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Abstract. The global existence of solutions for the 3D incompressible Euler equations is a
major open problem. For the 3D inviscid MHD system, the global existence is an open
problem as well. Our main concern in this paper is to understand which kind of regulariza-
tion, of the form of a-regularization or partial viscous regularization, is capable to provide
the global in time solvability for the 3D inviscid MHD system of equations. We consider
two di¤erent regularized magnetohydrodynamic models for an incompressible fluid. In
both cases, we provide a global existence result for the solution of the system.
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1. Introduction

The basic system of equations that one can consider in magnetohydrodynamics is

obtained combining Maxwell’s equations, which rule the magnetic field, with the

Navier–Stokes equation, which governs the fluid motion; this system has form:

vt þ ðv � ‘Þv� ðB � ‘ÞB þ ‘ pþ 1

2
jBj2

� �
¼ nDv; ð1aÞ

Bt þ ðv � ‘ÞB � ðB � ‘Þv ¼ mDB; ð1bÞ
‘ � v ¼ ‘ � B ¼ 0; ð1cÞ
ðv;BÞjt¼0 ¼ ðv0;B0Þ; x a Rn; n ¼ 2; 3; ð1dÞ

where the fluid velocity field vðx; tÞ, the magnetic field Bðx; tÞ and the pressure

pðx; tÞ are the unknowns, while nb 0 is the constant kinematic viscosity and

mb 0 is the constant magnetic di¤usivity. In this case, a homogeneous incom-

pressible fluid is considered.



This problem has been deeply studied. If n > 0 and m > 0, then there exists a

unique global solution in time when n ¼ 2, while for n ¼ 3 the problem is still

open, as discussed in [13].

When n ¼ 2, n ¼ 0 and m ¼ 1, local existence and small data global existence

results have been established by Kozono [10] for bounded domains and by

Casella–Secchi–Trebeschi [3] for unbounded domains.

When n ¼ 2, n ¼ 1 and m ¼ 0, there is a regularity criterion for the solution in

terms of B provided by Jiu–Niu [9], but the problem in its generality is still open.

As pointed out in [12] (see also the suggested bibliography), at the moment,

there is no possibility to compute the turbulent behavior of fluids neither analyti-

cally nor via direct numerical simulation (this task is prohibitively expensive and

disputable as well due to sensitivity of perturbation errors in the initial data).

Hence, one can try to focus only on certain statistical features of the physical phe-

nomenon through the employment of suitable models. This is su‰cient in many

practical applications.

Because of the success of Navier–Stokes-a models in producing solutions in

excellent agreement with empirical data for a wide range of large Reynolds num-

bers and flow in infinite channels or pipes, it is natural to consider such a kind of

regularization also for magnetohydrodynamic models.

In a models, a function (or several functions) is substituted in one or more

of its occurrences with a regularized function; more precisely, the function v is

substituted with u, where

v ¼ ð1� a2DÞu; a > 0:

This substitution is performed in nonlinear terms to make the nonlinearity milder,

so that the solution becomes smoother.

Linshiz–Titi [12] have suggested several models. For instance, filtering only

the velocity field, one can consider the following model:

vt þ ðu � ‘Þvþ
Xn
j¼1

vj‘uj � ðB � ‘ÞB þ ‘ pþ 1

2
jBj2

� �
¼ nDv; ð2aÞ

Bt þ ðu � ‘ÞB � ðB � ‘Þu ¼ mDB; ð2bÞ

v ¼ ð1� a2DÞu; a > 0; ð2cÞ
‘ � v ¼ ‘ � u ¼ ‘ � B ¼ 0; ð2dÞ
ðv;BÞjt¼0 ¼ ðv0;B0Þ: ð2eÞ

In this case, Linshiz–Titi [12] have shown a global existence result in a three-

dimensional periodic box when n > 0 and m > 0, while Fan–Ozawa [8] have

achieved the same result in the whole space R2 for both ðn ¼ 1; m ¼ 0Þ and

ðn ¼ 0; m ¼ 1Þ.
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Another model is the so-called simplified Bardina model, which is studied by

Cao–Lunasin–Titi in [2].

In [4], the following magnetohydrodynamic-a model, derived from Bardina

model for incompressible fluids, is considered:

vt þ ðu � ‘Þu� ðB � ‘ÞB þ ‘p ¼ nDvþ f in ½0;T � � R2; ð3aÞ

Bt þ ðu � ‘ÞB � ðB � ‘Þu ¼ mDB in ½0;T � � R2; ð3bÞ

v ¼ ð1� a2DÞu; a > 0 in ½0;T � � R2; ð3cÞ

‘ � v ¼ ‘ � u ¼ ‘ � B ¼ 0 in ½0;T � � R2; ð3dÞ

ðv;BÞjt¼0 ¼ ðv0;B0Þ x a R2: ð3eÞ

Once again, a global existence result is obtained in case ðn ¼ 1; m ¼ 0Þ and f C 0.

In [6], a double viscous version (m; n > 0) of the previous model is considered.

The case of a periodic box in space-dimension three is handled and global exis-

tence of solutions is achieved. Moreover, this result is complemented by the proof

of the existence of a global attractor, whose fractal dimension is estimated from

above. In [5], other MHDa models are considered.

It is well known that the global existence of solutions for the 3D incompress-

ible Euler equations is a major open problem (see [1], [7]). For the 3D inviscid

MHD system (i.e. (1) with n ¼ m ¼ 0), the global existence is an open problem as

well (obviously, because the Euler equations correspond to the particular case

BC 0).

Our main concern in this paper is to understand which kind of regularization,

of the form of a-regularization or partial viscous regularization, is capable to pro-

vide the global in time solvability for the 3D inviscid MHD system of equations.

We will consider two di¤erent models.

First model. We begin by considering the case without viscosity nor di¤usivity,

but with regularizations both in the velocity v and the magnetic field B:

vt þ ðu � ‘Þu� ðb � ‘Þbþ ‘p ¼ 0 in ½0;T � �W; ð4aÞ
Bt þ ðu � ‘Þb� ðb � ‘Þu ¼ 0 in ½0;T � �W; ð4bÞ

v ¼ ð1� a2DÞu; B ¼ ð1� b2DÞb; a; b > 0 in ½0;T � �W; ð4cÞ
‘ � u ¼ ‘ � b ¼ 0 in ½0;T � �W; ð4dÞ
ðv;BÞjt¼0 ¼ ðv0;B0Þ x a W: ð4eÞ

Here, W ¼ ½0;L�3 HR3 and we assume periodic conditions on the initial data

so that the corresponding solutions are space-periodic (this implies, in particular,
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that integrating by parts border terms disappear). Moreover, we assume that the

initial data have zero mean, so that also the solutions have zero spatial mean (this

simplifies some computations). Under these conditions, we have the following

global existence results.

Theorem 1.1 (Weak global existence for the first model). Let us set

u0 ¼ ð1� a2DÞ�1v0; b0 ¼ ð1� b2DÞ�1B0;

and assume that u0; b0 a H1ðWÞ and ‘ � u0 ¼ ‘ � b0 ¼ 0.

Then, problem (4) has a unique global solution ðu; bÞ such that

u; b a Ll
�
0;l;H1ðWÞ

�
:

The couple ðu; bÞ is a weak solution of (4) in the sense of (8) (see Section 2).

Theorem 1.2 (Strong global existence for the first model). Let us assume that the

initial data satisfy v0;B0 a L2ðWÞ and ‘ � v0 ¼ ‘ � B0 ¼ 0.

Then, problem (4) has a unique global solution ðv;BÞ such that, for each time

T > 0, one has

v;B a Ll
�
0;T ;L2ðWÞ

�
:

These results are shown in Section 2. Let us note that this model is particularly

interesting since it preserves three physical quantities, that is to say the energy

E a;b ¼ 1
2

Ð
W

�
vðxÞ � uðxÞ þ BðxÞ � bðxÞ

�
dx, the cross helicity H a;a

C ¼ 1
2

Ð
W

�
uðxÞ � bðxÞ

þ a2‘uðxÞ � ‘bðxÞ
�
dx (here we are assuming b ¼ a, which is absolutely rea-

sonable) and the magnetic helicity H
a;b
M ¼ 1

2

Ð
W

�
aðxÞ � bðxÞ þ b2‘aðxÞ � ‘bðxÞ

�
dx,

where a is a vector potential, so that b ¼ ‘� a. Moreover, as a; b ! 0, these

quantities reduce to the corresponding conserved ideal quadratic invariants of the

MHD equations.

Second model. Then, we consider the following model, with magnetic di¤usivity

m > 0 but no kinematic viscosity, and regularization only in the velocity v, while B

is the magnetic field:

vt þ ðu � ‘Þu� ðB � ‘ÞB þ ‘p ¼ 0 in ½0;T � �W; ð5aÞ
Bt þ ðu � ‘ÞB � ðB � ‘Þu ¼ mDB in ½0;T � �W; ð5bÞ

v ¼ ð1� a2DÞu; a > 0 in ½0;T � �W; ð5cÞ
‘ � u ¼ ‘ � B ¼ 0 in ½0;T � �W; ð5dÞ
ðv;BÞjt¼0 ¼ ðv0;B0Þ x a W: ð5eÞ
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The ideal version of system (5) conserves the energy and the magnetic helicity,

but at the moment we are unable to find an invariant quantity corresponding to

cross helicity.

Once again, we take W ¼ ½0;L�3 HR3 and assume periodic and zero mean ini-

tial data, so that the corresponding solutions are space-periodic and of zero spatial

mean. Under the aforementioned conditions, we have the following result.

Theorem 1.3 (Strong global existence for the second model). As to the initial data,

we assume that they satisfy v0 a L2ðWÞ, B0 a H1ðWÞ and ‘ � v0 ¼ ‘ � B0 ¼ 0.

Then, problem (5) has a unique global solution ðv;BÞ such that, for each time

T > 0, one has

v a Ll
�
0;T ;L2ðWÞ

�
; B a Ll

�
0;T ;H1ðWÞ

�
BL2

�
0;T ;H2ðWÞ

�
:

This result is shown in Section 3.

2. First model

Here and in the next section, we will make use of the following identities, which

hold provided ‘ � f ¼ 0:ð
ð f � ‘Þg � h dx ¼ �

ð
ð f � ‘Þh � g dx ð6Þ

ð
ð f � ‘Þg � g dx ¼ 0: ð7Þ

Moreover, to simplify notations, we set k � k ¼ k � kL2ðWÞ.
As to the local existence and uniqueness of a weak solution, let us note that we

can restate system (4) in the form

d

dt

u

b

� �
¼ F ðu; bÞ ¼: ð1� a2DÞ�1½Bðb; bÞ �Bðu; uÞ�

ð1� b2DÞ�1½Bðb; uÞ �Bðu; bÞ�

 !
; ð8Þ

where Bð f ; gÞ ¼ P½ f � ‘g�, P denoting the Helmholtz–Leray projection over the

divergence free functions of L2. Then ðu; bÞ will be a weak solution of (4) pro-

vided that it is a solution of (8).

We want to prove that the operator F is locally Lipschitz in H1 equipped with

the scalar product

u

b

� �
;

w

d

� �� �
¼
�
ð1� a2DÞ1=2u; ð1� a2DÞ1=2w

�
L2

þ
�
ð1� b2DÞ1=2b; ð1� b2DÞ1=2d

�
L2 :
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We have

F1 ¼: kBðb1; b1Þ �Bðu1; u1Þ �Bðb2; b2Þ þBðu2; u2ÞkH�1

¼ kBðb1; b1 � b2Þ þBðb1 � b2; b2Þ �Bðu1; u1 � u2Þ �Bðu1 � u2; u2ÞkH�1

and also

kBð f ; gÞkH�1 a sup
k‘hk¼1

���ðð f � ‘gÞ � h
��� ¼ sup

k‘hk¼1

���ðð f � ‘hÞ � g���
a k‘hk k f kL6kgkL3 aCk‘f k kgk1=2k‘gk1=2

aCk‘f k k‘gk;

having used the Hölder inequality,

k f kL6 aCk‘f k; kgkL3 aCkgk1=2k‘gk1=2

and the Poincaré inequality. Thus we easily get

F1aCðk‘u1k þ k‘u2k þ k‘b1k þ k‘b2kÞ
�
k‘ðu1 � u2Þk þ k‘ðb1 � b2Þk

�
:

Similarly,

F2 ¼: kBðb1; u1Þ �Bðu1; b1Þ �Bðb2; u2Þ þBðu2; b2ÞkH�1

¼ kBðb1; u1 � u2Þ þBðb1 � b2; u2Þ �Bðu1; b1 � b2Þ �Bðu1 � u2; b2ÞkH�1

aCðk‘u1k þ k‘u2k þ k‘b1k þ k‘b2kÞ
�
k‘ðu1 � u2Þk þ k‘ðb1 � b2Þk

�
:

Hence F is locally Lipschitz, using that ð1� a2DÞ�1 is an isomorphism from H�1

onto H1, and consequently we get the local existence and uniqueness of a weak

solution through the Cauchy–Lipschitz theorem.

Second, in order to get an energy identity, we take the scalar product in H1

(previously defined) of (8) with ðu; bÞ. Using (7), (6) and integrating by parts

when needed, we deduce the energy equality

d

dt
ðkuk2 þ a2k‘uk2 þ kbk2 þ b2k‘bk2Þ ¼ 0;

or

kuk2 þ a2k‘uk2 þ kbk2 þ b2k‘bk2 ¼ C1; ð9Þ

where

C1 ¼: ku0k2 þ a2k‘u0k2 þ kb0k2 þ b2k‘b0k2:
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Now, using the bound for the H1 norm of the solution provided by the energy

identity (9), we deduce that such a solution can be extended for all positive time

(indeed, the time interval of local existence has a lower bound depending only on

the initial data).

Hence, we have the global existence of a unique weak solution

u; b a Ll
�
0;l;H1ðWÞ

�
: ð10Þ

This concludes the proof of Theorem 1.1.

In order to prove Theorem 1.2 for strong solutions, we can proceed similarly.

We only need an upper bound for higher derivatives. With this aim, we take the

scalar product with v and B, and integrate over W, getting

1

2

d

dt
kvk2 þ

ð
ðu � ‘Þu � v�

ð
ðb � ‘Þb � v ¼ 0; ð11Þ

1

2

d

dt
kBk2 þ

ð
ðu � ‘Þb � B �

ð
ðb � ‘Þu � B ¼ 0: ð12Þ

Using Gagliardo–Nirenberg inequality

kukLl aCkDuk3=4kuk1=4 þ Ckuk ð13Þ

and Poincaré inequality kukaCkDuk, we have

kukLl aCkDuk3=4kuk1=4;

and therefore

���ððu � ‘Þu � v���a kukLlk‘uk kvk

aCkDuk3=4kuk1=4k‘uk kvk

aCkvk7=4kuk1=4k‘uk: ð14Þ

Proceeding similarly for the other terms in (11) and (12), we deduce

1

2

d

dt
ðkvk2 þ kBk2ÞaCðkuk1=4k‘uk kvk7=4 þ kbk1=4k‘bk kBk3=4kvk

þ kuk1=4k‘bk kvk3=4kBk þ kbk1=4k‘uk kBk7=4Þ

aCðkvk7=4 þ kBk3=4kvk þ kvk3=4kBk þ kBk7=4Þ;
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having used (10). Applying Young’s inequality with exponents 7=3 and 7=4 to the

middle terms, we get

d

dt
ð1þ kvk2 þ kBk2ÞaCðkvk7=4 þ kBk7=4ÞaCðkvk2 þ kBk2Þ7=8

aCð1þ kvk2 þ kBk2Þ;

the di¤erential form of Gronwall lemma implies

1þ kvðtÞk2 þ kBðtÞk2 a ð1þ kv0k2 þ kB0k2ÞeCt for all t > 0;

and finally

v;B a Ll
�
0;T ;L2ðWÞ

�
for all T > 0;

or

u; b a Ll
�
0;T ;H2ðWÞ

�
for all T > 0:

Remark 2.1. Let us note that the same estimates hold also in the case W ¼ R3,

with no need of periodicity hypotheses. The proof is indeed slightly simplified

since Gagliardo–Nirenberg estimate (13) is straightforwardly

kukLl aCkDuk3=4kuk1=4:

Nevertheless, in this case one needs a di¤erent approach to prove local existence.

3. Second model

First, let us note that local existence can be obtained by a contraction argument

proceeding similarly as in [4] (indeed, in this case the technique can be simplified

by considering the space Xmþ2 ¼ Ll
�
0;T0;H

mþ2ðWÞ
�
instead of Ymþ2); therefore,

global existence is implied by the global in time a priori estimates provided below.

This approach (to get local and global existence) works for the whole space-

domain W ¼ R3 as well.

We take the scalar product of equation (5a) with u and of equation (5b) with B,

integrate both equations over W and sum them up. Using (7), (6) and integrating

by parts when needed, we deduce the energy equality

1

2

d

dt
ðkuk2 þ a2k‘uk2 þ kBk2Þ þ mk‘Bk2 ¼ 0;
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or

kuðtÞk2 þ a2k‘uðtÞk2 þ kBðtÞk2 þ 2m

ð t
0

k‘BðsÞk2 ds ¼ C2; ð15Þ

where

C2 ¼: ku0k2 þ a2k‘u0k2 þ kB0k2:

Hence, provided u0 a H1ðWÞ and B0 a L2ðWÞ, where u0 ¼ ð1� a2DÞ�1v0, we have

u a Ll
�
0;l;H1ðWÞ

�
; B a Ll

�
0;l;L2ðWÞ

�
: ð16Þ

Similarly, taking the scalar product of (5a) with v and integrating in space, we

get

1

2

d

dt
kvk2 þ

ð
ðu � ‘Þu � v�

ð
ðB � ‘ÞB � v ¼ 0 ð17Þ

while, testing (5b) by ð1� a2DÞB, we deduceð
Bt � ð1� a2DÞB þ

ð
ðu � ‘ÞB � ð1� a2DÞB

�
ð
ðB � ‘Þu � ð1� a2DÞB � m

ð
DB � ð1� a2DÞB ¼ 0: ð18Þ

Integrating by parts, one easily computes

ð
Bt � ð1� a2DÞB ¼ 1

2

d

dt
ðkBk2 þ a2k‘Bk2Þ

and

�m

ð
DB � ð1� a2DÞB ¼ mk‘Bk2 þ a2mkDBk2:

As to the second term, we assume sum from 1 to 3 for repeated indices and get

���ððu � ‘ÞB � ð1� a2DÞB
��� ¼ a2

���ððu � ‘ÞB � ð�DBÞ
���

¼ a2
���ððqhu � ‘ÞB � qhB þ

ð
ðu � ‘ÞqhB � qhB

���
a a2k‘ukL4k‘BkL4k‘Bk;

having used twice identity (7).
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For the third integral, we use the identity

�
ð
ðB � ‘Þu � ð1� a2DÞB ¼ �

ð
ð1� a2DÞ½ðB � ‘Þu� � B

¼ �
ð
ðB � ‘Þu � B þ a2

ð
Bjqjq

2
i ukBk

þ a2
ð
q2i BjqjukBk þ 2a2

ð
qiBjq

2
ijukBk

¼ �
ð
ðB � ‘Þv � B � a2

ð
qiBjqjukqiBk � a2

ð
qiBjqiukqjBk

to deduce the following estimate:ð
ðB � ‘Þu � ð1� a2DÞBa

ð
ðB � ‘Þv � B þ 2a2k‘ukL4k‘BkL4k‘Bk:

Substituting these results in (18) and summing up with (17) yields

1

2

d

dt
ðkvk2 þ kBk2 þ a2k‘Bk2Þ þ mk‘Bk2 þ a2mkDBk2

a

ð
jðu � ‘Þu � vj þ 3a2k‘ukL4k‘BkL4k‘Bk:

Using Gagliardo–Nirenberg inequality

k‘ukL4 aCkDuk3=4k‘uk1=4 þ CkukaCkDuk3=4k‘uk1=4

(thanks to Poincaré inequality) and the elliptic estimate kDukaCkvk, we obtain

k‘ukL4k‘BkL4k‘BkaCkvk3=4k‘uk1=4kDBk3=4k‘Bk5=4

a eðkDBk3=4Þ8=3 þ Cðkvk3=4k‘uk1=4k‘Bk5=4Þ8=5

¼ ekDBk2 þ Ck‘uk2=5k‘Bk6=5kvk6=5k‘Bk4=5;

where e > 0 is a small parameter. Combining with estimate (14) and exploiting

kuka kvk þ a2kDukaCkvk;

we deduce, for e ¼ a2m=2,

1

2

d

dt
ð1þ kvk2 þ kBk2 þ a2k‘Bk2Þ þ mk‘Bk2 þ a2m

2
kDBk2

aCðk‘uk þ k‘uk2=5k‘Bk6=5Þð1þ kvk2 þ kBk2 þ a2k‘Bk2Þ: ð19Þ
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Setting yðtÞ ¼ 1þ kvðtÞk2 þ kBðtÞk2 þ a2k‘BðtÞk2, from Gronwall lemma we get

yðtÞa yð0Þ expC
ð t
0

�
k‘uðtÞk þ k‘uðtÞk2=5k‘BðtÞk6=5

�
dt:

Now, recalling that k‘uk a Ll
t ð½0;l½Þ and

ðk‘Bk6=5Þ5=3 ¼ k‘Bk2 a L1
t ð½0;l½Þ;

as follows immediately from the energy identity (15), we have

ð t
0

�
k‘uðtÞk þ k‘uðtÞk2=5k‘BðtÞk6=5

�
dt

aCtþ C
�ð t

0

dt
	2=5�ð t

0

k‘Bk2 dt
	3=5

aCðtþ 1Þ:

Therefore, we conclude

v a Ll
�
0;T ;L2ðWÞ

�
; B a Ll

�
0;T ;H1ðWÞ

�
ET > 0:

Let us note in particular that

u a Ll
�
0;T ;H2ðWÞ

�
ET > 0:

Moreover, integrating (19) in time shows that

B a L2
�
0;T ;H2ðWÞ

�
ET > 0:

This concludes the proof of Theorem 1.3.

After completing this work, the authors were informed of the paper by Larios–

Titi [11] containing some results related to the first model.
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