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1. Introduction

For more than forty years, the study of condensing, 1-set contractive, nonexpan-

sive and pseudo-contractive operators, has been the main object of research in

Nonlinear Functional Analysis, especially, the existence of fixed points for a

closed convex subset into itself for one of this class of operators and was started

by Browder [5], [6], [7], Sadovskii [34], Petryshyn [31], [32], Nussbaum [28], Kirk

[4], [20], [21], Morales [26] and others. These studies were mainly based upon the

potential tool of degree theory, geometry of the ambient Banach space (reflexivity,

uniform convexity, normal structure, etc.), properties of operators (semi-closed,

demi-continuous, demi-closed, etc.) and boundary conditions in particular the

famous Leray–Schauder condition. Since then, whether the mentioned operators

defined on the closure of bounded subset of a Banach space has a fixed point has

become an interesting problem.

Recently, some existence results for fixed points, positive eigenvalues, and

eigenvectors for 1-set contractive, pseudo-contractive, nonexpansive operators
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under several boundary conditions (Leray-Schauder, weak inwardness and others)

as well as others additional assumptions and without exigence of the boundedness

of the domain have been considered by some authors [15], [18], [24], [27], [29].

Due to the lack of compactness in L1-spaces which equipped with their weak

topology, are the convenient and natural setting to investigate the existence prob-

lems of fixed point and eigenvectors for operators and solutions of various kinds

of nonlinear di¤erential equations and nonlinear integral equations in Banach

spaces, the above mentioned results cannot be easily applied. These equations

can be transformed into fixed point problems and nonlinear equations involving

a broader class of nonlinear operators which are (ws)-compact (See Definition

2.3) and among them have the property that the image of any set is in a certain

sense more weakly compact than the original set itself (see [3], [12], [14], [23], [22]).

In this paper, we introduce the concept of demi-weakly compact at the origin

(see Definition 3.5) and examine weakly condensing, 1-set weakly contractive,

pseudo-contractive and nonexpansive operators mainly in the case when the do-

main is an unbounded subset of a Banach space. We are able to find fixed points

for such operators under several boundary conditions as well as some additional

assumptions (Leray-schauder, weak inwardness and others) and, if useful, by

imposing a boundedness condition on the operators. Our results generalize and

extend relevant and recent ones (see [1], [23]). In addition, our arguments and

methods are elementary in the sense that they do not need any recourse to degree

theory or theory of homotopy-extensions.

2. Preliminaries

Before we state and prove our fixed point theorems, we first collect some notation

and preliminary facts from the theory of operators defined on Banach spaces.

Throughout this paper we assume that ðE; k � kÞ is a real Banach space, E � is

its topological dual and y means the zero vector of the space E. As usual, we will

denote BrðzÞ, and SrðzÞ, the closed ball, and the sphere, with radius r > 0 and

center z a E, respectively. Here !w denotes weak convergence and ! denotes

strong convergence in E.

If x a E, we will denote as JðxÞ the normalized duality mapping at x

defined by JðxÞ :¼ f j a E � : jðxÞ ¼ kxk2; k jk ¼ kxkg. We will use the mapping

3� ; �4þ : E � E ! R defined by 3y; x4þ :¼ maxf jðyÞ : j a JðxÞg.
Let C be a nonempty subset of E. Recall that a mapping T : C ! E is said to

be nonexpansive whenever kTðxÞ � TðyÞka kx� yk for every x; y a C. Recall

that a sequence ðxnÞ of elements of C is said to be an a.f.p. sequence for T when-

ever limn!l kxn � TðxnÞk ¼ 0. It is well known that if T is a nonexpansive map-

ping which maps a closed convex bounded subset C of E into itself, then such

mapping always has an a.f.p. sequence in C.
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A mapping A : DðAÞJE ! E will be called an accretive operator on E if and

only if 3AðxÞ � AðyÞ; x� y4þb 0 for all x; y a DðAÞ.
If, in addition, RðI þ lAÞ is for one, hence for all, l > 0, precisely E, then A

is called m-accretive. We say that A satisfies the range condition if DðAÞH
RðI þ lAÞ for all l > 0.

We now recall some important facts regarding accretive operators which will

be used in our paper (see for example [8]).

Proposition 2.1. Let A : DðAÞ ! E be a mapping. The following conditions are

equivalent:

• A is an accretive operator.

• The inequality kx� yka
��x� yþ l

�
AðxÞ � AðyÞ

��� holds for all lb 0, and

for every x; y a DðAÞ.

• For each l > 0 the resolvent Jl :¼ ðI þ lAÞ�1 : RðI þ lAÞ ! DðAÞ is a single-

valued nonexpansive mapping.

A mapping T : C ! E is said to be pseudo-contractive if for every x; y a C,

and for all positive r, kx� yka
��ð1þ rÞðx� yÞ � r

�
TðxÞ � TðyÞ

���. Pseudo-

contractive mappings are easily seen to be more general than nonexpansive map-

pings ones. The interest in these mappings also stems from the fact that they are

firmly connected to the well known class of accretive mappings. Specifically T

is pseudo-contractive if and only if I � T is accretive where I is the identity

mapping.

We say that the mapping T : C ! E is weakly inward on C if

lim
l!0þ

d
�
ð1� lÞxþ lTðxÞ;C

�
¼ 0

for all x a C. Such condition is always weaker than the assumption of T mapping

the boundary of C into C. Recall that if A : DðAÞ ! X is a continuous accretive

mapping, DðAÞ is convex and closed and I � A is weakly inward on DðAÞ, then A

has the range condition (see [25]).

In [15] the authors considered several fixed points results for continuous

pseudo-contractive mappings with unbounded domains satisfying additional con-

ditions in terms of a function G : E � E ! R under the following assumptions:

(g1) Gðlx; yÞa lGðx; yÞ for any x; y a E and l > 0,

(g2) there exists S > 0 such that 0 < Gðx; xÞ for any x a E with kxkbS,

(g3) Gðxþ y; zÞaGðx; zÞ þ Gðy; zÞ for any x; y; z a E,

(g4) for each y a E, there exist t > 0 (depending on y) such that if kxkb t, then

jGðy; xÞj < Gðx; xÞ.
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Definition 2.2. Let E be a Banach space. An operator F : E ! E is said to be

weakly compact if FðWÞ is relatively weakly compact for every bounded subset

WJE.

Definition 2.3 [36]. Let E be a Banach space. An operator (not necessary linear)

F : E ! E is said to be strongly continuous on E if for every sequence ðxnÞn with
xn !

w
x, we have FðxnÞ ! FðxÞ.

Next we introduce the notion of (ws)-compact operators.

Definition 2.4 [17]. Let D a subset of a Banach space ðE; k � kÞ. An operator (not

necessarily linear) F : D ! E is said to be (ws)-compact if F is k � k-continuous
and, for every weakly convergent sequence ðxnÞn AN elements of D, the sequence�
F ðxnÞ

�
n AN

admits a strongly convergent subsequence.

Remark 2.5. (i) As examples of (ws)-compact operators we have compact opera-

tors and strongly continuous operators.

(ii) A map F is (ws)-compact if and only if it maps relatively weakly compact

sets into relatively compact ones.

(iii) F is (ws)-compact does not imply that F is sequentially weakly continuous

(i.e., xn !
w

x implies F ðxnÞ !
w

F ðxÞ); see [23], [22].
The following fixed point result stated in [23], will be used in the next section.

The proof follows from Schauder’s fixed point theorem.

Theorem 2.6. Let W be a nonempty closed convex subset of a Banach space E. As-

sume that F : W ! W is (ws)-compact. If FðWÞ is relatively weakly compact, then

there exists x a W such that FðxÞ ¼ x.

Definition 2.7. Let E be a Banach space and C a lattice with a least element,

which is denoted by 0. By a measure of weak non-compactness ðMNWCÞ on E,

we mean a function F defined on the set of all bounded subsets of E with values in

C satisfying:

(1) F
�
convðWÞ

�
¼ FðWÞ, for all bounded subsets WJE, where conv denotes the

closed convex hull of W.

(2) For any bounded subsets W1, W2 of E we have

W1 JW2 ¼) FðW1ÞaFðW2Þ:

(3) FðWA fagÞ ¼ FðWÞ for all a a E, W bounded set of E.

(4) FðWÞ ¼ 0 if and only if W is relatively weakly compact in E.
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The MNWC F is said positive homogenous provided FðlWÞ ¼ lFðWÞ for all
l > 0 and W is a bounded set in E.

The above notion is a generalization of the important well known De Blasi

measure of weak non-compactness b (see [9]) defined on each bounded set W of

E by

bðWÞ ¼ inffe> 0 : there exists a weakly compact set D such that WJDþ BeðyÞg:

It is well known that b enjoys these properties for all bounded subsets W, W1, W2

of E:

(5) bðW1AW2Þ ¼ maxfbðW1Þ; bðW2Þg.
(6) bðlWÞ ¼ lbðWÞ for all l > 0.

(7) bðW1 þW2Þa bðW1Þ þ bðW2Þ.

Definition 2.8. Let W be a nonempty subset of Banach space E and F a MNWC

on E. If F maps W into E, we say that

(a) F is F-condensing if F
�
FðDÞ

�
< FðDÞ for all bounded sets DJW with

FðDÞA 0, and

(b) F is F-nonexpansive map if F
�
FðDÞ

�
aFðDÞ for all bounded sets DJW.

3. Fixed point theorems

First, we state and prove an analogue of Sadovskii’s fixed point theorem for

ws-compact, weakly condensing mapping defined on unbounded closed convex

set.

Theorem 3.1. LetW be a non-empty unbounded closed convex set in a Banach space

E. Assume F is a MNWC on E and F : W ! W is a F-condensing (ws)-compact

mapping. In addition, suppose that F ðWÞ is bounded. Then the set of fixed points

of F in W is nonempty and compact.

Proof. Let x0 a W and D ¼ fF nðx0Þ; n ¼ 0; 1; 2; . . .g where F 0ðx0Þ ¼ x0. Then

D ¼ FðDÞA fx0g and so F
�
F ðDÞ

�
¼ FðDÞ which means that FðDÞ ¼ 0 and D is

relatively weakly compact. By Remark 2.5 (ii), FðDÞ is relatively compact. Also,

F
�
FðDÞ

�
JFðDÞ so by [16], Lemma 1, one may choose a compact set D0 JF ðDÞ

with D0 J conv
�
FðD0Þ

�
. Let T ¼ fQ jD0 JQ;Q ¼ convQ;FðQÞJQg. It is

obvious that TA j, since W a T. If x is a chain in the ordered set ðE; J Þ then
7

Q A x Q is a lower bound of x, which can be easily verified. Hence by Zorn’s
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lemma T has a minimal element K . From F ðKÞJK , since K is closed and con-

vex, it follows that the set conv
�
F ðKÞ

�
is a subset of K . So we have

F
�
conv

�
F ðKÞ

��
JF ðKÞJ conv

�
F ðKÞ

�
:

From D0J conv
�
F ðKÞ

�
, it follows that the set conv

�
FðKÞ

�
is in T. Since K

is a minimal element of T it follows that K ¼ conv
�
F ðKÞ

�
. Hence, FðKÞ ¼

F
�
conv

�
FðKÞ

��
¼ F

�
F ðKÞ

�
. Since F is F-condensing, we obtain FðKÞ ¼

F
�
F ðKÞ

�
¼ 0, and FðKÞ is relatively weakly compact. Now, F is a (ws)-compact

map from the closed convex set K into itself. From Theorem 2.6, F has a fixed

point in K JW. Let S ¼ fx a W : F ðxÞ ¼ xg, be the fixed point set of F . Since

F is continuous, S is obviously a closed subset of W such that F ðSÞ ¼ S. Since

SJFðWÞ, FðSÞ ¼ S and F is F-condensing, we have FðSÞ ¼ 0 and so S is a

relatively weakly compact subset of W. Besides, F is (ws)-compact so FðSÞ ¼ S

is relatively compact. Since S is closed, we obtain that S is compact. This proof

is complete. r

Remark 3.2. Theorem 3.1 extends and improves Theorem 2.2 in [23].

Corollary 3.3. Let W be a nonempty unbounded closed convex set in a Banach

space E. Assume that F : W ! W is a (ws)-compact mapping which satisfies that

F ðWÞ is bounded and F ðDÞ is relatively weakly compact whenever D is a bounded

set of W. Then the set of fixed points of F in W is nonempty and compact.

Proof. This is an immediate consequence of Theorem 3.1 since F is clearly

F-condensing where F is any MNWC on E. r

Remark 3.4. Corollary 3.3 is a sharpening of Theorem 3.1.

Definition 3.5. A mapping F : W ! E is said to be demi-weakly compact at y

((dwc) for short) if for every bounded a.f.p. sequence ðxnÞn in W (i.e., xn � F ðxnÞ
! y) then ðxnÞn has a weakly convergent subsequence.

Now, let us recall the following well known concept of mapping due to Petry-

shyn [30]:

Definition 3.6. A mapping F : W ! E is said to be demi-compact at y a E(ðdcÞ
for short) if, for every bounded a.f.p. sequence ðxnÞ in W, there exists a strongly

convergent subsequence of ðxnÞ.

Remark 3.7. If W is a closed subset of E and F : W ! E is a continuous mapping,

demi-compact at y and it admits a bounded a.f.p. sequence ðxnÞ, then it has a

fixed point. Indeed, suppose that ðxnÞ is a bounded sequence in W such that
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xn � F ðxnÞ ! y. It follows from the demi-compactness of F , that there exists

a subsequence of ðxnÞ which converges strongly to some x a W. Without loss of

generality, we may assume that ðxnÞ converges strongly to x a W. Hence, taking

into account that xn � FðxnÞ ! y and the continuity of F , we derive, F ðxÞ ¼ x.

Clearly if F : W ! E is demi-compact at y then it is demi-weakly compact at y,

but to be demi-weakly compact at y does not mean that this mapping becomes

demi-compact at y (for instance see Example 3.12 below). Nevertheless, we have

the following result.

Lemma 3.8. Let E be a Banach space and let W be a nonempty closed subset of E.

Assume F : W ! E is a ðwsÞ-compact and ðdwcÞ mapping. Then F is a continuous

ðdcÞ-mapping.

Proof. Suppose that ðxnÞ is a bounded sequence in W such that xn � FðxnÞ ! y.

Since F is ðdwcÞ we know that there exist a subsequence ðxnk Þ of ðxnÞ and an ele-

ment x a E such that xnk !
w

x.

We claim that there exists a subsequence ðxnks Þ of ðxnÞ such that xnks ! x.

Indeed, by definition of ðwcÞ-mapping, we know that there exist a subsequence

ðxnks Þ of ðxnkÞ and an element y a E such that Fðxnks Þ ! y. Hence,

kxnks � yka kxnks � F ðxnks Þk þ kF ðxnks Þ � yk ! 0:

This means that xnks ! y and since W is closed, x ¼ y a W. This completes the

proof. r

Theorem 3.9. Let W be a nonempty unbounded closed convex subset of a Banach

space E. Assume F is a positive homogenous MNWC on E satisfying condition (7)

and F : W ! W is a ðwsÞ-compact ðdwcÞ and F-nonexpansive mapping with FðWÞ is
bounded. Then F has a fixed point in W.

Proof. Let z be a fixed element of W. Define Fn ¼ tnF þ ð1� tnÞz, n ¼ 1; 2; . . . ,
where ðtnÞn is a sequence of ð0; 1Þ such that tn ! 1. Since z a W and W is convex,

it follows that Fn maps W into itself. Let D be an arbitrary bounded subset of W.

Then we have

F
�
FnðDÞ

�
aF

�
ftnF ðDÞg þ fð1� tnÞzg

�
a tnF

�
F ðDÞ

�
a tnFðDÞ:

So, if FðDÞA 0 we have

F
�
FnðDÞ

�
< FðDÞ:

Therefore Fn is F-condensing on W. Clearly Fn is (ws)-compact mapping, so by

Theorem 3.1, Fn has a fixed point, say, xn in W. Consequently, kxn � F ðxnÞk ¼
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��ðtn � 1Þ
�
F ðxnÞ � z

��� ! 0 as n ! l, since tn ! 1 as n ! l and FðWÞ is

bounded.

Finally, by Lemma 3.8 we have that F is a continuous ðdcÞ-mapping. Since F

admits a bounded sequence ðxnÞ satisfying that xn � F ðxnÞ ! y, by Remark 3.7

we conclude that F has a fixed point. r

Remark 3.10. If in Theorem 3.9 we add the hypothesis y a W, then we obtain the

same conclusion without assuming that F satisfies condition (7).

Next, we state and prove new fixed point results for pseudo-contractive

mappings defined on unbounded closed convex subsets of E using the notion of

demi-compactness and tools provided in [15].

Proposition 3.11. Let W be a nonempty unbounded closed convex subset of a Ba-

nach space E. Assume that F : W ! W is a continuous ðdcÞ and pseudo-contractive

mapping such that F ðWÞ is bounded. Then F has a fixed point.

Proof. Since W is a closed convex subset and FðWÞ is a bounded subset of W,

clearly K :¼ conv
�
F ðWÞ

�
is a bounded closed convex and F -invariant subset of W.

Thus, since F is a continuous pseudo-contractive mapping from K into itself, it

is well known that A :¼ I � F : K ! E is an accretive operator with the range

condition.

Consequently, the resolvent J1 :¼ ðI þ AÞ�1 : K ! K is single valued and non-

expansive mapping. Moreover, since K is bounded closed and convex there exists

a sequence ðwnÞ in K such that wn � J1ðwnÞ ! y.

If we let xn ¼ J1ðwnÞ, then xn þ xn � FðxnÞ ¼ wn and therefore

xn � F ðxnÞ ¼ wn � J1ðwnÞ;

which implies that ðxnÞ is a bounded sequence in K such that xn � FðxnÞ ! y

which implies that ðxnÞ is a bounded a.f.p. sequence in W and since F is a contin-

uous ðdcÞ-mapping by Remark 3.7 we have that F has a fixed point. r

The next example shows that in Theorem 3.1 and in Proposition 3.11 we can-

not remove the condition F is a (ws)-compact mapping.

Example 3.12. Let E be the Banach space ðL1½0; 1�; k � kÞ and consider the

Alspach mapping, i.e., first let

W :¼ f a L1½0; 1� : 0a f a 1; k f k1 ¼
1

2

� �
:

It is well known that W is a weakly compact convex subset of E.
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Now consider F : W ! W such that for each f a W, Fð f Þ is defined by

F
�
f ðtÞ

�
¼ minf2f ð2tÞ; 1g; t a 0; 12

� �
;

maxf2f ð2t� 1Þ � 1; 0g; t a
�
1
2 ; 1

�
:

�

Since W is a weakly compact set, then it is clear that F is b-condensing ðdwcÞ-
mapping with FðWÞ bounded. Nevertheless, in [2] it is proved that F is a fixed

point free nonexpansive mapping.

In Proposition 3.11 we assume that FðWÞ is a bounded set, which implies that

we can find a bounded closed convex F -invariant set. If we omit such hypothesis

we still obtain the following result:

Proposition 3.13. Let E be a real Banach space. Suppose that G : E � E ! R is a

mapping satisfying conditions (g1)–(g4). Let W be a nonempty closed convex subset

of E. Assume that F : W ! W is a continuous ðdcÞ and pseudo-contractive mapping.

If the following condition is satisfied:

(a) There exists R > 0 such that for every x a WnBRðyÞ the inequality G
�
F ðxÞ; x

�
aGðx; xÞ holds.

Then F has a fixed point.

Proof. In order to obtain the conclusion, from Remark 3.7, it will be enough to

see that there exists a bounded a.f.p. sequence ðxnÞ in W. To see this, we argue

as follows:

It is clear that the operator A ¼ I � F : W ! E, where I is the identity opera-

tor, is an accretive operator with the range condition. Then, by the proof of

Theorem 3.7 of [15], we know that there exists a bounded sequence ðwnÞ in W

such that wn � ðI þ AÞ�1ðwnÞ ! y. Therefore, following the proof of Proposition

3.11, we achieve the result. r

Corollary 3.14. Let W be a nonempty unbounded closed convex subset of a Banach

space E. Assume that F : W ! W is a continuous ðdcÞ and pseudo-contractive

mapping. If there exist x0 a E and R > 0 such that for all x a W with kxkbR the

inequality

kFðxÞ � x0ka kx� x0k

holds. Then F has a fixed point.

Proof. If we define Gðx; yÞ ¼ 3x; y� x04þ, by Corollary 4.8 of [15], it is clear

that G satisfies conditions (g1)–(g4) and moreover there exists R > 0 such that

G
�
TðxÞ; x

�
aGðx; xÞ for all x a WnBRðyÞ, then we can apply Proposition 3.13.

r
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Remark 3.15. All the previous results give a new fixed point existence for non-

expansive operators defined on unbounded closed convex subsets of E.

In the rest of this section we shall discuss a fixed point result for sequentially

weakly continuous and F-nonexpansive mappings. In order to obtain this result

let us recall Theorem 12 of [13]:

Theorem 12 ([13]). Let M be a nonempty closed convex and bounded subset of

a Banach space E and consider F a MNWC on E. Assume that F : M ! M is a

sequentially weakly continuous and F-condensing map, then F has a fixed point.

Proposition 3.16. Let M be a nonempty unbounded closed convex subset of a

Banach space E and consider F a positive homogenous MNWC on E satisfying

condition (7). Assume that F : M ! M is a sequentially weakly continuous ðdwcÞ
and F-nonexpansive map with FðMÞ bounded. Then F has a fixed point.

Proof. Since M is a closed convex subset and FðMÞ is a bounded subset of M,

clearly K :¼ conv
�
FðMÞ

�
is a bounded closed convex and F -invariant subset

of W. Now, arguing as the proof of Theorem 3.9 and applying Theorem 12 we

can obtain a sequence ðxnÞ in K such that kxn � F ðxnÞk ! 0. Since F is ðdwcÞ
and sequentially weakly continuous we achieve the result. r

The next example shows that in Proposition 3.16 the condition F is a ðdwcÞ-
mapping cannot be omitted.

Example 3.17. Let E be the Banach space ðC½0; 1�; k � klÞ and consider the

mapping F : E ! E defined by F
�
uðtÞ

�
¼ tuðtÞ. It is easy to see that F is a non-

expansive mapping on E and therefore it is b-nonexpansive (see Corollary 4.13).

On the other hand, if we consider the set M :¼ fu a E : 0 ¼ uð0Þa uðtÞa
uð1Þ ¼ 1g. It is not di‰cult to see that M is a bounded closed convex and

F -invariant subset of E, moreover F is fixed point free sequentially weakly con-

tinuous mapping on M.

4. Leray–Schauder type fixed point theorems for 1-set weakly contractive
operators

First, we prove some Leray–Schauder type theorems for a broader class of non-

linear operators, in which the operators have the property that the image of any

set is in a certain sense more weakly compact than the original set itself.

Theorem 4.1. Let E be a Banach space, W a nonempty unbounded closed convex

subset of E and U JW an open set (with respect to the topology of W) and let z be
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an element of U. Assume F is a MNWC on E and F : U ! W a F-condensing

(ws)-compact mapping with FðUÞ is bounded. Then either

ðA1Þ F has a fixed point, or

ðA2Þ there is a point u a qWU (the boundary of U in W) and l a ð0; 1Þ with

u ¼ lFðuÞ þ ð1� lÞz.

Remark 4.2. U and qWU denote the closure and boundary of U in W, respec-

tively.

Proof. Suppose ðA2Þ does not hold and F does not have a fixed point in qWU

(otherwise, we are finished, i.e. ðA1Þ occurs). Let D be the set defined by

D ¼ fx a U : x ¼ lFðxÞ þ ð1� lÞz; for some l a ½0; 1�g:

D is nonempty and bounded, because z a D and F ðUÞ is bounded. We have

DJ conv
�
fzgAF ðDÞ

�
. So, FðDÞA 0 implies

FðDÞaF
�
conv

�
fzgAF ðDÞ

�
aF

�
F ðDÞ

�
< FðDÞ;

which is a contradiction. Hence, FðDÞ ¼ 0 and D is relatively weakly compact.

We will show that D is compact. The continuity of F implies that D is closed.

For that, let ðxnÞn be a sequence of D such that xn ! x, x a U . For all n a N,

there exists a ln a ½0; 1� such that xn ¼ lnF ðxnÞ þ ð1� lnÞz. Since ln a ½0; 1�, we
can extract a subsequence ðlnj Þj such that lnj ! l a ½0; 1�. So, lnjFðxnjÞ ! lFðxÞ.
Hence x ¼ lFðxÞ þ ð1� lÞz and x a D. Now, we prove that D is sequentially

compact. To see this, let ðxnÞn be a sequence of D. For all n a N, there exists

a ln a ½0; 1� such that xn ¼ lnF ðxnÞ þ ð1� lnÞz. ln a ½0; 1�, we can extract a

subsequence ðlnjÞj such that lnj ! l a ½0; 1�. We have that the set fxn; n a Ng
is contained in D, so it is relatively weakly compact and consequently by the

Eberlein–S̆mulian theorem [11], Theorem 8.12.4, p. 549, it is weakly sequentially

compact. Hence, without loss of generality, the sequence ðxnÞn has a weakly con-

vergent subsequence ðxnj Þj. Since F is (ws)-compact, then the sequence
�
FðxnjÞ

�
j

has a strongly convergent subsequence, say
�
F ðxnjk Þ

�
k
. Hence, the sequence�

lnjk Fðxnjk Þ
�
k
is strongly convergent which means that the sequence ðxnjk Þk is

also strongly convergent. Accordingly, D is compact. Because E is a Hausdor¤

locally convex space, we have that E is completely regular [35], p. 16. Since

DB ðWnUÞ ¼ j, then by [19], p. 146, there is a continuous function j : W ! ½0; 1�,
such that jðxÞ ¼ 1 for x a D and jðxÞ ¼ 0 for x a WnU . Let F � : W ! W be the

mapping defined by

F �ðxÞ ¼ jðxÞFðxÞ þ
�
1� jðxÞ

�
z:
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Clearly, F �ðWÞ is bounded. Because qWU ¼ qWU , j is continuous, ½0; 1� is com-

pact and F is (ws)-compact, we have that F � is (ws)-compact. Let X JW be

bounded. Then, since

F �ðXÞJ conv
�
fzgAF ðX BUÞ

�
;

we have

F
�
F �ðXÞ

�
aF

�
F ðX BUÞ

�
aF

�
FðXÞ

�
;

and F
�
F �ðXÞ

�
< FðXÞ if FðXÞA 0. So, F � is F-condensing . Therefore Theo-

rem 3.1, implies that F � has a fixed point x0 a W. If x0 B U , jðx0Þ ¼ 0 and x0 ¼ z,

which contradicts the hypothesis z a U . Then x0 a U and x0 ¼ jðx0ÞF ðx0Þþ�
1� jðx0Þ

�
z which implies that x0 a D, and so jðx0Þ ¼ 1. r

Corollary 4.3. Let E be a Banach space, W a nonempty unbounded closed convex

subset of E and U JW an open set (with respect to the topology of W) and let z be

an element of U. Assume F a MNWC on E and F : U ! W a F-condensing (ws)-

compact mapping with FðUÞ bounded. Suppose that F satisfies the Leray–Schauder

boundary condition

u� zA l
�
F ðuÞ � z

�
; l a ð0; 1Þ; u a qWU ;

then the set of fixed points of F in U is nonempty and compact.

Proof. By Theorem 4.1, F has a fixed point. Let S ¼ fx a U : FðxÞ ¼ xg be the

fixed point set of F . Since F is continuous, S is obviously a closed subset of U

such that FðSÞ ¼ S. Now, arguing as the proof of Theorem 3.1 concerning the

subset D, we have that S is sequentially compact and hence it is compact. r

As a special case, we obtain a fixed point theorem of the Rothe type [33] for

F-condensing (ws)-compact mapping.

Corollary 4.4. Let E be a Banach space, W a closed convex subset of E and U JW

an open set (with respect to the topology of W) such that y a U. Assume F

a MNWC on E and F : U ! W a F-condensing (ws)-compact mapping with

F ðUÞ bounded. In addition, assume that U is starshaped with respect to y and

F ðqWUÞJU. Then the set of fixed points of F in U is nonempty and compact.

Proof. Since U is starshaped with respect to y and F ðqWUÞJU , then xA lF ðxÞ
for every x a qWU and l a ð0; 1Þ. Applying Theorem 3.1, then the set of fixed

points of F in U is nonempty and compact. r
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Corollary 4.5. Let E be a Banach space, WHE a nonempty unbounded closed con-

vex subset, U HW an open set (with respect to the topology of W) and let z be an

element of U. Assume that F : U ! W is a (ws)-compact mapping which satisfies

F ðUÞ is bounded and FðDÞ is relatively weakly compact whenever D is a bounded

set of U. Then either

ðA1Þ F has a fixed point, or

ðA2Þ there is a point u a qWU (the boundary of U in W) and l a ð0; 1Þ with

u ¼ lFðuÞ þ ð1� lÞz.

Proof. This is an immediate consequence of Theorem 4.1 since F is F-condensing

and F ðUÞ is bounded. r

Remark 4.6. Corollary 4.5 extends and improves Theorem 2.12 in [1].

Next, we show the existence of positive eigenvalues and eigenvectors of

(ws)-compact, weakly compact and weakly condensing mappings defined on

unbounded domains.

Corollary 4.7. Let E be a Banach space, WHE a nonempty unbounded closed con-

vex subset, U HW an open set (with respect to the topology of W) and such that

y a U. Assume that F : U ! W is a (ws)-compact mapping which satisfies F ðUÞ is
bounded and FðDÞ is relatively weakly compact whenever D is a bounded set of U.

In addition suppose F has no fixed point in U. Then there exist an x a qWU and

l a ð0; 1Þ such that x ¼ lF ðxÞ.

Corollary 4.8. Let E be a Banach space, WHE a nonempty unbounded closed

convex subset, U HW an open set (with respect to the topology of W) and such

that y a U. In addition let F be a positive homogenous MNWC on E, kb 1 and

F : U ! W a F-nonexpansive (ws)-compact mapping, with F ðUÞ bounded. Suppose

that there is a real number c > k such that

FðUÞB ðcUÞ ¼ j:

Then there exists an x a qWU and lb c such that F ðxÞ ¼ lx.

Proof. We suppose that for all x a qWU and lb c, FðxÞA lx. Let F1 ¼ 1
c
F and

D ¼ fx a U : x ¼ lF1ðxÞ for some l a ½0; 1�g:

D is nonempty and bounded. Because y a D and FðUÞ is bounded. We have

DJ conv
�
fygAF1ðDÞ

�
. So, since FðDÞA 0, F is F-nonexpansive and c > 1 we

have

FðDÞaF
�
conv

�
fygAF1ðDÞ

�
a

1

c
F
�
F ðDÞ

�
< FðDÞ;
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which is a contradiction. Hence, FðDÞ ¼ 0 and D is relatively weakly compact.

Clearly F1 is a (ws)-compact mapping and so D is compact. We claim that

DB ðWnUÞ ¼ j. We suppose to the contrary that DB ðWnUÞA j. Then there

exists an x a WnU and a a ½0; 1� such that aF1ðxÞ ¼ x. If a ¼ 0, then x ¼ y, which

contradicts y a U . If aA 0, then F ðxÞ ¼ c
a
x

�
c
a
b c

�
, which contradicts the

hypothesis. Thus, DB ðWnUÞ ¼ j. Let F �
1 : W ! W be the mapping defined by:

F �
1 ðxÞ ¼ jðxÞF1ðxÞ;

where j : W ! ½0; 1�, is a continuous function such that jðxÞ ¼ 1 for x a D and

jðxÞ ¼ 0 for x a WnU . Arguing as in the proof of Theorem 4.1, we prove that F1

is a F-condensing (ws)-compact mapping with F1ðWÞ bounded. Therefore, Theo-

rem 3.1 implies that F �
1 has a fixed point x1 a W. If x1 B U , jðx1Þ ¼ 0 and x1 ¼ y,

which contradicts the hypothesis y a U . Then x1 a U and x1 ¼ jðx1ÞF1ðx1Þ,
which implies that x1 a D, and so jðx1Þ ¼ 1 and F ðx1Þ ¼ cx1. Hence, FðUÞB
ðcUÞA j, another contradiction. Accordingly, there exist an x a qWU and lb c

such that FðxÞ ¼ lx. r

Next, we obtain the following applicable form of Corollary 4.5.

Proposition 4.9. Let E be a Banach space, kb 1 and F : B1ðyÞ ! E a

b-nonexpansive (ws)-compact mapping. Suppose that there is a real number c > k

such that kF ðxÞkb c for all x a B1ðyÞ. Then there exist an x a S1ðyÞ and lb c

such that F ðxÞ ¼ lx.

Proof. It su‰ces to note that De Blasi’s measure b of weak noncompactness is

positive and homogenous. r

As an application of Proposition 4.9, we work with a nonlinear eigenvalue

problem in concrete situation, see [12].

Theorem 4.10. Let X, Y be finite dimensional Banach spaces, D a compact subset

of Rn, l a R and E ¼ L1ðD;XÞ. Assume that

(a) G : B1ðyÞ ! E is a ws-compact, weakly compact operator,

(b) f : D� X ! Y verifies Carathéodory hypotheses i.e., f is strongly measur-

able with respect to t a D, for all x a X, and continuous with respect to

x a X, for almost all t a D,

(c) there are a a L1ðDÞ and bb 0 such that

k f ðt; xÞka aðtÞ þ bkxk; t a D; x a X ;
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(d) k : D�D ! LðY ;XÞ (the space of bounded linear operators from Y into X ) is

strongly measurable and the linear operator K defined by

�
KðzÞ

�
ðtÞ ¼

ð
D

kðt; sÞzðsÞ ds;

maps L1ðD;YÞ into L1ðD;XÞ continuously,
(e) the functions s ! kðt; sÞ are in Ll

�
D;LðY ;XÞ

�
for almost all t a D,

(f ) jljbkKka 1 (kKk denotes the operator norm of K).

Consider the nonlinear operator F : B1ðyÞ ! E given by

FðyÞ ¼ GðyÞ þ LðyÞ ¼ GðyÞ þ l

ð
D

kðt; sÞ f
�
s; yðsÞ

�
ds:

Set

a ¼ jljðkak þ bÞkKk; g ¼ inf
y AB1ðyÞ

kGðyÞk:

If g > aþ 1, then F has a positive eigenvalue whose corresponding vector lies in

S1ðyÞ.

Proof. We shall use some ideas of [12]. First, we prove that L is (ws)-compact,

b-nonexpansive operator. By the assumption (b), we obtain that the Nemytskii

operator generated by f and defined by

Nf ðyÞðtÞ :¼ f
�
t; yðtÞ

�
; y a L1ðD;XÞ

maps continuously L1ðD;XÞ into L1ðD;YÞ. So, by the assumption (d) the opera-

tor L ¼ lKNf is continuous. Using the assumptions (b), (c) and (f ) and arguing as

in [12], we prove that the operator L is b-nonexpansive. Now, let ðynÞn be a

weakly convergent sequence of L1ðD;XÞ. Then ðynÞn is uniformly bounded and

by the assumption (b) we obtain

k f ðt; ynÞka aðtÞ þ bkynk: ð1Þ

Since ðynÞn is weakly compact in L1ðD;XÞ, by the Dunford–Pettis criterion it

turns out to be equi-absolutely integrable on D, that is

Ee > 0; bd > 0; jD0j < d ¼)
ð
D0

kynðtÞk dt < e En a N:
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Therefore by (1), also
�
Nf ðynÞ

�
n
is equi-absolutely integrable on D, which implies

the weak compactness in L1ðD;YÞ of
�
Nf ðynÞ

�
n
, and hence by the Eberlein-

S̆mulian Theorem [11], theorem 8.12.4, p. 549, Nf ðynÞn has a weakly convergent

subsequence, say
�
Nf ðynjÞ

�
j
.

On the other hand, the continuity of the linear operator K , implies its

weak continuity on L1ðD;YÞ for almost all t a D. Consequently, we obtain that�
KNf ðynj Þ

�
j
and so

�
Lðynj Þ

�
j
is pointwise converging, for almost all t a D. Using

again the weak continuity of the linear operator K , we infer that
�
Lðynj Þ

�
j
is

equi-absolutely integrable on D. Hence, by Vitali’s convergence theorem ([10]),�
Lðynj Þ

�
j
is strongly convergent in L1ðD;XÞ. Accordingly, the operator L is

(ws)-compact. For all y a B1ðyÞ, we have

kFðyÞkb kGðyÞk � kLðyÞkb g� a > 1:

Since G is weakly compact, (ws)-compact operator and hence F is (ws)-compact

and b-nonexpansive operator, Proposition 4.9, implies that F has an eigenvalue

h > 1 with corresponding eigenvector y a S1ðyÞ. r

Theorem 4.11. Let E be a Banach space, W be a nonempty unbounded closed con-

vex of E and U JW an open set (with respect to the topology of W). In addition, let

F be a positive homogenous MNWC on E satisfying condition (7) and F : U ! W a

F-nonexpansive (ws)-compact mapping, with FðUÞ bounded. Assume that

(a) There exists z a U such that u� zA l
�
F ðuÞ � z

�
, l a ð0; 1Þ, u a qWU,

(b) F is ðdwcÞ.

Then F has a fixed point in U.

Proof. Let Fn ¼ tnF þ ð1� tnÞz, n ¼ 1; 2; . . . , where ðtnÞn is a sequence of ð0; 1Þ
such that tn ! 1. Since z a W and W is convex, it follows that Fn maps U into W.

Suppose that ln
�
FnðynÞ � z

�
¼ yn � z for some yn a qWU and for some ln a ð0; 1Þ.

Then we have

yn � z ¼ ln
�
FnðynÞ � z

�
¼ lntnFðynÞ þ lnð1� tnÞz� lnz ¼ lntn

�
F ðynÞ � z

�
;

which contradicts the hypothesis (a) since lntn a ð0; 1Þ. Let X be an arbitrary

bounded subset of U . Then we have

F
�
FnðXÞ

�
¼ F

�
ftnF ðXÞg þ fð1� tnÞzg

�
a tnF

�
FðXÞ

�
a tnFðXÞ:

So, if FðXÞA 0 we have

F
�
FnðXÞ

�
< FðXÞ:
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Therefore, Fn is F-condensing on U . From Theorem 4.1, Fn has a fixed point, say,

xn in U . Now arguing as in the proof of Theorem 3.9, we prove that F has a fixed

point in U . r

Remark 4.12. If in Theorem 4.11 we add the hypothesis y a U and replace con-

dition (a) by

(a 0) uA lFðuÞ, l a ð0; 1Þ, u a qWU ,

then we obtain the same conclusion without assuming that F satisfies condition

(7).

Corollary 4.13. Let ðE; k � k be a Banach space, WHE a nonempty unbounded

closed convex subset, U HW an open set (with respect to the topology of W) and

let z be an element of U. Assume F : E ! E is nonexpansive and F : U ! W is a

(ws)-compact such that F ðUÞ is bounded. In addition suppose that

(a) u� zA l
�
FðuÞ � z

�
, l a ð0; 1Þ, u a qWU,

(b) F is ðdwcÞ.

Then F has a fixed point in U.

Proof. The proof follows immediately from Theorem 4.11, once we show that F

is b-nonexpansive. To see this, let D be a bounded set of W and d ¼ bðDÞ. Let

e > 0. Then there exists a weakly compact set K of E with DJK þ BdþeðyÞ. So

for x a D there exist y a K and z a BdþeðyÞ such that x ¼ yþ z and so

kFðxÞ � F ðyÞka kx� yka d þ e:

It follows immediately, that

F ðDÞJFðKÞ þ BdþeðyÞJF ðKÞ þ BdþeðyÞ:

Since F is a ðws)-compact mapping and K is weakly compact then FðKÞ is com-

pact and hence weakly compact. Thus, b
�
FðDÞ

�
a ðd þ eÞ. Since e > 0 is arbi-

trary, then b
�
F ðDÞ

�
a bðDÞ. Accordingly, F is b-nonexpansive. r

Proposition 4.14. Let E be a Banach space, W be a nonempty unbounded closed

convex subset of E such that y a W. Assume F : W ! E is a continuous ðdcÞ and

pseudo-contractive mapping. In addition suppose that

(a) F is weakly inward on W,

(b) there exists r > 0 such that for every u a WnBrðyÞ, uA lF ðuÞ, l a ð0; 1Þ.

Then F has a fixed point.
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Proof. It is a consequence of Proposition 3.11, since following the same argument

as in Corollary 4.6 and Theorem 4.1 of [15], we obtain that there exists K a non-

empty bounded closed convex and F -invariant subset of W. r

Proposition 4.15. Let U be a bounded open subset of a Banach space E, and let

F : U ! E be a continuous ðdcÞ pseudo-contractive mapping. Suppose that F sat-

isfies the following conditions:

(i) There exists z a U satisfying FðxÞ � zA lðx� zÞ for x a qU and lb 1.

Then F has a fixed point in U.

Proof. Under these hypotheses we can invoke the argument given in the proof of

Theorem 1 of [27] and thus we can guarantee that

inffkx� TðxÞk : x a Ug ¼ 0:

Consequently, there exists a bounded a.f.p. sequence ðxnÞ in U and since F is a

continuous ðdcÞ-mapping by Remark 3.7 we derive the result. r

Remark 4.16. We remark that for all previous results, no convexity of the

domain of F is required.

Theorem 4.17. Let M be a nonempty closed convex subset of a Banach space E

and consider F a positive homogenous MNWC on E satisfying condition (7). As-

sume that F : M ! M is a mapping with the following properties:

(i) F is F-nonexpansive.

(ii) F is a ðwsÞ-compact mapping.

(iii) F is ðdwcÞ.
(iv) There exists x0 a M and R > 0 such that FðxÞ � x0A lðx� x0Þ for every

l > 1 and for every x a MBSRðx0Þ.

Then F has a fixed point.

Proof. Define Fn ¼ tnF þ ð1� tnÞx0, n ¼ 1; 2; . . . , where ðtnÞn is a sequence of

ð0; 1Þ such that tn ! 1. Since x0 a M and M is convex, it follows that Fn maps

M into itself. Moreover, Fn is a F-condensing and (ws)-compact mapping, for in-

stance see the proof of Theorem 3.9.

By assumption (iv), we have that FnðxÞ � x0A lðx� x0Þ for all l > 1 and for

every x a MBSRðx0Þ. Otherwise, we can find z a MBSRðx0Þ and l > 1 such

that FnðxÞ � x0 ¼ lðx� x0Þ, but if this holds, then

lðz� x0Þ ¼ FnðzÞ � x0 ¼ tn
�
FðzÞ � x0

�
;

consequently FðzÞ � x0 ¼ l
tn
ðz� x0Þ which is a contradiction.
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These properties allow us to invoke Theorem 9 of [13] and hence we have that

there exists a bounded sequence ðxnÞ such that xn ¼ FnðxnÞ. Now, following the

steps of the proof of Theorem 3.9 we achieve the conclusion. r

In the rest of this section we shall discuss a nonlinear Leray–Schauder alterna-

tive for positive operators. Let E1 and E2 be two Banach lattices, with positive

cônes Eþ
1 and Eþ

2 , respectively. An operator T from E1 into E2 is said to be

positive, if it carries the positive cône Eþ
1 into Eþ

2 (i.e., TðEþ
1 ÞJEþ

2 ).

Theorem 4.18. Let W be a nonempty unbounded closed convex subset of a

Banach lattice E such that Wþ :¼ WBEþA j. Assume F : W ! W is a positive

(ws)-compact operator. If FðWÞ is relatively weakly compact, then F has at least a

positive fixed point in W.

Proof. Since Wþ is a closed convex subset of Eþ and FðWþÞJWþ. Also,

F ðWþÞJF ðWÞ, so FðWþÞ is relatively weakly compact. Now, it su‰ces to apply

Theorem 2.6 to prove that F has fixed point in Wþ JW. r

Theorem 4.19. Let W be a nonempty unbounded closed convex subset of a Ba-
nach lattice E such that WþAj. Assume F is a MNWC on E and F : W ! W
is a positive F-condensing (ws)-compact mapping with FðWÞ bounded. Then
the set of positive fixed points of F in W is nonempty and compact.

Proof. Let x0 a Wþ and D ¼ fF nðx0Þ; n a Ng where F 0ðx0Þ ¼ x0. Then D ¼
F ðDÞA fx0g and DJWþ. Arguing as in the proof of Theorem 3.1, there exists

a closed convex subset K such that KBEþA j, F ðKÞJK and FðKÞ is relatively
weakly compact. So, by Theorem 4.18, F has a positive fixed point in W. r

Theorem 4.20. Let W be a nonempty unbounded closed convex subset of a Banach

lattice space E. In addition, let U JW be an open set (with respect to the topology

of W) and let z be an element of U BEþ. Assume F is a MNWC on E and

F : U ! W is a positive F-condensing (ws)-compact mapping with F ðUÞ bounded.
Then either

ðA1Þ F has a positive fixed point, or

ðA2Þ there is a point u a qWU BEþ (the positive boundary of U in W) and

l a ð0; 1Þ with u ¼ lF ðuÞ þ ð1� lÞz.

Proof. Suppose ðA2Þ does not hold and F does not have a positive fixed point in

qWU (otherwise, we are finished, i.e. A1 occurs). Let D be the set defined by

D ¼ fx a U BEþ : x ¼ lF ðxÞ þ ð1� lÞz for some l a ½0; 1�g:
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Since E is a normed lattice, Eþ is closed, and so, U BEþ is a closed subset of W.

Arguing as in the proof of Theorem 4.1, we prove that D is compact and that there

is a continuous function j : W ! ½0; 1�, such that jðxÞ ¼ 1 for x a D and jðxÞ ¼ 0

for x a WnU . Let F � : W ! W be the mapping defined by

F �ðxÞ ¼ jðxÞFðxÞ þ
�
1� jðxÞ

�
z:

Clearly F �ðWÞ is bounded. Because qWU ¼ qWU , j is continuous and F is a

positive (ws)-compact and F-condensing operator, we have that F � is a positive

(ws)-compact and F-condensing operator. Therefore, following again the proof

of Theorem 4.1 we achieve the result. r

Corollary 4.21. Let W be a nonempty unbounded closed convex subset of a

Banach space E. In addition, let U JW be an open set (with respect to the topology

of W) such that y a U, let F : U ! W be a positive (ws)-compact map, F-condensing

and let FðUÞ be bounded. We suppose that y B flF ðyÞ; l a ð0; 1Þg for all y a
qWU BEþ. Then the set of positive fixed points of F in U is nonempty and com-

pact.

Proposition 4.22. Let W be a nonempty closed convex subset of a Banach lattice E

such that WþA j. Assume that F : W ! W is a positive continuous ðdcÞ pseudo-

contractive mapping such that FðWÞ is bounded. Then F has a positive fixed point.

Proof. Since Wþ is a nonempty closed convex subset of Eþ and FðWþÞJF ðWÞ,
clearly FðWþÞ is a bounded set. On the other hand, since F is a positive mapping,

we have that FðWþÞJWþ.
These facts allow us to define K ¼ conv

�
FðWþÞ

�
JWþ and then arguing as in

the proof of Proposition 3.11 we obtain the result. r

Proposition 4.23. Let E be a Banach lattice. Suppose that G : E � E ! R is a

mapping satisfying conditions (g1)–(g2). Let W be a nonempty unbounded closed

convex subset of E such that y a Wþ. Assume F : W ! W is a positive continuous

ðdcÞ-pseudocontractive mapping. In addition suppose that there exists r > 0 such

that for every u a WþnBrðyÞ, the inequality G
�
FðuÞ; u

�
aGðu; uÞ holds. Then F

has a positive fixed point.

Proof. Since F is a positive mapping and y a Wþ, we have that Wþ is a nonempty

closed convex F -invariant set. Thus, we can consider that F : Wþ ! Wþ is a con-

tinuous pseudocontractive mapping and then F is weakly inward on Wþ. Now,

arguing as in Theorem 4.1 of [15] we derive that there exists a bounded sequence

ðxnÞ in Wþ such that xn � F ðxnÞ ! y and since F is a continuous ðdcÞ-mapping we

achieve the result. r
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Corollary 4.24. Let E be a Banach lattice, let W be a nonempty unbounded closed

convex subset of E such that y a Wþ. Assume F : W ! W is a positive continuous

ðdcÞ-pseudocontractive mapping. In addition suppose that there exists r > 0 such

that uA lF ðuÞ, l a ð0; 1Þ, for every u a WþnBrðyÞ. Then F has a positive fixed

point.

In order to prove this corollary it is enough to consider, in Proposition 4.23,

the mapping

Gðx; yÞ ¼ l; if x ¼ ly; l > 0; xA 0;

0; otherwise:

�
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