 2.3. O
We are now ready to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. From Proposition 2.2, we have

T
E(T) — E(0) < —CL JF (v D + (e, £ — 1)) do().

The observability estimate (2.11) implies

T
E(T) < E(0) < COJ

j (Iy0e, 02 + [y(x, 1 — D)) do(x)
0 JI,

< CoC'(E(0) — E(T)).

Hence

-1
E(T) < GC

=11 gett

Combining this estimate with the invariance by translation of the system (1.1), we
obtain the desired conclusion.

2.3. A counter example. In this section we show through an example that the
system (2.1) loses the property of exponential stability when 1, > .
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We seek a solution of (2.1) in the form

(),

y(x, 1) =e
where
l=—if*, peR.

Then ¢ is a solution of the eigenvalue problem

—Ap =ilp in Q,
p=0 on Iy,
% =i(y +me*)p onTy.

Assume that
cos(p*t) = "y
Ha

Then

o sin(B27) = /13 — p1f.

Inserting (2.26) and (2.27) into (2.25) yields

—Ap = ﬁzgo in Q,
p=0 on Iy,

%—}—w/yg—ﬂ%gpzo on .

33

(2.25)

(2.26)

(2.27)

This is a classical eigenvalue problem for the Laplacian with Dirichlet—Robin

boundary conditions.

Let {#%ne N} be the set of these eigenvalues. It is well known that

B> — +o0 asn — +oo. Taking 0 < 0 < 27 such that
__HM g — 22
cosf = — and  psin0 = \/uy — uy,
H
we obtain a sequence of delays

1
Tk = — (0+2kn), nkeN,

n

(2.28)
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which become arbitrarily small or large for suitable choices of n,k € N, and for
which the problem (22.1) is not asymtotically stable. Indeed, the energy of the
solution y(x, 7) = e ¥i'p(x) is constant. This proves Theorem 1.3.

3. Stability of the Schrodinger equation with a delay term in the internal

feedback

3.1. Well-posedness of system (1.6). Proceeding as in the previous section, we
can see that the system (1.6) is equivalent to

yi(x, 1) =iAy(x, 1) — a(x){ g y(x, 1)
+ 1y (x,0)z(x,1,1)} in Q x (0, +00),
z(x,p, 1) = =t 1z,(x, p, 1) in Q x (0,1) x (0, +00),
y(xv 0) = yO(x) in Qv (31)
z(x,p,0) = go(x, —1p) in Q x (0,7),
y(x,6) =0 on I' x (0,400),
z(x,0,1) = y(x,1) in Q x (0,+00),

where we have set
z(x,p, 1) = y(x,t —1p), x€Q,pe(0,1),1>0.

Let us introduce the operator A° defined by

Lo 7 (1A —amy —amz(, 1)
z -7z, ’

and
D(A°) = {(y,2) € (H*(Q) n H{, (Q)) x L*(Q,H'(0,1)) | y = z(-,0) in Q}.

Then we rewrite the system (3.1) as

where



Stabilization of the Schrédinger equation with a delay term 35
Denote by # the Hilbert space
#" = L*(Q) x L*(Q x (0,1))

equipped with the inner product

(()(2)) e o] ez

Repeating the argument used in the proof of Theorem 2.1, we obtain the following
well-posedness result for the problem (3.1).

Theorem 3.1. For any Uy € #°, there exists a unique (weak) solution
U e C(0,+o0; #°)

of the problem (3.1). Moreover if Uy € D(A°), then the solution U is more regular,
namely

Ue C(0,400;D(4") n C'(0,+00; #°)
and is called a strong solution.
3.2. Internal feedback stabilization

Proposition 3.2. The energy corresponding to any strong solution of the problem
(3.1) is decreasing and there exists a positive constant C such that

%F(r) < —CJQ a(x){|y(x, 01> + |y(x, = )]} dx. (32)

Proof. We differentiate F(¢) in (1.8) and use (3.1) to obtain

d

P = Re | (iAy(x.0) 0 s

~Re jQ a(x) gy (e, 1) + o (6, 1)y, 1 — 2}y, 0) dix

1 B
a(x) j Y1, — )y (5, T —Tp) dp .
0

+fReJ

Q

Applying Green’s second theorem and recalling the boundary condition in (3.1),
we get
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4 F(1) =~ Re L a(x)|y(x, )2 dx — s Re JQ a(x)y(x, ) (%, 1) dx

1

+¢Re JQ a(x) Jo vi(x,t —1p)y(x,t — p) dpdx. (3.3)

As in the proof of Proposition 2.2, we have

l —_—
ReJ a(x) J yi(x,t —1p)y(x,t — 1p)dp dx
Q 0
1
= 7! ReJ a(x) J Vp(x,t—1p)y(x,t —1p)dpdx
Q 0
-

— _TJQ a(x){|y(x, 1 — 1))> — | p(x, 1)} dx. 4

Insertion of (3.4) into (3.3) yields

4
dr

F(t) = —m Re La<x)|y<x, 02 dx — i Re jﬂa(xmx, )y (v, ) dx

7! P 7! 2
52 Lza(x)|y(x,l—r)| +§Tjg|y(x, 1)|” dx. (3.5)

The desired estimate (3.2) follows from (3.5) via the Cauchy—Schwarz inequality.
0

The key step in the proof of Theorem 1.5 is the following observability in-
equality.

Proposition 3.3. Let y be a strong solution of (3.1). Then there exists a positive
constant Cy depending on T such that for all T > t, the following estimate holds
true

F(0) < Co JO L a(x){|y(x,0)|* + |y(x,t — 7)|*} dx dt. (3.6)

Proof. Following [10] and [11], we write the solution y of (3.1) as y = u + v where
u solves

u(x,0) = yo(x) in Q, (3.7)

{u,(x, 1) =iAu(x,t) in Qx (0,+00),
u(x, 1) =0 on T x (0,400),
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and v satisfies

vi(x, 1) = iAv(x, 1) — a(x){p y(x, 1)

+ 1 (x, ) y(x, 1 — 1)} in Q x (0,+00), (3.8)
U(X,O) = in Q, .
v(x, 1) = on I' x (0,400).

Let us denote by
6,(0) = | Jute. ) v
Q

the energy corresponding to the solution of (3.7). Then it follows from [10],
Proposition 3.1 that for all 7 > 0, there exists a positive constant ¢ depending on
T such that

64(0) < CJ

J |u(t, x)|* dx dr.
0 Jo

Using (1.7) we get

¢ T
&,(0) < —J JQ a(x)|u(t, x)|* dx dt.

ao Jo

On the other hand we have, for T > 7,

gJQ a(x) Jol |y(x, —tp)|* dp dx < cJOT JQ a(x)|y(x, ¢ — 7)|* dxat.

Hence, for T > 1,

5 jo (6, —p) dp

ScJ J a(x){|u(t, x)|* + |y(x, t — 7)|*} dx dt

0 JQ

<e j j a(x) {30, %)2 + o(, )2 + [y(x. £ — )} dv .
0 JQ

By classical energy estimates on Schrodinger equation we deduce that

FO) < G| | aHlye P + 1yt =Py dsat 0
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Combining the estimates (3.2) and (3.6), as in the case of a boundary feedback,
we obtain the exponential stability result of Theorem 1.5.

3.3. A counter example. We proceed as in the case of boundary delay. We
assume (2.26) and we look for a solution of the problem (3.1) in the form

y(x, 1) = e*p(x)  with 1= —if?, e R.

Then ¢ is a solution of the boundary value problem

{(—A +a(x)\ /i3 — i) = B9 inQ,

p=0 onT.

The operator —A + a(x)y/u5 — ¢ with Dirichlet boundary condition is positive
self-adjoint in L?(Q) with a compact resolvent. Let {7|n € N} be the set of its
eigenvalues. Then ff2 — +c0 as n — +oo. For 0 < 0 < 27 given by (2.28), we
obtain a sequence of delays

rn,k:iz(0—|—2k7z), n,k e N,

n

for which the problem (3.1) loses its asymptotic stability. The proof of Theorem
1.6 is complete.
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