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Abstract. In this paper we consider the obstacle problem for the pðxÞ-Laplace operator.
Assuming that p is locally Lipschitz continuous, we establish the growth rate of the solution
near the free boundary from which we deduce its porosity.
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1. Introduction

Let W be a bounded open connected subset of Rn, nb 2, f a LlðWÞ and

g a W 1;pðxÞðWÞBLlðWÞ, gb 0. We consider the pðxÞ-obstacle problem with a

zero obstacle, i.e. the obstacle problem for the pðxÞ-Laplacian

DpðxÞu ¼ divðj‘uj pðxÞ�2‘uÞ ¼ f in ½u > 0�;
ub 0 in W;

u ¼ g on qW:

8><
>:

The weak formulation of this problem is given by the following variational

inequality:

Find u a Kg such that:ð
W

�
j‘uj pðxÞ�2‘u � ‘ðv� uÞ þ f :ðv� uÞ

�
dxb 0 for all v a Kg;

8<
:ðPÞ

where Kg ¼ fv a W 1;pðxÞðWÞ : v� g a W
1;pðxÞ
0 ðWÞ; vb 0 a:e: in Wg, p is a measur-

able real valued function defined in W and satisfying

1 < p� a pðxÞa pþ a:e: x a W ð1:1Þ
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for some positive numbers p� and pþ. The space W
1;pðxÞ
0 ðWÞ is defined as the clo-

sure of Cl
0 ðWÞ in W 1;pðxÞðWÞ, where W 1;pðxÞðWÞ is the variable exponent Sobolev

space

W 1;pðxÞðWÞ ¼
�
u a LpðxÞðWÞ : ‘u a

�
LpðxÞðWÞ

�n�
and LpðxÞðWÞ ¼ fu : W ! R measurable : rðuÞ ¼

Ð
W juðxÞj pðxÞ < lg is equipped

with the Luxembourg norm

kukpðxÞ ¼ inffl > 0 : rðu=lÞa 1g:

W 1;pðxÞðWÞ is equipped with the norm

kuk1;pðxÞ ¼ kukpðxÞ þ k‘ukpðxÞ; where k‘ukpðxÞ ¼
Xn
i¼1

qu

qxi

����
����
pðxÞ

:

If p is also log-Hölder continuous, i.e. satisfies for some L > 0

�jpðxÞ � pðyÞj logjx� yjaL for all x; y a W; ð1:2Þ

then we have [5] ClðWÞ is dense in W 1;pðxÞðWÞ and W
1;pðxÞ
0 ðWÞ ¼ W 1;pðxÞðWÞB

W 1;1
0 ðWÞ.
By BrðxÞ we shall denote the open ball in Rn with center x and radius r. The

conjugate of pðxÞ defined by
pðxÞ

pðxÞ�1
will be denoted by qðxÞ.

We first give some classical properties of the solution in Section 1. In Section

2, we establish the growth rate of a class of functions. In Section 3, we obtain the

exact growth rate of the solution of the problem (P) near the free boundary, from

which we deduce its porosity. Our result on the porosity of the free boundary

extends similar results for the Laplacian [1], for the p-Laplacian [8], and for the

A-Laplacian [2]. As it was observed in [8], the free boundary has therefore

Hausdor¤ dimension less than n and hence it is of Lebesgue measure zero.

First, we recall the following existence and uniqueness result established in [7].

We refer also to [11] for a much more general framework of entropy solution.

Proposition 1.1. Assume that f a LqðxÞðWÞ and g a W 1;pðxÞðWÞBLlðWÞ. Then

there exists a unique solution u to the problem (P).

In the following proposition, we generalize some classical properties of the

obstacle problem.
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Proposition 1.2. Let u be the solution of (P).

(i) If f b 0 in W, then 0a ua kgkl in W.

(ii) f wð½u > 0�ÞaDpðxÞua f a.e. in W.

(iii) If u a C0ðWÞ, then DpðxÞu ¼ f a.e. in ½u > 0�.

Proof. (i) Note that ub 0 since u a Kg. To get the upper bound of u, we take

minðu; kgklÞ ¼ u� ðu� kgklÞþ as a test function in (P). We get

ð
W

j‘ðu� kgklÞþj pðxÞ a �
ð
W

f ðu� kgklÞþ a 0:

Then ‘ðu� kgklÞþ ¼ 0 a.e. in W. Since u ¼ g on qW, we deduce that

ðu� kgklÞþ ¼ 0 a.e. in W.

(ii) Let z a DðWÞ, zb 0.

First taking uþ z a Kg as a test function for (P), we obtain

ð
W

j‘uj pðxÞ�2‘u‘zþ f zb 0;

which leads to DpðxÞua f in D 0ðWÞ:
Now without loss of generality, we can assume that zA 0. For e > 0, let

HeðsÞ ¼ min
�
1; s

þ

e

�
. Taking u� e

jzjl
Heðu� eÞz a Kg as a test function for (P), we

get

ð
W

Heðu� eÞj‘uj pðxÞ�2‘u‘zþ fHeðu� eÞza 0:

Letting e ! 0, we obtain

ð
W

j‘uj pðxÞ�2‘u‘zþ f wð½u > 0�Þza 0;

which leads to DpðxÞub f wð½u > 0�Þ in D 0ðWÞ:
(iii) Assume that u a C0ðWÞ, and let z a Dð½u > 0�Þ, zb 0. Setting

d ¼ minsupp z u and taking ued z

kzkl
as test functions for (P), we get

ð
½u>0�

j‘uj pðxÞ�2‘u‘zþ f z ¼ 0:

We obtain DpðxÞu ¼ f in D 0ð½u > 0�Þ. r
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Remark 1.3. Inequalities (ii) and equation (iii) of Proposition 1.2 were

established in [11] in the framework of entropy solution, under the condition:

ess infx AW
�
q1ðxÞ �

�
pðxÞ � 1

��
> 0, where q1ðxÞ ¼ q0ðxÞpðxÞ

q0ðxÞþ1
and q0ðxÞ ¼ npðxÞ

n�pðxÞ
p��1
p�

.

Remark 1.4. If f b 0 in W and f a Ll
locðWÞ, we know from Proposition 1.2 that u

is bounded and DpðxÞu is locally bounded in W. If moreover p a C
0;b
loc ðWÞ, then

we have (see [4]) u a C1;a
loc ðWÞ, for some a a ð0; 1Þ.

2. A class of functions on the unit ball

In all what follows, we assume that p is Lipschitz continuous, i.e. there exists a

positive constant L such that

jpðxÞ � pðyÞjaLjx� yj for all x; y a W: ð2:1Þ

In this section, we study a family FpðxÞ of problems defined on the unit ball

B1 ¼ B1ð0Þ. More precisely, u a FpðxÞ if it satisfies:

u a W 1;pðxÞðB1Þ; uð0Þ ¼ 0;

0a ua 1 in B1; kDpðxÞukLlðB1Þ a 1:

(

We know (see [4]) that u a C
1;a
loc ðB1Þ for some a a ð0; 1Þ. In particular there exist

two positive constants a ¼ aðn; p�; pþ;LÞ and C ¼ Cðn; p�; pþ;LÞ such that

juj1;a;B3=4
aC for all u a FpðxÞ: ð2:2Þ

The following theorem gives a growth rate of the elements in the class FpðxÞ.

Theorem 2.1. There exists a positive constant C0 ¼ C0ðn; p�; pþ;LÞ such that for

every u a FpðxÞ, we have

0a uðxÞaC0jxjq0 for all x a B1;

where q0 ¼
p0

p0 � 1
is the conjugate of p0 ¼ pð0Þ.

Let us first introduce some notations. For a nonnegative bounded function u,

we define the quantity Sðr; uÞ ¼ supx ABr
uðxÞ: We also define for each u a FpðxÞ

the set

MðuÞ ¼ f j a N=2q0Sð2�j�1; uÞbSð2�j; uÞg:

Then we have
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Lemma 2.2. If MðuÞA j, then there exists a constant c0 ¼ c0ðn; p�; pþ;LÞ such

that

Sð2�j�1; uÞa c0ð2�jÞq0 for all u a FpðxÞ and j a MðuÞ:

Proof. Arguing by contradiction, we assume that

Ek a N buk a FpðxÞ bjk a MðukÞ such that Sð2�jk�1; ukÞb kð2�jkÞq0 : ð2:3Þ

Consider the function vkðxÞ ¼
ukð2�jk xÞ

Sð2�jk�1; ukÞ
defined in B1. By definition of vk and

MðukÞ, we have

0a vk a
Sð2�jk ; ukÞ
Sð2�jk�1; ukÞ

a 2q0 in B1;

supx AB1=2
vkðxÞ ¼ 1; vkð0Þ ¼ 0:

8><
>:

Now let pkðxÞ ¼ pð2�jkxÞ. We claim that there exists k0 a N and a positive con-

stant C independent of k such that

jDpkðxÞvkðxÞjaC
1

k p0�1
þ 1

k aðp0�1Þ2

� �
a 1 for all kb k0: ð2:4Þ

Indeed let sk ¼
2�jk

Sð2�jk�1; ukÞ
. Then one can easily verify that

DpkðxÞvkðxÞ ¼ 2�jk s
pkðxÞ�1
k DpðxÞukð2�jkxÞ

þ 2�jk
�
lnðskÞ

�
s
pkðxÞ�1
k j‘ukð2�jkxÞj pkðxÞ�2‘ukð2�jkxÞ‘pð2�jkxÞ:

Using the fact that uk a FpðxÞ and j‘pjLlðWÞ aL (by (2.1)), this leads to

jDpkðxÞvkðxÞja 2�jk s
pkðxÞ�1
k þ L2�jk jlnðskÞjs pkðxÞ�1

k j‘ukð2�jkxÞj pkðxÞ�1:

Since uk b 0 in B1, ukð0Þ ¼ 0 and uk a C1ðB3=4Þ, we have ‘ukð0Þ ¼ 0. Combining

this result and (2.2), we get for all k a N and for all x a B1:

j‘ukð2�jkxÞjaCð2�jkÞa:

It follows that

jDpkðxÞvkðxÞja 2�jk s
pkðxÞ�1
k

�
1þ LðCÞ pkðxÞ�1jlnðskÞjð2�jk ÞaðpkðxÞ�1Þ�: ð2:5Þ
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Note that Sð2�jk�1; ukÞ ¼ ukðzkÞ, for some zk a B2�jk�1 . Since ukð0Þ ¼ 0 and

uk a C1ðB3=4Þ, we deduce that

Sð2�jk�1; ukÞaCjzkjaC2�jk�1:

Consequently, we obtain

sk ¼
2�jk

Sð2�jk�1; ukÞ
b

2�jk

C2�jk�1
¼ 2

C
¼ m:

Now to estimate the righthand side of ð2:5Þ, we proceed as follows:

Estimate of jlnðskÞjð2�jkÞaðpkðxÞ�1Þ: Since ln is a continuous function in ½m;lÞ
and satisfies limt!l t�aðp0�1Þ2 lnðtÞ ¼ 0, we deduce that there exists a positive con-

stant c1 ¼ c1ða; p0; mÞ such that

jlnðtÞja c1t
aðp0�1Þ2 for all tb m:

In particular we have

jlnðskÞja c1s
aðp0�1Þ2
k for all k a N:

We infer from (2.3) that

s
p0�1
k 2�jk a

1

k p0�1
for all k a N: ð2:6Þ

It follows that

jlnðskÞjð2�jk Þaðp0�1Þ
a c1s

aðp0�1Þ2
k ð2�jk Þaðp0�1Þ ¼ c1ðs p0�1

k 2�jkÞaðp0�1Þ

a
c1

k aðp0�1Þ2
Ek a N:

Now we write

jlnðskÞjð2�jkÞaðpkðxÞ�1Þ ¼ jlnðskÞjð2�jkÞaðp0�1Þð2�jkÞaðpkðxÞ�p0Þ:

Using the Lipschitz continuity of p, we get

ð2�jkÞaðpkðxÞ�p0Þ ¼ eaðpð0Þ�pð2�jk xÞÞ lnð2 jk Þ
a eaL2

�jk jlnð2 jk Þj
a c2 ¼ c2ða;LÞ:

We deduce that we have for c3 ¼ c1c2

jlnðskÞjð2�jk ÞaðpkðxÞ�1Þ
a

c3

kaðp0�1Þ2
for all k a N: ð2:7Þ
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Estimate of 2�jk s
pkðxÞ�1
k : We first write

2�jk s
pkðxÞ�1
k ¼ 2�jk s

p0�1
k s

pkðxÞ�p0
k : ð2:8Þ

As we did above, we can find a positive constant c4 ¼ c4ðp0; mÞ such that

jlnðtÞja c4t
p0�1 for all tb m:

In particular, we have

jlnðskÞja c4s
p0�1
k for all k a N:

Then we have by using (2.6)

s
pkðxÞ�p0
k ¼ eaðpð2

�jk xÞ�pð0ÞÞ lnðskÞ a eaLc42
�jk s

p0�1

k

a eaLc4=k
p0�1

a eaLc4 ¼ c5ða;L; p0; mÞ:

We deduce then from (2.6) and (2.8) that we have

2�jk s
pkðxÞ�1
k a

c5

k p0�1
for all k a N: ð2:9Þ

We conclude from (2.5), (2.7) and (2.9) that (2.4) is true.

Conclusion: Taking into account the uniform bound of vk, (2.4) and the fact

that pk satisfies (1.1) and (2.1) with the same constants, we deduce (see [4]) that

there exist two positive constants d ¼ dðn; p�; pþ;LÞ and C ¼ Cðn; p�; pþ;LÞ
such that vk a C1; dðB3=4Þ and jvkj1; d;B3=4

aC, for all kb k0.

It follows then from Ascoli–Arzela’s theorem that there exists a subsequence,

still denoted by vk and a function v a C1; dðB3=4Þ such that vk ! v in C1ðB3=4Þ.
Moreover, it is clear that v satisfies

Dp0v ¼ 0 in B3=4; vb 0 in B3=4;

supx AB1=2
vðxÞ ¼ 1; vð0Þ ¼ 0:

(

By the maximum principle we have necessarily vC 0 in B3=4, which is in contra-

diction with supx AB1=2
vðxÞ ¼ 1. r

Proof of Theorem 2.1. Let x a B1nf0g. There exists j a NA f0g such that

2�j�1 a jxja 2�j. Then we have

uðxÞaSð2�j; uÞ: ð2:10Þ
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We shall prove by induction that we have

Sð2�j; uÞa c 00ð2�jÞq0 for all j a NA f0g: ð2:11Þ

for some constant c 00 ¼ maxðc02q0 ; 1Þ
For j ¼ 0, we have Sð2�0; uÞ ¼ Sð1; uÞa 1 ¼ ð2�0Þq0 a c 00ð2�0Þq0 .
Let jb 1. Assume that Sð2�j; uÞa c 00ð2�jÞq0 . We distinguish two cases:

– If j a MðuÞ, we have by Lemma 2.2,

Sð2�ð jþ1Þ; uÞ ¼ Sð2�j�1; uÞa c0ð2�jÞq0 ¼ c02
q0ð2�ð jþ1ÞÞq0 a c 00ð2�ð jþ1ÞÞq0 :

– If j B MðuÞ, we have Sð2�ð jþ1Þ; uÞ ¼ Sð2�j�1; uÞ < 2�q0Sð2�j ; uÞ. Using the

induction assumption, we get

Sð2�ð jþ1Þ; uÞa 2�q0c 00ð2�jÞq0 ¼ c 00ð2�ð jþ1ÞÞq0 :

We conclude from (2.10)–(2.11) that

uðxÞaSð2�j ; uÞa c 00ð2�jÞq0 a c 00ð2jxjÞ
q0 ¼ C0jxjq0 : r

3. Porosity of the free boundary

In all what follows, we assume that there exist positive constants l0, L0 such that

0 < l0 a f aL0 a:e: in W: ð3:1Þ

The following lemma and Theorem 2.1 give the exact growth rate of the solution

of the problem (P) near the free boundary. This extends a result established in

[1] for the Laplacian, and generalized in [8] for the p-Laplacian (see also [2] for

the A-Laplacian).

Lemma 3.1. Suppose that u a W 1;pðxÞðWÞ is a nonnegative continuous function

satisfying

DpðxÞu ¼ f in D 0ð½u > 0�Þ:

Then there exists r� > 0 such that for each y a ½u > 0� and r a ð0; r�Þ satisfying
BrðyÞHW, we have

sup
qBrðyÞ

ubCðyÞr pðyÞ=ðpðyÞ�1Þ þ uðyÞ;

where CðyÞ ¼
�
1� 1

pðyÞ

	�
l0
2n

	1=ðpðyÞ�1Þ
.
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Proof. It is enough to prove the result for y a ½u > 0�. We consider the function

defined by

vðx; yÞ ¼ CðyÞjx� yj pðyÞ=ðpðyÞ�1Þ:

Then it is not di‰cult to verify that

DpðyÞv ¼
l0

2
and DpðxÞv ¼

l0

2n

� �ðpðxÞ�1Þ=ðpðyÞ�1Þ
jx� yjðpðxÞ�pðyÞÞ=ðpðyÞ�1Þyðx; yÞ;

where

yðx; yÞ ¼ nþ pðxÞ � pðyÞ
pðyÞ � 1

þ
�
qðyÞ � 1

�
ln

l0

2n

� �
‘pðxÞ � ðx� yÞ

þ
�
qðyÞ � 1

�
� ðx� yÞ � ‘pðxÞ � lnðjx� yjÞ:

We claim that there exists r� > 0 such that

Er a ð0; r�Þ Ey a W Ex a BrðyÞHW : 0aDpðxÞva l0: ð3:2Þ

To prove (3.2), we first write DpðxÞv�
l0

2
in the form

DpðxÞv�
l0

2
¼ l0

2

l0

2n

� �ðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ
jx� yjðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ � 1

" #

þ 1

pðyÞ � 1

l0

2n

l0

2n

� �ðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ
jx� yjðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ

�


pðxÞ � pðyÞ þ ln

l0

2n

� �
‘pðxÞ:ðx� yÞ

þ ðx� yÞ:‘pðxÞ:lnðjx� yjÞ
�
:

For jx� yj < r < 1
e
, we have

jx� yjðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ ¼ eðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ lnðjx�yjÞ

a eL=ðp��1Þjx�yj jlnðjx�yjÞj
a eL=ðp��1ÞrjlnðrÞj:

Similarly, we have for jx� yj < r and L1 ¼ ln
l0

2n

� �����
����
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l0

2n

� �ðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ
¼ eðpðxÞ�pðyÞÞ=ðpðyÞ�1Þ lnðl0=2nÞ

a eL=ðp��1Þjx�yj jlnðl0=2nÞj a eL1Lr=ðp��1Þ:

We deduce that for jx� yj < r < 1
e
, we have

DpðxÞv�
l0

2

����
����a l0

2
½eðLL1=ðp��1ÞÞreðL=ðp��1ÞÞrjlnðrÞj � 1�

þ 1

p� � 1

l0

2n
eðLL1=ðp��1ÞÞreðL=ðp��1ÞÞrjlnðrÞj½Lrþ LL1rþ LrjlnðrÞj�:

It is clear now that there exists r� > 0 such that for all r a ð0; r�Þ, the right-

hand side of the above inequality is less than l0=2. Hence (3.2) holds.

Now let e > 0 and consider the following function ueðxÞ ¼ uðxÞ � ð1� eÞuðyÞ.
We have from (3.1)–(3.2)

DpðxÞue ¼ DpðxÞu ¼ f b l0 bDpðxÞv in BrðyÞB ½u > 0�:

Moreover

ue ¼ �ð1� eÞuðyÞa 0a v on ðq½u > 0�ÞBBrðyÞ:

If we also have

ue a v on
�
qBrðyÞ

�
B ½u > 0�;

then we get by the weak maximum principle

ue a v in BrðyÞB ½u > 0�:

But ueðyÞ ¼ euðyÞ > 0 ¼ vðyÞ which constitutes a contradiction.

So there exists z a
�
qBrðyÞ

�
B ½u > 0� such that ueðzÞ > vðzÞ. Since v is radial,

we get

sup
qBrðyÞ

�
u� ð1� eÞuðyÞ

�
¼ sup

qBrðyÞ
ue b sup

qBrðyÞB½u>0�
ue b ueðzÞ

> vðzÞ ¼ CðyÞr pðyÞ=ðpðyÞ�1Þ:

Letting e ! 0, we get

sup
BrðyÞ

ub sup
qBrðyÞ

ubCðyÞr pðyÞ=ðpðyÞ�1Þ þ uðyÞ: r
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We shall denote by u the solution of the problem (P). The main result of this

section is the porosity of the free boundary ðq½u > 0�ÞBW.

We recall that a set EHRn is called porous with porosity d, if there is an

r0 > 0 such that

Ex a E Er a ð0; r0Þ by a Rn such that BdrðyÞHBrðxÞnE:

A porous set has Hausdor¤ dimension not exceeding n� cdn, where

c ¼ cðnÞ > 0 is a constant depending only on n. In particular, a porous set has

Lebesgue measure zero.

Theorem 3.2. Let r� be as in Lemma 3.1, R a ð0; r�Þ and x0 a W such that

B4Rðx0ÞHW. Then ðq½u > 0�ÞBBRðx0Þ is porous with porosity constant depending

only on kgkl, l0, L0, R, dist
�
BRðx0Þ; qW

�
, p�, pþ, L and n. As an immediate con-

sequence, we have

DpðxÞu ¼ f wð½u > 0�Þ a:e: in W:

We need a lemma.

Lemma 3.3. Let R > 0 and x0 a W such that B4Rðx0ÞHW. We consider, for

y0 a B2Rðx0ÞB ½u ¼ 0� and Mb 1, the functions defined in B1 by

~ppðzÞ ¼ pðy0 þ RzÞ; ~uuðzÞ ¼ uðy0 þ RzÞ
MR

: ð3:3Þ

Then there exists M0 depending on kgkl, L0, R, dist
�
B3Rðy0Þ; qW

�
, p�, pþ, L

and n such that for any MbM0, we have ~uu a F~ppðzÞ.

Proof. First, note that ~pp and ~uu are well defined, since we have BRðy0ÞH

B3Rðx0ÞHW. Moreover we have ~uuð0Þ ¼ uðy0Þ
MR

¼ 0, and for Mb
kgkl
R

, we have

0a ~uua 1 in B1.

Next, one can easily verify that ~uu satisfies

D ~ppðzÞ~uu ¼ R

M ~ppðzÞ�1
ðDpð:ÞuÞðy0 þ RzÞ

� R lnðMÞ
M ~ppðzÞ�1

j‘uðy0 þ RzÞj ~ppðzÞ�2‘uðy0 þ RzÞ:‘pðx0 þ RzÞ:
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It follows that ~uu satisfies

kD ~ppðzÞ~uukl;B1

a
R

M p��1

�
L0 þ LjlnðMÞjmaxðj‘uj p��1

l;B3Rðx0Þ
; j‘uj pþ�1

l;B3Rðx0Þ
Þ
�

a
R

M p��1

�
L0 þ LjlnðMÞjC

�
n; p�; pþ;L; kgkl;L0; dist

�
B3Rðx0Þ; qW

���
:

Hence there exists M0 depending on kgkl, L0, R, dist
�
B3Rðy0Þ; qW

�
, p�, pþ, L

and n such that for all MbM0, we have kD ~ppðzÞ~uukl;B1
a 1. We conclude that

~uu a F~ppðzÞ for all MbM0. r

Proof of Theorem 3.2. Let R a ð0; r�Þ such that B4Rðx0ÞHW, and let x a E ¼
q½u > 0�BBRðx0Þ. For each 0 < r < R, we have BrðxÞHB2Rðx0ÞHW. Let

y a qBrðxÞ such that uðyÞ ¼ supqBrðxÞ u. Then we have by Lemma 3.1

uðyÞbC0r
pðxÞ=ðpðxÞ�1Þ þ uðxÞ ¼ C0r

pðxÞ=ðpðxÞ�1Þ; ð3:4Þ

with C0 ¼
�
1� 1

p�

	
min

��
l0
2n

	1=ðp��1Þ
;
�
l0
2n

	1=ðpþ�1Þ	
.

Hence y a B2Rðx0ÞB ½u > 0�. We denote by dðyÞ ¼ dist
�
y;B2Rðx0ÞB ½u ¼ 0�

�
the distance from y to the set B2Rðx0ÞB ½u ¼ 0�. By continuity of d, there exists

y0 a B2Rðx0ÞB ½u ¼ 0� such that dðyÞ ¼ jy� y0j.
Now we claim that there exists a constant C1 such that

uðyÞaC1

�
dðyÞ

� pðy0Þ=ðpðy0Þ�1Þ
: ð3:5Þ

To prove (3.5), we will apply Theorem 2.1 to the functions defined in B1 by (3.3).

First note that BRðy0ÞHB3Rðx0ÞHW. Indeed let z a BRðy0Þ. We have

jz� x0ja jz� y0j þ jy0 � x0jaRþ 2R ¼ 3R; which means that z a B3Rðx0Þ:

Next, it is easy to see that ~pp satisfies (1.1) and (2.1) with the constants p�, pþ and

LR respectively. Moreover by Lemma 3.3, there exits M0 such that for all

MbM0, we have ~uu a F~ppðzÞ. Applying Theorem 2.1, we obtain for a positive

constant C depending only on n, p�, pþ and LR, that

~uuðzÞaCjzj ~ppð0Þ=ð ~ppð0Þ�1Þ for all z a B1:

Since x a BRðx0ÞB ½u ¼ 0�, we have dðyÞa jy� xj ¼ r < R. Therefore we have

jy� y0j < R, and we can apply the previous inequality to z ¼ y� y0

R
a B1. We

obtain

120 S. Challal and A. Lyaghfouri



1

MR
uðyÞaC

jy� y0j
R

� �pðy0Þ=ðpðy0Þ�1Þ
or

uðyÞaCMR�1=ðpðy0Þ�1Þ�dðyÞ� pðy0Þ=ðpðy0Þ�1Þ
;

which is (3.5). We deduce from (3.4)–(3.5) that

C0r
pðxÞ=ðpðxÞ�1Þ

a uðyÞaC1

�
dðyÞ

� pðy0Þ=ðpðy0Þ�1Þ
: ð3:6Þ

Using (1.1) and (2.1), we get

r pðxÞ=ðpðxÞ�1Þ ¼ rðpðyÞ�pðxÞÞ=ðpðxÞ�1ÞðpðyÞ�1Þr pðyÞ=ðpðyÞ�1Þ

¼ eðpðyÞ�pðxÞÞ=ðpðxÞ�1ÞðpðyÞ�1Þ lnðrÞr pðyÞ=ðpðyÞ�1Þ

b e�LrjlnðrÞj=ðp��1Þ2r pðyÞ=ðpðyÞ�1Þ

bm0r
pðyÞ=ðpðyÞ�1Þ; ð3:7Þ

where

m0 ¼ min
t A ½0;DðWÞ=2�

e�LtjlnðtÞj=ðp��1Þ2 ; DðWÞ ¼ sup
x;y AW

jx� yj:

Similarly, we have

�
dðyÞ

� pðy0Þ=ðpðy0Þ�1Þ ¼
�
dðyÞ

�ðpðyÞ�pðy0ÞÞ=ðpðy0Þ�1ÞðpðyÞ�1Þ�
dðyÞ

� pðyÞ=ðpðyÞ�1Þ

¼ eðpðyÞ�pðy0ÞÞ=ðpðy0Þ�1ÞðpðyÞ�1Þ lnðdðyÞÞ�dðyÞ� pðyÞ=ðpðyÞ�1Þ

a eLdðyÞjlnðdðyÞÞj=ðp��1Þ2�dðyÞ� pðyÞ=ðpðyÞ�1Þ

am1

�
dðyÞ

� pðyÞ=ðpðyÞ�1Þ
; ð3:8Þ

where

m1 ¼ max
t A ½0;DðWÞ�

eLtjlnðtÞj=ðp��1Þ2 :

Hence we obtain from (3.6)–(3.8)

C0m0r
pðyÞ=ðpðyÞ�1Þ

a uðyÞaC1m1

�
dðyÞ

� pðyÞ=ðpðyÞ�1Þ
;

which leads to

dðyÞb m0C0

m1C1

� �1=qðyÞ
rb dr; where

d ¼ min
1

2
;

m0C0

m1C1

� �1�1=p�

;
m0C0

m1C1

� �1�1=pþ
 !

< 1:
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Let now y� a ½x; y� such that jy� y�j ¼ dr=2. Then we have

Bðd=2Þrðy�ÞHBdrðyÞBBrðxÞ:

Indeed, we have for each m a Bdr=2ðy�Þ

jm� yja jm� y�j þ jy� � yj < dr

2
þ dr

2
¼ dr

jm� xja jm� y�j þ ðjx� yj � jy� � yjÞ < dr

2
þ r� dr

2

� �
¼ r:

Moreover, we have

BdrðyÞBBrðxÞH ½u > 0�

since BdrðyÞHBdðyÞðyÞH ½u > 0� and dðyÞb dr.

Hence we have

Bðd=2Þrðy�ÞHBdrðyÞBBrðxÞHBrðxÞnq½u > 0�HBrðxÞnE: r
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