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in the p(x)-obstacle problem
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Abstract. In this paper we consider the obstacle problem for the p(x)-Laplace operator.
Assuming that p is locally Lipschitz continuous, we establish the growth rate of the solution
near the free boundary from which we deduce its porosity.

Mathematics Subject Classification (2010). 35R35, 35B05, 35J60.
Keywords. Obstacle problem, p(x)-Laplacian, free boundary, porosity.

1. Introduction

Let Q be a bounded open connected subset of R", n>2, fe L*(Q) and
ge WP (Q)nL*(Q), g > 0. We consider the p(x)-obstacle problem with a
zero obstacle, i.e. the obstacle problem for the p(x)-Laplacian

Apyu = div([Vul"2Vu) = - in [u > 0],
u=0 in Q,
u=4g on 0Q.

The weak formulation of this problem is given by the following variational
inequality:

Find u € K, such that:
" J (|Vu|p(x)_2Vu Vo—u)+ f.(v—u))dx >0 forallveK,,
Q
where K, = {v € W'7™(Q) :v—ge W"™(Q),v > 0ae. in Q}, p is a measur-
able real valued function defined in Q and satisfying

l<p_<px)<ps aexeQ (1.1)
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for some positive numbers p_ and p,. The space WO1 "’ (x)(Q) is defined as the clo-
sure of C(Q) in WHP¥)(Q), where W7¥)(Q) is the variable exponent Sobolev

space

Whr(Q) = {u e LM (Q) : Vu e (LP™(Q))"}

and L’™(Q) = {u: Q — R measurable : p(u) = [, |u( ) < o0} is equipped
with the Luxembourg norm

[[ul| () = inf{A >0 p(u/2) < 1}.

WP (Q) is equipped with the norm

n au
lully iy = llellyy + [Vatllpys Where [[Varl| g = > il
i=1 Hip(x)
If p is also log-Holder continuous, i.e. satisfies for some L > 0
~|p(x) = p(y)|loglx — y| <L forallx,yeQ, (1.2)

then we have [5] C*(Q) is dense in W'r()(Q) and W, (Q) = w'»)(Q) A
1,1
W, (Q).
By B,(x) we shall denote the open ball in R" with center x and radius r. The
conjugate of p(x) defined by 1’ ) - will be denoted by g(x).

We first give some class1cal propertles of the solution in Section 1. In Section
2, we establish the growth rate of a class of functions. In Section 3, we obtain the
exact growth rate of the solution of the problem (P) near the free boundary, from
which we deduce its porosity. Our result on the porosity of the free boundary
extends similar results for the Laplacian [1], for the p-Laplacian [8], and for the
A-Laplacian [2]. As it was observed in [8], the free boundary has therefore
Hausdorff dimension less than n and hence it is of Lebesgue measure zero.

First, we recall the following existence and uniqueness result established in [7].
We refer also to [11] for a much more general framework of entropy solution.

Proposition 1.1. Assume that f € LYY (Q) and g € WX (Q) " L*(Q). Then
there exists a unique solution u to the problem (P).

In the following proposition, we generalize some classical properties of the
obstacle problem.
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Proposition 1.2. Let u be the solution of (P).
Q) If f=0inQ, then0 <u < ||g|, in Q
(i) fx(u>0]) <Ayu < fae inQ.
(iii) If u e C°(Q), then Ayyu = f a.e. in [u> 0].

111

Proof. (i) Note that u > 0 since u € K;,. To get the upper bound of u, we take

min(u, ||g||,.) = u — (u—||g||,)" as a test function in (P). We get

j IV (u — llgll,) "1 < —j Flu—|gll,)" <0.
Q Q

Then V(u—|g|[,,)" =0 ae. in Q. Since u=g on 0Q, we deduce that

(u—1gll,,)" =0ae. inQ.
(ii) Let { € 2(Q), { = 0.
First taking u + { € K, as a test function for (P), we obtain

j VUl PO RYVE 4+ 12> 0,
Q

which leads to A,yu < f in 2'(Q).

Now without loss of generality, we can assume that { #0. For ¢ > 0, let
H,(s) =min(1,%). Taking u — % H,(u—¢){ € K, as a test function for (P), we

(g
get

J H,(u— &)|Vu|"Y2VuVE + fHy(u — )¢ < 0.
Q
Letting ¢ — 0, we obtain

|| 1w 2vave + pu> )z <o

Q

which leads to A,yu > fx([u > 0]) in 2'(Q).

(iii) Assume that ue C°(Q), and let (e Z(u>0]), {=>0.

4
l<lles

0 = Mingpp u and taking u+0 as test functions for (P), we get
J IVu| "2V + £¢ = 0.
[u>0]

We obtain A,yu = f in 2'([u > 0]).

Setting
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Remark 1.3. Inequalities (ii) and equation (iii) of Proposition 1.2 were

established in [11] in the framework of entropy solution, under the condition:
_ 20(X)px) np(x) p-—1

essinfycq(q1(x) — (p(x) — 1)) > 0, where ¢; (x) o and go(x) =5 P

Remark 1.4. If f > 0in Q and f € L;”.(Q), we know from Proposition 1.2 that u

loc

is bounded and A,,yu is locally bounded in Q. If moreover p € C]%cﬂ (Q), then

we have (see [4]) u € CIL’C“(Q), for some o € (0, 1).

2. A class of functions on the unit ball

In all what follows, we assume that p is Lipschitz continuous, i.e. there exists a
positive constant L such that

lp(x) — p(¥)| < L|x—y| forallx,yeQ. (2.1)

In this section, we study a family %, of problems defined on the unit ball
By = B1(0). More precisely, u € 7, if it satisfies:

ue Whr™(By),  u(0) =0,
0<u<lin By, ||Ap<x)u||m(31) <1

We know (see [4]) that u € C>*(B) for some « € (0,1). In particular there exist

loc

two positive constants oo = a(n, p_, p1, L) and C = C(n, p_, p+, L) such that
|”|1,o<,1§;/4 <C forallue 7,,. (2.2)
The following theorem gives a growth rate of the elements in the class 7).

Theorem 2.1. There exists a positive constant Cy = Cy(n, p_, p, L) such that for
every u € Fp(y), we have

0 <u(x) < Colx|”™  forall x e By,

where qy = is the conjugate of po = p(0).

Po
po—1

Let us first introduce some notations. For a nonnegative bounded function u,
we define the quantity S(r,u) = sup,.p u(x). We also define for each u € 7,
the set

M(u) = {j e N/29SQ27 1 u) > S(27,u)}.

Then we have
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Lemma 2.2. If M(u) # 0, then there exists a constant co = co(n, p_, p+, L) such
that

SQ27 N u) <co(27)®  forall ue Fyyy and j € M(u).
Proof. Arguing by contradiction, we assume that

Vk € N Ju € Zpny Jjk € M(ur)  such that SQ27 ") > k(27)®. (2.3)

27k ) ..
Consider the function vy (x) = M defined in B;. By definition of v; and
S22 )
M (uy ), we have
S22 u) P
0<u < SR <2% in By,

Now let pi(x) = p(277x). We claim that there exists ko € N and a positive con-
stant C independent of k such that

1 1
Aol < C(kpol T koc(po—l)2> <1 forall k> k. (2.4)
—Jk
Indeed let 5 = STy Then one can easily verify that
Ap (o Uk(x) = ziikspk(x)—lA . uk(fokx)

+ 27 (In(si) ) 5P [ Wagg (27 0) | 002V (277 x) Vp (2 x).
Using the fact that ux € Z,(y) and |Vp|;.q) < L (by (2.1)), this leads to
Aotk (X)] < 2-fks,fk<") + L27 [ In(s) |57 Vg (27 ) e

Since u;, > 0in By, ux(0) = 0 and u;, € C1(33/4), we have Vuy(0) = 0. Combining
this result and (2.2), we get for all k € N and for all x € By:

Vi (27 x)| < C(27)%,
It follows that

A0 ()] < 2720 (1 4 L(C) P In(s) | (27) “Pe D) (2.5)
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Note that S(27! u) = w(z;), for some z; € B, ;1. Since u(0) =0 and
ur € C'(B3;4), we deduce that

S ) < Clzi| < €271
Consequently, we obtain

2~k 2~k 2
= : >_= =2 -y
kTSR T 21 ¢

Now to estimate the rlghthand s1de of (2.5), we proceed as follows:

Estimate of |In(s;)|(2 f’) (Pe()=1): " Since In is a continuous function in (1, o0)
and satisfies lim,_, ., ¢~(Po~1) ln( t) = 0, we deduce that there exists a positive con-
stant ¢; = ¢;(, po, 1) such that

[In(7)| < etV forall t > .
In particular we have

in(si)| < s P forall k e N.
We infer from (2.3) that

1
Jepo—1

P2 < for all k e N. (2.6)

It follows that

[In(s)|(2 !k) (po—1) <CSk (po—1)° (2 jk) (po=1) _ = ci(s) po=ly !k) (po—1)
1

<— VkeN.
Jo(po—1)°

Now we write
s (277) P70 = ()| (270 0T (2 LI,
Using the Lipschitz continuity of p, we get
(2—j1<)°‘(!7k(x)_[’0) — PO =p27x)In(2k) o paL2K[In2K)] < () — e, L).
We deduce that we have for ¢3 = cjcn

In(sy. )| (27) X Pe)= D9  forallkeN. 2.7
kx(po—1)?
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=1 We first write

Estimate of 27s!*

27jks,f"(x)_l = Z’jkslfo_ls,fkm_po. (2.8)
As we did above, we can find a positive constant ¢4 = ¢4(po, ) such that

IIn(¢)| < cqt™ ' forallt > p.
In particular, we have

In(sy)| < eas??™" forall k e N.
Then we have by using (2.6)
PP _ pa(p(=pO) In(s) < pales2 s

. po—1 °,
< eLa/k < orles — oo(o L, po, ).

We deduce then from (2.6) and (2.8) that we have

; (x)— C
2 el R
Jepo—1

forall k € N. (2.9)

We conclude from (2.5), (2.7) and (2.9) that (2.4) is true.

Conclusion: Taking into account the uniform bound of v, (2.4) and the fact
that py satisfies (1.1) and (2.1) with the same constants, we deduce (see [4]) that
there exist two positive constants 6 =d(n, p_, py+,L) and C = C(n,p_, p+,L)
such that vy € C"?(By4) and locly 5.5, < C for all k > ko.

It follows then from Ascoli-Arzela’s theorem that there exists a subsequence,
still denoted by v and a function v € C'(Bs4) such that vy — v in C'(Bj4).
Moreover, it is clear that v satisfies

Apov:Oin B3/4, UZOil’l B3/4_7
SUP,cp,, v(x) =1, v(0)=0.

By the maximum principle we have necessarily v = 0 in Bjj4, which is in contra-
diction with sup, . p , v(x) = 1. [

Proof of Theorem 2.1. Let x € Bj\{0}. There exists j € Nu{0} such that
27771 < |x| <27, Then we have

u(x) < SQ27,u). (2.10)
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We shall prove by induction that we have
S22, u) < cj(2)"  forall j e Nu{0}. (2.11)

for some constant ¢j = max(co2%,1)
For j =0, we have S(27%u) = S(1,u) <1 = (279" < ¢{(279)%.
Let j > 1. Assume that S(27,u) < ¢{(277)". We distinguish two cases:

—If j € M(u), we have by Lemma 2.2,
S(zf(Hl)’u) — S(2*/*17u) < co(sz)"" _ 602%(27(#1))% < C(/)(TUH))%-

—If j ¢ M(u), we have S2-U*D u) = S(27 1 u) < 270S(27,u). Using the
induction assumption, we get

SV ) < 2-heh(27) 0 = 66(2—(j+1))qo_
We conclude from (2.10)—(2.11) that

u(x) < SQ27,u) < ¢(27)* < cg2lx))* = Colx|*. O

3. Porosity of the free boundary
In all what follows, we assume that there exist positive constants Ay, Ag such that
O0<l<f<Ay aeinQ (3.1)

The following lemma and Theorem 2.1 give the exact growth rate of the solution
of the problem (P) near the free boundary. This extends a result established in
[1] for the Laplacian, and generalized in [8] for the p-Laplacian (see also [2] for
the A-Laplacian).

Lemma 3.1. Suppose that u e W'P¥)(Q) is a nonnegative continuous function
satisfying

Apou=f  in2'(u>0]).

Then there exists r, > 0 such that for each y € [u > 0] and r € (0,r,) satisfying
B,(y) = Q, we have
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Proof. Tt is enough to prove the result for y € [u > 0]. We consider the function
defined by
o(x, ) = C(y)|x — y|PW/ P01,

Then it is not difficult to verify that

o 1\ (P D)D) |
Appp=7  and Ao = (2n> e — | POV, ),

where

p(x) = p(y) Ao
0. 3) =+ PP (g(5) = 1) in(32) 90 (- )
+(q(y) = 1) - (x = ) - Vp(x) - In(|x — y|).

We claim that there exists r, > 0 such that

Vre (0,r.) VyeQVxe B (y) cQ:0 <Ay < Ao (3.2)

Ao .
To prove (3.2), we first write A, (v — 70 in the form

ON/()-1)
Ayt Ao [ (2\PETPOIPDD ey _
r0Y "3 =2 [\ b=

(=P (p()=1)
oL A (l(’)p PR (PP (p(3)-1)

P09 —121\2n S
| = p00) +1n (52) (.6 - )
+(x= )Tplo il )

For |x — y| < r <1, we have

Ix — y‘(P(X)—p(y))/(p(y)—l) — o(PX)=p(3)/(P(y)=1)In(|x—y])
< oL/ (p-=Dlx=yllIn(x=y)l < oL/(p-=Driln(r)]

2o
m(m)’

Similarly, we have for |x — y| < rand A| =
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2\ P/ (1))
<_0> _ (P00 (p(»)~D) e /20)
2n

< eLlp-=Dk=5llInlo/20)| < pALr/(p-—1),

We deduce that for [x — y| <r <1, we have

A A . .
Apyv — 30 < 30[e(LAl/(prl))»e(L/(prl))rlln(l)\ —1]
1 2 1) _)r
20 A (p =) (L (- 1>)'|ln(’>‘[Lr+LA1r+Lr\ln(r)|].
p-—12n

It is clear now that there exists r, > 0 such that for all r € (0,r,), the right-
hand side of the above inequality is less than 49/2. Hence (3.2) holds.

Now let ¢ > 0 and consider the following function u,(x) = u(x) — (1 — &)u(y).

We have from (3.1)—(3.2)

Apiiytte = Ay = [ = 2o = Apyv in B(y) n[u>0].
Moreover
u,=—(1—e)u(y) <0<v on (du>0])nB(y).
If we also have
u, <v on (0B,(p)) N [u> 0],
then we get by the weak maximum principle

u, <v in B.(y)nu>0].

But u,(y) = eu(y) > 0 = v(y) which constitutes a contradiction.
So there exists z € (0B,(y)) N [u > 0] such that u,(z) > v(z). Since v is radial,
we get

sup (u— (1 —¢)u(p)) = sup u; > sup  u, > u,(z)
0B, (y) 0B(») 0B, (y)N\[u>0]
Letting ¢ — 0, we get

sup u > sup u > C(p)rPOVPW=D 4y, O
B,(y) 0B,(y)
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We shall denote by u the solution of the problem (P). The main result of this
section is the porosity of the free boundary (d[u > 0]) N Q.

We recall that a set £ < R” is called porous with porosity d, if there is an
ro > 0 such that

Vx e EVYre (0,r9) 3y € R"  such that Bs,(y) = B.(x)\E.

A porous set has Hausdorff dimension not exceeding n — ¢d”, where
¢ =c¢(n) > 0 is a constant depending only on n. In particular, a porous set has
Lebesgue measure zero.

Theorem 3.2. Let r, be as in Lemma 3.1, Re (0,r,) and xo € Q such that
Bur(x0) = Q. Then (0[u > 0]) n Br(x0) is porous with porosity constant depending
only on ||g ., 40, Ao, R, dist(BR(xo)7 GQ), P, P+, L and n. As an immediate con-

sequence, we have

Apou= fx([u>0]) ae inQ.

We need a lemma.

Lemma 3.3. Let R >0 and xy € Q such that Bigr(xo) = Q. We consider, for
Yo € Bar(xo) N [u=0] and M > 1, the functions defined in By by

pE) = pOn+ R2),  i(z) =) (33)

Then there exists My depending on |\g|... Ao, R, dist(Bsg(y0),0Q), p—, pi., L
and n such that for any M > My, we have u € F).

Proof. First, note that p and # are well defined, since we have Bg()g) <

u(o) gl
g = > ~
R 0, and for M >

Bir(xp) = Q. Moreover we have #(0) , we have
0<u<l1inB.

Next, one can easily verify that u satisfies

R
a75E -1 Bo)u)(yo + Rz)

RIn(M 5(z)—
- ﬁ \Vu(yo + Rz)|P® > Vu(yo + Rz).Vp(xo + Rz).

Ayt =
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It follows that u satisfies

A5l . s,
< R (Ao + Liin(M) | max(IVel” -, [vu|” L))
- Mpffl 0 O’D,B;R(Xo), UD,B_}R(XO)
R o
< = (Ao + L|In(M)|C(n, p—, p+, L, ||9]l ... Ao, dist (Bsr(x0), 0Q))).

Hence there exists Mo depending on ||g||.., Ao, R, dist(Bsr(y0),0Q), p—, py, L
and n such that for all M > My, we have [|A;.ull,, 5 < 1. We conclude that
ue Fpe for all M > M,. ]

Proof of Theorem 3.2. Let R € (0,r,) such that Byg(xo) = Q, and let x € E =

Olu > 0] " Br(xp). For each 0 <r < R, we have B,(x) < Byg(xg) = Q. Let
¥ € 0B,(x) such that u(y) = supyp, () #. Then we have by Lemma 3.1

u(y) > Cor?™/(PN=1 4y (x) = Corr™/ (=1, (3.4)

1/(p-—1) 1/(ps=1)
: _ U\ yin (2 Jo
with Cy = (l —;) mm((ﬁ) , (2—;1> )

Hence y € Byg(xo) M [u > 0]. We denote by d(y) = dist(y, Bar(xo) N [u = 0])
the distance from y to the set Byg(xo) N [u = 0]. By continuity of d, there exists
Yo € Bar(x0) n [u = 0] such that d(y) = |y — yol.

Now we claim that there exists a constant C; such that

u(y) < Cy (d(y))ﬁ(yo)/(l’(}’o)*l). (3.5)

To prove (3.5), we will apply Theorem 2.1 to the functions defined in B; by (3.3).
First note that Br(yo) = Bsr(xo) = Q. Indeed let z € Br(yy). We have

|z—xo| < |z — yo| + |yo — xo| < R+2R=3R, which means that z € B3g(xy).

Next, it is easy to see that p satisfies (1.1) and (2.1) with the constants p_, p, and
LR respectively. Moreover by Lemma 3.3, there exits M, such that for all
M > M,, we have u € 7;.). Applying Theorem 2.1, we obtain for a positive
constant C depending only on n, p_, p, and LR, that

i(z) < Clz)PO/PO=N forall z e By.

Since x € Bgr(xo) N [u= 0], we have d(y) < |y — x| =r < R. Therefore we have

— yo| < R, and we can apply the previous inequality to z = . e B;. We
y—=n pply p q y R

obtain
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_ P(30)/(p(y0)—1)
\y RJ’0|> or

1
— <
i =¢(
u(y) < Cvijfl/(p(yo)fl)(d(y))17(}’0)/(17(J’f>)—1)7
which is (3.5). We deduce from (3.4)—(3.5) that
Cor?™/(P)=1) < u(y) < Cy (d(y))p(yo)/(pwo)fl).
Using (1.1) and (2.1), we get
P/ (p()=1) — . (p(»)=p(¥))/(p(x)=D)(p(»)=1) ,.p(3)/(p(¥)-1)

e (P()=p()/(p(x)=1)(p(y)=1) In(r) . p(y)/(P(¥)=1)

> o LM/ (p-=1)? .p(»)/(p(»)~1)

> mor?W/(P()=1),

where

- i ~Liin(1)|/(p-~1)° -
my= min e ,  D(Q)= sup |[x—y|.
0 1€[0,D(Q)/2] @) el | |

Similarly, we have

(d(y))p(yo)/(pb}o)*l) _

(d(y))(I’(J/)*P(J/o))/(ﬁ(yo)fl)(l’(y)fl)(d( ))[7(}')/(])()))71)

— (P =P(30))/(P(30)=1)(p(»)=1) In(d(y)) (d(y))p(y)/(p(y)—l)

< LA/ (p-~1)? (d(y»p(y)/(p(y)—l)

<m (d(y))p(y)/(p(y)fl)

)

where

my= max eLMOV-—1*
1e[0,D(Q)]

Hence we obtain from (3.6)—(3.8)
Comor?/PI=1 < 4y(y) < Cymy (d(y))ﬁ(y)/(p(y)fl),

which leads to

1/q(y)
d(y) = (mo go> r>or, where
m C

. 1 moCp 1=1/p- moCy 1=1/p+
= T 1.
0 m1n<2’ <m1Cl> ’ m1C1 <

121
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Let now y* € [x, y] such that |y — y*| = or/2. Then we have

B2 (v*) < Bs(y) 0 By(x).
Indeed, we have for each m € B, /»(y*)

. . or or
Im—y| <|m—y"|+|y —y|<3+3=5r

* % or or
m— x| < |m— y| + (x = 3|~ |y —y|)<z+<r—§>_r.

Moreover, we have
By (y) A B(x) = [u> 0

since Bs:(y) = By(,)(y) < [u> 0] and d(y) > or.
Hence we have

Byyr(¥7) < Bir(¥) 0 By(x) = B (x)\du > 0] = B,(x)\E. O
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