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Linear motions in a periodically forced Kepler problem

Rafael Ortega*

(Communicated by José Ferreira Alves)

Abstract. The periodically forced Kepler problem has at most one classical periodic solu-
tion and very simple dynamics. In this paper it is shown that when collisions are consid-
ered, many other periodic solutions appear as well as a dynamics of twist type.
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1. Introduction

Consider the di¤erential equation

€uu ¼ � 1

u2
þ pðtÞ; u > 0; ð1Þ

where p : R ! R is a continuous and 2p-periodic function. The results by Lazer

and Solimini in [8] imply that the condition

ð2p
0

pðtÞ dt > 0 ð2Þ

is necessary and su‰cient for the existence of a 2p-periodic solution. The results

by Campos and Torres in [6] are also applicable and the equation has a simple

dynamics of saddle type. In particular the periodic solution is unique and unstable

(hyperbolic). In both papers the solutions are understood in a classical sense and

no collisions are admitted. The purpose of the present paper is to point out that

the equation has a rich dynamics of twist type if one admits solutions with
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collisions. As it is typical in Celestial Mechanics for a binary collision, at an in-

stant where u ¼ 0 the velocity becomes infinity but the energy remains finite and

has a well defined limit; that is,

uðte0 Þ ¼ 0 ¼) _uuðte0 Þ ¼Hl and hðte0 Þ ¼ lim
t!te

0

1

2
_uuðtÞ2 � 1

uðtÞ

� �
is finite:

This observation leads to consider generalized solutions satisfying

€uu ¼ � 1

u2
þ pðtÞ; ub 0; ð3Þ

and the additional condition

uðt0Þ ¼ 0 ¼) hðt�0 Þ ¼ hðtþ0 Þ: ð4Þ

It is easy to understand why the condition (2) is necessary for the existence of clas-

sical periodic solutions. Integrating the equation (1) over a period one obtains

0 ¼ _uuð2pÞ � _uuð0Þ ¼
ð2p
0

€uuðtÞ dt ¼ �
ð2p
0

dt

uðtÞ2
þ
ð2p
0

pðtÞ dt:

For a periodic solution with collisions the first two integrals are not convergent

and the above identity does not produce any restriction on p. This is consistent

with the following results on the existence of harmonic and sub-harmonic solu-

tions.

Theorem 1.1. Assume that pðtÞ is 2p-periodic and of class C1. Then (3)–(4) has at

least two generalized periodic solutions of period 2p and having exactly one collision

in the interval ½0; 2p½.

Theorem 1.2. Assume that pðtÞ is 2p-periodic and of class C1. Then for each

integer Nb 2 the equation (3)–(4) has at least two periodic solutions of minimal

period 2Np, having exactly one collision in the interval ½0; 2p½ and no collision on

½2p; 2Np½.

The basic tools for proving these results will be the regularization of binary

collisions as presented by Sperling in [13] and an elementary version of the

Poincaré–Birkho¤ Theorem valid for twist maps. It seems reasonable to expect

that the use of more sophisticated versions of the Poincaré–Birkho¤ Theorem or

KAM and Aubry–Mather theory could lead to more precise results on existence

and stability of periodic solutions, as well as results on boundedness and recur-

rence.
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The rest of the paper is organized in six sections. In Section 2 we follow [13]

and discuss the behavior of a solution of (1) at a collision. This discussion leads to

the concept of generalized or bouncing solution. In Section 3 we prove that the

generalized Cauchy problem is well posed. This result shows that the notion

of bouncing solution is meaningful. In Section 4 we present the version of the

Poincaré–Birkho¤ that will be employed. A sketch of the well known proof is

given for completeness. In Sections 5, 6 and 7 we study di¤erent aspects of the

successor map. This is a map in the plane sending each couple ðt0; h0Þ into the

next couple ðt1; h1Þ, where t0 is the instant of collision and h0 is the corresponding

energy. This map is an exact symplectic twist map and the study of some of its

periodic points leads to the proof of the results stated above.

2. Collisions and bouncing solutions

The periodicity of pðtÞ will not play a role until Section 5. By now it is su‰cient

to assume that p : R ! R is a continuous and bounded function with kpkl :¼
supt ARjpðtÞj.

Let uðtÞ be a maximal solution of (1) defined in �t0; t1½ and assume that

t0 > �l. We will prove that the following limits exist,

lim
t#t0

uðtÞ ¼ 0 ð5Þ

lim
t#t0

1

2
_uuðtÞ2 � 1

uðtÞ

� �
¼ h0 ð6Þ

with h0 finite.

To prove (5) we notice that the general theory of Cauchy problems implies

that one of the following statements must hold at t ¼ tþ0 . Either the solution

blows up,

lim
t#t0

fuðtÞ2 þ _uuðtÞ2g ¼ þl ð7Þ

or it touches the boundary,

lim inf
t#t0

uðtÞ ¼ 0: ð8Þ

Indeed the second alternative always holds. Otherwise there should exist d > 0

and r > 0 with

uðtÞb d if t a I :¼ �t0; t0 þ r�:
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From the equation (1) we obtain

j€uuðtÞja 1

d2
þ kpkl on I

and now it is easy to deduce that also j _uuðtÞj and uðtÞ are bounded on I . This is

against the first alternative (7) and so none of the two alternatives would hold.

This contradiction shows the validity of (8) and we can apply the Lemma in

Section 3 of [13] and deduce that the stronger assertion (5) is also valid.

To prove the existence of the limit in (6) we apply the results of Section 6 in

[13] and conclude that the ‘‘energy function’’

hðtÞ ¼ 1

2
_uuðtÞ2 � 1

uðtÞ

is bounded in a neighborhood of tþ0 . The next section in the same paper leads to

the asymptotic expansions

uðtÞ ¼ 9

2

� �1=3
ðt� t0Þ2=3 þO

�
ðt� t0Þ4=3

�
; t # t0; ð9Þ

_uuðtÞ ¼ 2

3

9

2

� �1=3
ðt� t0Þ�1=3 þO

�
ðt� t0Þ1=3

�
; t # t0: ð10Þ

The obtention of these expansions has some subtleties and we add the details.

From (7.4) in [13] it can be deduced that RðtÞ :¼ uðtÞ2 solves

_RR ¼
�
8R1=2 þ bðtÞR

�1=2
on some interval of the type I ¼ �t0; t0 þ d½ with b : I ! R continuous and

bounded. The change of unknown z ¼ R3=4 transforms the equation to

_zz ¼ 3

4

�
8þ bðtÞz2=3

�1=2
:

The solution zðtÞ is continuous at t ¼ tþ0 and we arrive at the integral equation

zðtÞ ¼ 3

4

ð t
t0

�
8þ bðsÞzðsÞ2=3

�1=2
ds:

From the initial estimate zðtÞ ¼ Oðt� t0Þ as t # t0 it is easy to deduce that

zðtÞ ¼ 3

4

ð t
t0

�
81=2 þO

�
ðs� t0Þ2=3

��
ds ¼ 3ffiffiffi

2
p ðt� t0Þ

�
1þO

�
ðt� t0Þ2=3

�	
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and (9) can be obtained from u ¼ z2=3. The expansion (10) follows from

_uu ¼ 2
3 z

�1=3 _zz and

_zzðtÞ ¼ 3ffiffiffi
2

p þO
�
ðt� t0Þ2=3

�
:

This last formula can be derived from the di¤erential equation in z.

Once (9) and (10) have been proved we can go back to the proof of (6). Di¤er-

entiating the energy function one gets _hh ¼ pðtÞ _uu and

hðtÞ ¼ hðtÞ þ
ð t
t

pðsÞ _uuðsÞ ds; t; t a �t0; t1½:

From (10) we deduce that pðtÞ _uuðtÞ is integrable (in the Lebesgue sense) in �t0; t½.
In particular h has a limit when t decreases to t0.

Next we describe a procedure to regularize collisions that is standard in Celes-

tial Mechanics. Given a maximal solution in the previous conditions, the Sund-

man integral is defined as

SðtÞ ¼
ð t
t0

ds

uðsÞ ; t a ½t0; t1½:

The asymptotic expansion (9) guarantees that it is convergent. As a function S

has a continuous inverse T ¼ TðsÞ defined in some interval ½0; s½ and taking values

on ½t0; t1½. The function T is of class C2 in �0; s½ and the triplet

UðsÞ ¼ u
�
TðsÞ

�
; T ¼ TðsÞ; HðsÞ ¼ h

�
TðsÞ

�
is a solution of the autonomous system

U 00 ¼ 1þ 2UH þ pðTÞU 2; T 0 ¼ U ; H 0 ¼ pðTÞU 0: ð11Þ

This can be proved by straightforward di¤erentiation or following the discus-

sions of Section 8 in [13]. A nice feature of the new equation is that it defines a

continuous vector field on the phase space R4 with coordinates ðU ;U 0;T ;HÞ.
The definition of T and the limits (5) and (6) imply that Tð0Þ ¼ t0 and Uð0Þ ¼ 0,

Hð0Þ ¼ h0. Also, from the Lemma in Section 5 of [13],

U 0ðsÞ ¼ _uu
�
TðsÞ

�
T 0ðsÞ ¼ _uu

�
TðsÞ

�
u
�
TðsÞ

�
! 0 as s # 0:

In consequence the functions U , U 0, T , H are well defined and continuous on

some interval of the type ½0; s½ and so they can be extended to the left of s ¼ 0 as

a solution of (11) satisfying the initial conditions

Uð0Þ ¼ U 0ð0Þ ¼ 0; Tð0Þ ¼ t0; Hð0Þ ¼ h0: ð12Þ
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This process can be reversed. To this end it is useful to notice that the quantity

I ¼ U 2H � 1

2
ðU 0Þ2 þU ð13Þ

is a first integral of the system (11). Assume now that we are given a solution of

(11), (12) and notice that U 00ð0Þ ¼ 1. This implies that UðsÞ > 0 if s is positive and

small enough. Going to the second equation in (11) it is observed that T 0 is posi-
tive on the same interval. Thus it is possible to construct a local inverse of T ,

say S, that is defined on an interval ½t0; t0 þ d½. A direct computation shows that

the function uðtÞ ¼ U
�
SðtÞ

�
satisfies

€uu ¼ � 1

u2
þ 2I

u3
þ pðtÞ; t0 < t < t0 þ d:

From the initial conditions (12) we deduce that I ¼ 0 and the limits (5) and (6)

holds. Hence uðtÞ is a solution of (1), (5), (6) in some neighborhood of tþ0 .
The previous construction leads to a result on the existence and uniqueness of

solution with a prescribed collision.

Lemma 2.1. Given two numbers t0 and h0 there exists a maximal solution of (1),

(5), (6) defined on �t0; t1½ with t0 < t1aþl. Moreover this solution is unique as

soon as pðtÞ is Lipschitz-continuous.

Proof. The existence is a consequence of Cauchy–Peano Theorem applied to (11).

For the uniqueness we assume that u1ðtÞ and u2ðtÞ are solutions of (1), (5), (6).

The corresponding solutions of (11) will satisfy the same initial conditions at

s ¼ 0. Hence they must coincide. In particular T1 ¼ T2 and so the inverse

functions S1ðtÞ and S2ðtÞ will coincide in a neighborhood of tþ0 . Di¤erentiating

the identity T1 ¼ T2 one obtains U1 ¼ U2 and so u1 ¼ U1 � S1 coincides with

u2 ¼ U2 � S2 in a neighborhood of tþ0 . This argument proves only the local

uniqueness around tþ0 , but this is enough. Once we know that u1 and u2 coincide

in some interval, we can invoke the standard uniqueness result for the initial value

problem. r

The previous result motivates a notion of generalized solution with a long

tradition in Celestial Mechanics. A generalized or bouncing solution of (1) is a

continuous function u : R ! ½0;l½ satisfying

• Z ¼ ft a R : uðtÞ ¼ 0g is discrete,

• for any open interval I HRnZ the function u is in C2ðIÞ and satisfies (1) on I ,
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• for each t0 a Z the limit

lim
t!t0

1

2
_uuðtÞ2 � 1

uðtÞ

� �

exists.

Let us stress that the above limit is taken from both sides of t0. Hence the

energy function hðtÞ has a well defined value at t0 and hðt0 þ 0Þ ¼ hðt0 � 0Þ. This

means that the energy must be preserved at the collision. In the rest of the paper

we will prefer the terminology bouncing solution. The reason is that the term

generalized solution is employed in the literature with many di¤erent meanings.

Notice that our concept of bouncing solution is more demanding than that

employed in [12] and [14], where the only conditions at collisions are uðt0Þ ¼ 0,

_uuðt0 � 0Þ ¼ �l, _uuðt0 þ 0Þ ¼ þl. The related notion of collision solution was

introduced in [4], see also [7]. These collision solutions can be obtained by

juxtaposing maximal classical solutions and discontinuities of the energy are

admissible. We also refer to [2] for some interesting remarks on the meaning of

the notion of collision solutions for systems. I thank Pedro Torres for inform-

ing me on these definitions. In the recent paper [5] there is an interesting notion

of generalized solution guaranteeing the continuity of the energy in the non-

autonomous case.

3. The generalized Cauchy problem

From now on solutions without collisions will be called classical solutions. Clas-

sical solutions of (1) which are defined on the whole line can be understood as

bouncing solutions with Z ¼ j. A less trivial example of bouncing solution is the

function

uðtÞ ¼ 9

2

� �1=3
ðt� t0Þ2=3;

solving (1) for pC 0 and having a unique collision, Z ¼ ft0g.
Next we obtain a global result on the existence of a bouncing solution when

the instant and energy of the collision are prescribed.

Proposition 3.1. Assume that pðtÞ is Lipschitz-continuous and t0, h0 are given real

numbers. Then there exists a unique bouncing solution satisfying (5) and (6).

Remark 3.2. A consequence of this result is the global extendibility of all solu-

tions of (3)–(4). Given a classical solution uðtÞ defined on a maximal interval
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�t0; t1½ we distinguish two cases. If t0 ¼ �l and t1 ¼ þl then uðtÞ is also a

bouncing solution. If one of the extremes is finite, say t0 > �l, then we know

that (5) and (6) hold and so, once collisions are admitted, it is possible to extend

u to a larger interval using Lemma 2.1. The case t1 < þl is similar and can be

reduced to the previous situation by the change reflecting the time, u ¼ uðsÞ,
s ¼ �t.

In view of the above Remark the proof of this Proposition looks as an imme-

diate consequence of Lemma 2.1. Indeed we could apply this Lemma recursively

and juxtapose the resulting classical solutions at the collision instants. The objec-

tion is that at this point we have no reasons to discard a situation where the length

between successive collisions shrinks to zero very fast. In such a case the resulting

function would not be defined on the whole line and the set of bouncing instants

could have an accumulation point. The proof will be complete if we are able to

obtain an uniform lower estimate for the distance between successive collisions.

To obtain this estimate we need several preliminary results which will be presented

in two subsections.

3.1. Continuous dependence. Let uðtÞ be a classical solution of (1) with maximal

interval �t0; t1½ and t0 finite. We know that (5), (6) hold for an appropriate h0.

Given e > 0 with h0 þ 1
e
> 0, the solution of (1) satisfying the initial conditions

uðt0Þ ¼ e; _uuðt0Þ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h0 þ

1

e

� �s
ð14Þ

is denoted by ueðtÞ. Next we present a result on the convergence of ueðtÞ to uðtÞ.

Lemma 3.3. In the previous notations assume that pðtÞ is Lipschitz-continuous and
J is a compact interval contained in �t0; t1½. Then there exists eJ > 0 such that if

0 < e < eJ then the solution ueðtÞ is well defined and positive in J and

ueðtÞ ! uðtÞ; _uueðtÞ ! _uuðtÞ as e ! 0;

uniformly in J.

Proof. The procedure of regularization of collisions can be applied to uðtÞ, leading
to Sundman’s integral SðtÞ and the triplet U , T , H solving (11)–(12). The main

idea of the proof will be to apply a similar procedure to the solutions ueðtÞ which
do not have collision at t ¼ t0. Let U e, T e, H e be the solution of (11) with initial

conditions

U eð0Þ ¼ e; ðU eÞ0ð0Þ ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h0 þ

1

e

� �s
; T eð0Þ ¼ t0; H eð0Þ ¼ h0: ð15Þ
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Fix two numbers t1 and t2 with t0 < t1 < t2 < t1 and JH �t0; t1½. We define

s1 ¼ Sðt1Þ, s2 ¼ Sðt2Þ and observe that, by continuous dependence for (11), the

solution
�
U e; ðU eÞ0;T e;H e

�
is well defined on ½0; t2� for small e and converges to

ðU ;U 0;T ;HÞ uniformly on this interval. We claim that

U eðsÞ > 0 if s a ½0; s2�: ð16Þ

To prove this positivity we go back to (11) and observe that U 00ð0Þ ¼ 1. Then we

find s1 a �0; s2� such that U 00ðsÞb 1
2 if s a ½0; s1�. Since ðU eÞ00 converges uniformly

to U 00 on ½0; s2�, we select e small enough so that ðU eÞ00ðsÞb 1
4 if s a ½0; s1�. Using

a Taylor expansion at the origin we find x a �0; s½ such that

U eðsÞ ¼ eþ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 h0 þ

1

e

� �s
sþ ðU eÞ00ðxÞ s

2

2
b e if s a ½0; s1�:

The positivity of U e on the interval ½s1; s2� is straightforward since U is strictly

positive on this interval.

Once (16) has been established we can go back to (11) and observe that

ðT eÞ0 ¼ U e > 0 on ½0; s2�. In consequence the inverse function S e ¼ ðT eÞ�1 is

well defined and smooth on the interval ½t0; t1�. Moreover it converges uni-

formly to S on this interval. Since S eð½t0; t1�ÞH ½0; s2� for small e, we deduce

that v e :¼ U e � S e converges to u ¼ U � S uniformly on ½t0; t1�. From the initial

conditions (15) we observe that the first integral I vanishes for the solution�
U e; ðU eÞ0;T e;H e

�
and a computation shows that ve is a solution of (1) defined

on the interval ½t0; t1�. Since ve satisfies the initial conditions (14) we deduce that

ue ¼ ve on ½t0; t1�. This proves that ue converges to u uniformly in JH ½t0; t1�. It

remains to show that the derivative also converges. Since u is uniformly positive

on J it is possible to find a number d > 0 such that ueðtÞb d if e is small enough

and t a J. It is now easy to verify that

_uueðtÞ ¼
ðU eÞ0

�
S eðtÞ

�
U e
�
S eðtÞ

� !
U 0�SðtÞ�
U
�
SðtÞ

� ¼ _uuðtÞ

and this convergence is uniform in J. r

3.2. Comparison principles. Imagine two identical particles P1 and P2 attracted

by the sun S. Initially both have zero velocity but P1 is closer to S than P2. Then

P1 will arrive at the sun before P2. This is an intuitive argument that can be made

rigorous for the Kepler problem and even extended to non-autonomous equations.

Let u1ðtÞ and u2ðtÞ be classical solutions of (1) defined on maximal intervals

I1 ¼ �t0; t1½ and I2 ¼ �t�0 ; t�1 ½. Assume that for some t a I1B I2,

u1ðtÞa u2ðtÞ; _uu1ðtÞa _uu2ðtÞ: ð17Þ
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Then

t1a t�1 and u1ðtÞa u2ðtÞ; _uu1ðtÞa _uu2ðtÞ for each t a ½t; t1½: ð18Þ

To prove this assertion it is convenient to employ the theory of quasi-monotone

systems (see [15]). After transforming the equation in the first order system

_uu ¼ v ¼: f1ðt; u; vÞ; _vv ¼ � 1

u2
þ pðtÞ ¼: f2ðt; u; vÞ;

we observe that the conditions of quasi-monotonicity
qf1
qv

b 0,
qf2
qu

b 0 are satisfied.

Therefore the standard ordering in R2 is preserved in the future and so (17) implies

(18). The same conclusion can be obtained when u1ðtÞ, u2ðtÞ are solutions of

di¤erent equations, say

€uu ¼ � 1

u2
þ piðtÞ; i ¼ 1; 2; ð19Þ

with p1; p2 : R ! R Lipschitz-continuous and bounded functions satisfying

p1ðtÞa p2ðtÞ for each t a R:

The above discussion dealt with classical solutions but it admits an extension to

collisions.

Lemma 3.4. Assume that p1 and p2 are as before and u1ðtÞ, u2ðtÞ are solutions

of (19) for i ¼ 1; 2, having maximal intervals I1 ¼ �t0; t1½ , I2 ¼ �t0; t�1 ½ with t0 finite.

Define

h0i ¼ lim
t#t0

1

2
_uuiðtÞ2 �

1

uiðtÞ

� �
; i ¼ 1; 2:

If h01a h02 then t1a t�1 and

u1ðtÞa u2ðtÞ; _uu1ðtÞa _uu2ðtÞ if t a �t0; t1½:

Proof. Let us fix any t with t0 < t < minft1; t�1g. A combination of the previous

discussion with Lemma 3.3 leads to the inequalities for u1ðtÞ and u2ðtÞ on the

interval �t0; t½. Hence t1a t�1 and the conclusion follows. r

The following refinement of the above Lemma will be employed later.

Lemma 3.5. In the conditions of Lemma 3.4 assume that p1 ¼ p2 and h01 < h02.

Then t1 < t�1 .
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Proof. In principle we know that t1a t�1 and we are going to discard the equality

by a contradiction argument. Assuming for the moment that t1 ¼ t�1 , we observe

that the function wðtÞ ¼ u1ðtÞ � u2ðtÞ satisfies

€ww ¼ � 1

u21
þ 1

u22
; wðt0Þ ¼ wðt1Þ ¼ 0; w > 0 on �t0; t1½: ð20Þ

The asymptotic expansion (10) leads to

lim
t!te

i

_wwðtÞ ¼ 0;

where the limit is understood to the right or to the left depending on whether i ¼ 0

or i ¼ 1. With this information we multiply the equation in (20) by w and inte-

grate between t0 and t1. This integration is understood in the improper sense of

Riemann. In principle the integrals could be divergent but this is not the case

since an integration by parts shows that

�
ð t1
t0

_wwðtÞ2 dt ¼
ð t1
t0

wðtÞ €wwðtÞ dt ¼
ð t1
t0

� 1

u1ðtÞ2
þ 1

u2ðtÞ2

 !�
u1ðtÞ � u2ðtÞ

�
dt:

This is a contradiction because the first term has to be negative and the last one

should be positive. r

3.3. Remarks on the autonomous equation. Next we analyze the equation (1)

when pðtÞCP is a non-zero constant. When P is negative a phase portrait anal-

ysis shows that each classical solution has a bounded maximal interval I and a

unique critical point at the mid point of I . The maximum is reached at this instant

and has the value

Uðh0;PÞ ¼ ð�h0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � 4P

q
Þ=2P

where h0 is defined via the first integral

1

2
_uu2 � 1

u
� Pu ¼ h0:

Notice that h0 can also be obtained as the limit

1

2
_uuðtÞ2 � 1

uðtÞ ! h0 as t " t1 or t # t0:

The length of I is given by the integral

tðh0;PÞ ¼
ffiffiffi
2

p ðUðh0;PÞ

0

1

x
þ Pxþ h0

� ��1=2

dx:
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It is not hard to show that tð�;PÞ is a continuous positive function with

lim
h0!�l

tðh0;PÞ ¼ 0; lim
h0!þl

tðh0;PÞ ¼ þl:

For positive P the maximal interval of a classical solution is bounded whenever

h0 < �2P1=2 and u < P�1=2. The above formulas for U and t are still valid in

this case. Again tðh0;PÞ ! 0 as h0 ! �l.

3.4. Proof of Proposition 3.1. We proceed by contradiction and assume that

uðtÞ is a solution obtained by successive juxtapositions at collisions accumulating

at a finite time. Let us say that the collisions occur at a bounded and increasing

sequence of instants tn with

uðtnÞ ¼ 0; lim
t!tn

1

2
_uuðtÞ2 � 1

uðtÞ

� �
¼ hn:

From Lemma 3.4 we know that

tðhn;�kpklÞa tnþ1 � tn;

and so the series
P

n tðhn;�kpklÞ is dominated by the convergent seriesP
nðtnþ1 � tnÞ. In particular limn!l tðhn;�kpklÞ ¼ 0. The behavior of the func-

tion tð�;PÞ previously described allows us to conclude that hn ! �l. From the

derivative of the energy, _hhðtÞ ¼ pðtÞ _uuðtÞ, we obtain

hnþ1 � hn ¼
ð tnþ1

tn

pðsÞ _uuðsÞ ds ¼ �
ð tnþ1

tn

_ppðsÞuðsÞ ds:

Notice that the integration by parts is possible. Indeed, since pðtÞ is Lipschitz-

continuous then it is also absolutely continuous and its derivative, defined almost

everywhere, is bounded. Assuming that hn is negative and large we apply again

the comparison, now for pðtÞ and kpkl, and deduce that

max
½tn; tnþ1�

uðtÞaUðhn; kpklÞ ! 0 as n ! l:

This implies that the series
P

jhnþ1 � hnj is dominated by k _ppkl
P

ðtnþ1 � tnÞ and
so it converges. We have arrived at a contradiction since we proved before that hn
goes to �l and now we find that

lim
n!l

hn ¼ h0 þ
X
nb0

ðhnþ1 � hnÞ

is finite.
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4. Exact symplectic twist maps and the Poincaré–Birkho¤ theorem

Let us consider a plane with coordinates ðy; rÞ and a domain of the type

W ¼ fðy; rÞ a R2 : a < r < cðyÞg

where a is a fixed constant and c : R ! �a;þl� is a 2p-periodic function which

is lower semi-continuous. We will work with a one-to-one map defined on the

closure of W and denoted by S : W ! R2, Sðy; rÞ ¼ ðy1; r1Þ. The coordinates of S

are given by

y1 ¼ Fðy; rÞ; r1 ¼ Gðy; rÞ;

where F ;G : R2 ! R are functions of class C1 satisfying

Fðyþ 2p; rÞ ¼ F ðy; rÞ þ 2p; Gðyþ 2p; rÞ ¼ Gðy; rÞ:

We say that S is exact symplectic if the di¤erential form r1 dy1 � r dy is exact in

the cylinder. This means that there exists a function V a C1ðWÞ such that

dV ¼ r1 dy1 � r dy and Vðyþ 2p; rÞ ¼ Vðy; rÞ for each ðy; rÞ a W:

We say that S is a twist map if the function r a �a;cðyÞ½ 7! Fðy; rÞ is strictly in-

creasing for each y a R. We present a simplified version of the Poincaré–Birkho¤

Theorem for this class of maps. Notice that, in contrast to the most classical

situations, the region W has not to be invariant under S. We refer to [9], [10] for

recent related results.

Theorem 4.1. Assume that S is an exact symplectic twist map in the above

conditions. Let us fix an integer N and assume that for each y a R, there exists

ry a �a;cðyÞ½ with

Fðy; aÞ < yþ 2Np < F ðy; ryÞ: ð21Þ

Then the system

Fðy; rÞ ¼ yþ 2Np; Gðy; rÞ ¼ r; y a ½0; 2p½; ðy; rÞ a W;

has at least two solutions.

Proof. The quotient space T ¼ R=2pZ will be thought as a space of angles, de-

noted by y ¼ yþ 2pZ with y a R. It will be convenient to work on the cylinder

C ¼ T� R with the covering map Pðy; rÞ ¼ ðy; rÞ. The periodicity properties of

the map S allow to define a new map, also denoted by S, mapping PðWÞ into C.
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In particular this map is a topological embedding. Given a continuous and

2p-periodic function j : R ! R, the graph in the cylinder

G ¼

�

y; jðyÞ
�
: y a R

�
defines a Jordan curve that is not contractible in C and has positive orientation.

We are going to prove that G and G1 ¼ SðGÞ must intersect in at least two points

of the cylinder. Let us fix two numbers a < b such that G and G1 are contained

in the finite cylinder fa < r < bg. By the Jordan Curve Theorem on the cylinder

there are two connected components of fa < r < bgnG and, since the curve is not

contractible, the circumferences r ¼ a and r ¼ b cannot lie in the same component.

We denote these components by RaðGÞ and RbðGÞ. Since S is a topological

embedding we deduce that G1 ¼ SðGÞ is also a non-contractible Jordan curve

and denote by RaðG1Þ, RbðG1Þ the components of fa < r < bgnG1. Notice that

G1 is not necessarily a graph but it has positive orientation. This is a conse-

quence of the periodicity property of the function F , since F
�
yþ 2p; jðyþ 2pÞ

�
¼

F
�
y; jðyÞ

�
þ 2p. We claim that

m
�
RaðGÞ

�
¼ m

�
RaðG1Þ

�
;

where m ¼ dy dr is the Haar measure in the cylinder. This result would be almost

obvious if the function j were smooth. In such a case the classical Green’s for-

mula implies that

m
�
RaðGÞ

�
¼
ð
G

r dy� 2pa; m
�
RaðG1Þ

�
¼
ð
G1

r dy� 2pa ¼
ð
G

r1 dy1 � 2pa:

Here it has been important that both curves are positively oriented. The conclu-

sion follows since

m
�
RaðGÞ

�
� m
�
RaðG1Þ

�
¼
ð
G

ðr1 dy1 � r dyÞ ¼
ð
G

dV ¼ 0:

If j is only continuous we approximate it by C1 functions jn with period 2p and

then pass to the limit. Let wn and w
ð1Þ
n be the characteristic functions of RaðGnÞ and

Ra

�
SðGnÞ

�
. Then wn converges to the characteristic function of RaðGÞ outside G.

Since G is the graph of a continuous function, Fubini’s Theorem implies that it is

of measure zero in the cylinder and so the convergence is almost everywhere. Sim-

ilarly we conclude that w
ð1Þ
n converges almost everywhere to the characteristic func-

tion of RaðG1Þ. This time one uses that S is a Lipschitz continuous map and so it

preserves zero measure sets. Once we know that the sets RaðGÞ and RaðG1Þ have
the same measure we can conclude that either G ¼ G1 or G1BRaðGÞA j and

G1BRbðGÞA j. In any case there are at least two intersection points.
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For each y a R the equation Fðy; rÞ ¼ yþ 2Np has a unique solution r :¼ fðyÞ.
This is a consequence of (21) and the twist condition. In particular the uniqueness

implies that f is continuous and 2p-periodic. The graph of f in the cylinder and its

image under S must intersect in at least two points of the cylinder. This will com-

plete the proof since the solutions of the system can be obtained as lifts of these

intersection points with argument y in ½0; 2p½. r

5. A twist map associated to collisions

From now on it is assumed that pðtÞ is 2p-periodic. Given ðt0; h0Þ a R2, the

bouncing solution satisfying (5) and (6) will be denoted by uðt; t0; h0Þ. Throughout

this section it will be assumed that pðtÞ is Lipschitz-continuous and so Proposition

3.1 implies that this solution is unique and globally defined. The number t1 > t0
will indicate the next instant of collision while h1 will be the corresponding energy.

It can happen that no collisions occur after t0 and in that case t1 ¼ þl. The suc-

cessor map is defined as

S : DHR2 ! R2; Sðt0; h0Þ ¼ ðt1; h1Þ;

with

D ¼ fðt0; h0Þ a R2 : t1 < þlg:

The periodicity of pðtÞ implies that uðt; t0 þ 2p; h0Þ ¼ uðt� 2p; t0; h0Þ and so

Sðt0 þ 2p; h0Þ ¼ Sðt0; h0Þ þ ð2p; 0Þ:

This identity leads to the interpretation of t0 as an angle variable.

Given a bouncing solution uðt; t0; h0Þ with successive collisions at times

t0 < t1 < � � � < tn < � � � and corresponding energies h0; h1; . . . ; hn; . . . each point

ðtn; hnÞ belongs to D and

ðtnþ1; hnþ1Þ ¼ Sðtn; hnÞ:

This fact explains why S plays an important role in the study of the dynamics of

bouncing solutions. In particular the search of periodic solutions of period 2pm

having n collisions in ½0; 2mp½ is reduced to the equation

Snðt0; h0Þ ¼ ðt0 þ 2pm; h0Þ:

The next result describes the geometry of the set D and shows that S has the twist

property.
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Proposition 5.1. There exists a function c : R ! RA fþlg such that

D ¼ fðt0; h0Þ a R2 : h0 < cðt0Þg:

This function is 2p-periodic, lower semi-continuous and minR cb�2kpk1=2l .

The map S : D ! R2, Sðt0; h0Þ ¼ ðt1; h1Þ, is one-to-one and such that, for each

t0 a R,

h0 a ��l;cðt0Þ½ 7! t1ðt0; h0Þ

is increasing.

Notice that the above properties imply that D is an open and connected subset

of the plane. Before the proof we need two preliminary results on continuous

dependence.

Lemma 5.2. Sundman’s integral

Sðt; t0; h0Þ ¼
ð t
t0

dt

uðt; t0; h0Þ

is continuous as a function of three variables defined on the set

D ¼ fðt; t0; h0Þ a R3 : t0 < t < t1g:

Proof. We go back to the process of regularization of collisions and consider the

solution of (11) satisfying

Uð0Þ ¼ U 0ð0Þ ¼ 0; Tð0Þ ¼ t0; Hð0Þ ¼ h0:

The theorem on continuity with respect to initial conditions is applicable to (11)

and so the functions

Uðs; t0; h0Þ; U 0ðs; t0; h0Þ; Tðs; t0; h0Þ; Hðs; t0; h0Þ

are continuous in the three variables. Assume that s > 0 is a number such that

Uðs; t0; h0Þ > 0 if s a �0; s�:

In particular it is assumed that the corresponding solution ðU ;T ;HÞ of (11) is well
defined on ½0; s�. Let fðt0n; h0nÞg be a sequence converging to ðt0; h0Þ, we claim

that

Uðs; t0n; h0nÞ > 0 if s a �0; s� ð22Þ
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for large n. The argument to prove the positivity is analogous to one already

employed in the proof of Lemma 3.3. By continuous dependence the solution of

(11) satisfying Uð0Þ ¼ U 0ð0Þ ¼ 0, Tð0Þ ¼ t0n, Hð0Þ ¼ h0n, is well defined on ½0; s�
and U 00ð�; t0n; h0nÞ converges to U 00ð�; t0; h0Þ uniformly on ½0; s�. The positivity of

Uðs; t0n; h0nÞ in a small but fixed interval of the type �0; e� follows from Taylor’s

expansion. Outside this interval Uðs; t0; h0Þ is positive and (22) follows easily.

The previous argument can also be employed to prove that D is open in R3 but

we will not need this fact.

To prove the continuity of S on D we assume that fðtn; t0n; h0nÞg is a sequence

in D converging to ðt; t0; h0Þ a D. We observe that sn ¼ Sðtn; t0n; h0nÞ and

s ¼ Sðt; t0; h0Þ are such that

Tðsn; t0n; h0nÞ ¼ tn and Tðs; t0; h0Þ ¼ t:

The convergence of sn to s will be obtained in two steps.

Step 1: fsng is bounded. Since Tð�; t0; h0Þ is strictly increasing as long as

Uð�; t0; h0Þ is positive, we find s > s and d > 0 such that tþ d < t1 and

Tðs; t0; h0Þ ¼ tþ d:

By continuity we know that, for large n,

Tðs; t0n; h0nÞ > tþ d

2
> tn:

From (22) we know that Tð�; t0n; h0nÞ is strictly increasing on ½0; s� and we deduce

that 0 < sn < s.

Step 2: fskg, limk!l sk ¼ s for every convergent subsequence. Assume that

fskg ! s� a ½0; s�. Since T is continuous, Tðs�; t0; h0Þ ¼ t and the monotonicity

of T with respect to s implies that s ¼ s�. r

Lemma 5.3. The map

ðt; t0; h0Þ a D 7!
�
uðt; t0; h0Þ; _uuðt; t0; h0Þ

�
a R2

is continuous.

Proof. We employ the identities

uðt; t0; h0Þ ¼ Uðs; t0; h0Þ; _uuðt; t0; h0Þ ¼ U 0ðs; t0; h0Þ=Uðs; t0; h0Þ;

where s ¼ Sðt; t0; h0Þ. The continuity is a consequence of the continuity of U , U 0

and the previous Lemma. r
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Proof of Proposition 5.1. We start with the following

Claim: Let uðtÞ be a solution of (1) such that

uðtÞ2kpkl < 1; uðtÞ > 0; _uuðtÞ < 0 ð23Þ

for some t a R. Then the first collision after t occurs at some instant t� satisfying

t < t� < t� uðtÞ
_uuðtÞ :

Let t� > t be the first instant of collision. In principle we admit the possibility

t� ¼ þl. From the equation (1) and the conditions at t it is easy to prove that

€uuðtÞ < 0; _uuðtÞ < _uuðtÞ if t a �t; t�½:

Hence,

0 < uðtÞ < uðtÞ þ _uuðtÞðt� tÞ; t < t < t�;

and this inequality proves the claim.

It is now easy to prove that D is open. If ðt0; h0Þ is a point in D we know that

t1 ¼ t1ðt0; h0Þ < þl and uðt1Þ ¼ 0, _uuðt�1 Þ ¼ �l where uðtÞ :¼ uðt; t0; h0Þ. This al-

lows us to find some t a �t0; t1½ in the conditions of the Claim (23). The previous

Lemma on continuous dependence guarantees the existence of a neighborhood U

of ðt0; h0Þ such that if ðt̂t0; ĥh0Þ a U and ðt; t̂t0; ĥh0Þ a D then ûuðtÞ :¼ uðt; t̂t0; ĥh0Þ satis-
fies the condition (23) at t ¼ t and so t̂t1 is finite and ðt̂t0; ĥh0Þ a D. From the defini-

tion of D we can now deduce that the whole neighborhood U is contained in D

and this proves that D is open.

Next we are going to describe D geometrically. For each t0 a R consider the

set of energies producing a collision in the future; that is,

Ct0 ¼ fh0 a R : t1 ¼ t1ðt0; h0Þ < lg:

By comparison of the equation (1) and an autonomous equation, p1ðtÞ ¼ pðtÞ and
p2ðtÞ ¼ kpkl, we deduce from Lemma 3.4 that t1ðt0; h0Þ < l if h0 < �2kpk1=2l .

Hence Ct0 is non-empty, actually it contains the interval ��l;�2kpk1=2l ½. Again

from Lemma 3.4 we deduce that Ct0 is an interval, now p1 ¼ p2 ¼ p. Define

cðt0Þ ¼ supCt0 . Knowing that D is open we conclude that

D ¼ fðt0; h0Þ : h0 < cðt0Þg:

The lower semi-continuity of c is automatic. Given a < cðt0Þ, the point ðt0; aÞ is
in D and so we can find a neighborhood of this point contained in D. In particular

there exists d > 0 such that if jt̂t0 � t0j < d then ðt̂t0; aÞ a D, and so a < cðt̂t0Þ.
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To complete the proof we must discuss the properties of the map S. The

uniqueness given by Proposition 3.1 implies that S is one-to-one. To prove

the twist condition fix t0 and h0 < h�
0 < cðt0Þ. Then Lemma 3.5 implies that

t1 ¼ t1ðt0; h0Þ < t�1 ¼ t1ðt0; h�
0 Þ.

6. The successor map is exact symplectic

In the variables time and energy the successor map can be interpreted as a return

map associated to the di¤erential equation (1) and the transversal section fu ¼ 0g.
There are standard methods to prove that certain return maps associated to

Hamiltonian flows are exact symplectic. The general theory can be seen in Chap-

ter 9 of [3] and some related examples can be found in [1, 11]. However our situ-

ation is more delicate because the section u ¼ 0 coincides with the set of singular-

ities of the equation. To overcome this di‰culty we will approximate S by the

return map associated to the section fu ¼ eg with e > 0. To make precise this

idea consider ðt0; h0Þ a R2 and e > 0 with h0 þ 1
e
> 0. The solution of (1) satisfying

uðt0Þ ¼ e; _uuðt0Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h0 þ

2

e

r

will be denoted by uðt; t0; h0; eÞ. These initial data have been chosen so that

h0 ¼
1

2
_uuðt0Þ2 �

1

uðt0Þ

and it seems reasonable to extend this family of solutions to e ¼ 0. From now on

the family uðt; t0; h0Þ appearing in the previous section will be interpreted as

uðt; t0; h0; 0Þ.

Proposition 6.1. Assume that the forcing pðtÞ is of class C1 and let ðt�0 ; h�
0 Þ be a

given point of D. Then there exists e� > 0, a neighborhood V of ðt�0 ; h�
0 Þ and two

functions t;H : V� ½0; e�� ! R of class C1;0 satisfying:

(i) Sðt0; h0Þ ¼
�
tðt0; h0; 0Þ;Hðt0; h0; 0Þ

�
for each ðt0; h0Þ a V;

(ii) given e a �0; e��, t ¼ tðt0; h0; eÞ is such that t > t0, uðt; t0; h0; eÞ ¼ e, uðt; t0; h0; eÞ
> e if t a �t0; t½, Hðt0; h0; eÞ ¼ 1

2
_uuðt; t0; h0; eÞ2 � 1

e
.

Remark 6.2. A function f : V� ½0; e�� ! R, f ¼ f ðt0; h0; eÞ is of class C1;0 if it

is continuous, ðt0; h0Þ a V 7! f ðt0; h0; eÞ is of class C1 for each e a ½0; e�� and the

partial derivatives
qf

qt0
,

qf

qh0
are continuous as functions of the three variables. In

particular it follows from the previous Proposition that the successor map S is

C1 in D.
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Proof. Given ðt0; h0Þ a R2 and eb 0 with eh0 þ 1 > 0, there is a unique solution

of (11) with initial conditions

Uð0Þ ¼ e; U 0ð0Þ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2h0 þ 2e

p
; Tð0Þ ¼ t0; Hð0Þ ¼ h0; ð24Þ

denoted by Uðs; t0; h0; eÞ, Tðs; t0; h0; eÞ, Hðs; t0; h0; eÞ, respectively. The value of

U 0ð0Þ has been adjusted so that the first integral I given by (13) vanishes for

this solution. The function ðh0; eÞ 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2h0 þ 2e

p
is of class C1;0 on eb 0,

eh0 þ 1 > 0, and this regularity is inherited by U , U 0, T and H as functions of

ðs; t0; h0Þ and e. At this point the regularity of pðtÞ is important to guarantee the

applicability of the theorem of di¤erentiability with respect to initial conditions.

The point ðt�0 ; h�
0 Þ a D has been fixed and t�1 is the first zero to the right of t�0 for

the solution uðt; t�0 ; h�
0 ; 0Þ. For the associated solution of (11) we can find s�

0 > 0

such that t�1 ¼ Tðs�
0 ; t

�
0 ; h

�
0 ; 0Þ and

Uðs; t�0 ; h�
0 ; 0Þ > 0 if s a �0; s�

0 ½; Uðs�
0 ; t

�
0 ; h

�
0 ; 0Þ ¼ 0:

In particular ½0; s�
0 � in contained in the maximal interval of this solution.

We would like to obtain a function s ¼ sðt0; h0; eÞ by an application of the Im-

plicit Function Theorem to the problem

Uðs; t0; h0; eÞ ¼ e; sðt�0 ; h�
0 ; 0Þ ¼ s�

0 : ð25Þ

This is not possible since I ¼ 0 at this solution and so U 0ðs; t�0 ; h�
0 ; 0Þ has to vanish

at s ¼ s�
0 . However the equation for U in (11) shows that

U 00ðs�
0 ; t

�
0 ; h

�
0 ; 0Þ ¼ 1

and this allows to apply the Implicit Function Theorem to the problem

U 0ðs; t0; h0; eÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eþ 2e2Hðs; t0; h0; eÞ

q
; sðt�0 ; h�

0 ; 0Þ ¼ s�
0 : ð26Þ

Indeed we need a slight variant of this theorem because we do not have di¤erenti-

ability in the parameter e. Given a problem of the type

Fðx; l; mÞ ¼ 0; xðl0; m0Þ ¼ x0;

with F of class C1;0 and det


qF
qx
ðx0; l0; m0Þ

�
A 0, then the solution x ¼ xðl; mÞ is

also of class C1;0. In our case we obtain a function s ¼ sðt0; h0; eÞ with di¤erenti-

ability in t0 and h0. The equation appearing in (26) has been deduced from the

first integral (13) with I ¼ 0, U ¼ e, U 0 > 0. Next we prove that the function

solving (26) is also a solution of (25), at least in a small neighborhood of

ðt�0 ; h�
0 ; 0Þ, say V1 � ½0; e�. To prove this we fix numbers n > 0 and h > 0 with
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2hn < 1 and n > jh�
1 j. Here h�

1 is the energy of uðt; t�0 ; h�
0 ; 0Þ at t ¼ t�1 . The neigh-

borhood can be chosen so small that, for s ¼ sðt0; h0; eÞ,

jHðs; t0; h0; eÞja n; jUðs; t0; h0; eÞja h if ðt0; h0; eÞ a V1 � ½0; e�: ð27Þ

and the derivative of U satisfies U 0ðs; t0; h0; eÞa 0. The identity I ¼ 0 for s ¼ s

leads to

U 0ðs; t0; h0; eÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uðs; t0; h0; eÞ þ 2Uðs; t0; h0; eÞ2Hðs; t0; h0; eÞ

q
: ð28Þ

The estimates (27) are now useful to deduce that the function

x a ½�h; h� 7! 2xþ 2x2Hðs; t0; h0; eÞ

is one-to-one. The identities in (26) and (28) imply that Uðs; t0; h0; eÞ ¼ e.

Our next task is to prove that

Uðs; t0; h0; eÞ > e if s a �0; sðt0; h0; eÞ½; ð29Þ

where ðt0; h0Þ a V2 and e a ½0; e2� for new and smaller neighborhoods. If the above

statement were false, there should exist sequences fðt0n; h0nÞg ! ðt�0 ; h�
0 Þ and en # 0

with

Uðŝsn; t0n; h0n; enÞ ¼ en for some ŝsn; 0 < ŝsn < sn :¼ sðt0n; h0n; enÞ:

The sequence sn converges to sðt�0 ; h�
0 ; 0Þ ¼ s�

0 and we extract a convergent subse-

quence of fŝsng, say ŝsk, with limk!l ŝsk ¼ l, 0a la s�
0 . The continuity of U im-

plies that l is a zero of Uð�; t�0 ; h�
0 ; 0Þ and so either l ¼ 0 or l ¼ s�

0 . The function

U 00ðs; t�0 ; h�
0 ; eÞ is continuous in all its variables as long as it is defined. This is a

consequence of continuous dependence and the first equation in (11). Moreover

U 00ð0; t�0 ; h�
0 ; 0Þ ¼ U 00ðs�

0 ; t
�
0 ; h

�
0 ; 0Þ ¼ 1

and therefore it is possible to find k0 > 0 and d > 0 such that

U 00ðs; t0k; h0k; ekÞb
1

2
if s a ½0; d�A ½s�

0 � d; s�
0 �; kb k0:

In particular U 0ð�; t0k; h0k; ekÞ is strictly increasing in ½0; d� and ½s�
0 � d; s�

0 �. From

(26) and (24),

U 0ðsk; t0k; h0k; ekÞa 0aU 0ð0; t0k; h0k; ekÞ:
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Hence Uð�; t0k; h0k; ekÞ is increasing in ½0; d� and decreasing in ½sk � d; sk�. Thus

Uðs; t0k; h0k; ekÞ > ek s a �0; d�A ½sk � d; sk½:

Since Uð�; t�0 ; h�
0 ; 0Þ is positive on ½d; s�

0 � d� this is not compatible with the exis-

tence of ŝsk. Once we know that (29) holds we define

tðt0; h0; eÞ ¼ T
�
sðt0; h0; eÞ; t0; h0; e

�
; Hðt0; h0; eÞ ¼ H

�
sðt0; h0; eÞ; t0; h0; e

�
:

By chain rule we observe that these functions are in the class C1;0. The properties

(i) and (ii) are a consequence of the known connections between the original equa-

tion (1) and the solutions with I ¼ 0 of (11). r

Proposition 6.3. Assume that pðtÞ is of class C1. Then the di¤erential form

h1 dt1 � h0 dt0 is exact in the cylinder. This means that dG ¼ h1 dt1 � h0 dt0
for some function G ¼ Gðt0; h0Þ in C1ðDÞ which is 2p-periodic in t0. Notice that

ðt1; h1Þ ¼ Sðt0; h0Þ.

Proof. Consider the di¤erential form o ¼ h dt defined in the plane with coordi-

nates ðt; hÞ or in the cylinder with coordinates ðt; hÞ, t ¼ tþ 2pZ. It is enough to

prove that

ð
G

o ¼
ð
G1

o

for each smooth Jordan curve in the cylinder with lift contained in D and

G1 ¼ SðGÞ. From now on we assume that G is not contractible to a point, the

contractible case can be treated similarly. To start with we fix a parametrization

of the curve given by

t0 ¼ t0ðxÞ; h0 ¼ h0ðxÞ

satisfying

t0ðxþ 2pÞ ¼ t0ðxÞ þ 2p; h0ðxþ 2pÞ ¼ h0ðxÞ:

By a compactness argument applied to Proposition 6.1 we can extend the func-

tions t, H to W� ½0; e1�, where W is a neighborhood of G and e1 > 0. Next we

consider a three dimensional space with coordinates u, v, t containing the surface

Se with parametric equations

u ¼ u
�
t 0; t0ðxÞ; h0ðxÞ; e

�
; v ¼ _uu

�
t 0; t0ðxÞ; h0ðxÞ; e

�
; t ¼ t 0;
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where x a ½0; 2p�, t0ðxÞa t 0a t
�
t0ðxÞ; h0ðxÞ; e

�
. This is a surface contained in

fub eg that is smooth everywhere excepting at four corner points at the

boundary. These are the points corresponding to x ¼ 0 or 2p and t ¼ t0ðxÞ or

t
�
t0ðxÞ; h0ðxÞ; e

�
. Notice that, rigorously speaking, we must prove that the map

X : ðx; t 0Þ 7! ðu; v; tÞ is a chart for Se. This means that X is one-to-one, of class

C1 and such that the Jacobian matrix DX ðx; t 0Þ has rank two. The most delicate

point is the computation of the rank. Notice that

DX ðx; t 0Þ ¼
ux _uu

_uux €uu

0 1

0
B@

1
CA; where

ux

_uux

� �
¼

qu
qt0

qu
qh0

q _uu
qt0

q _uu
qh0

 !
t 00ðxÞ
h 0
0ðxÞ

� �

and u ¼ u
�
t; t0ðxÞ; h0ðxÞ; e

�
. The functions y1 ¼ qu

qt0
, y2 ¼ qu

qh0
are solutions of the

linearized equation

€yy ¼ 2

u
�
t; t0ðxÞ; h0ðxÞ; e

�3 y ð30Þ

with respective initial conditions y1ðt0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h0 þ 2

e

q
, _yy1ðt0Þ ¼ 1

e2
� pðt0Þ and

y2ðt0Þ ¼ 0, _yy2ðt0Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2h0þ2

e

p . The Jacobi–Liouville formula applied to (30) implies

that the Wronskian of y1 and y2 is constant, namely

det
qu
qt0

qu
qh0

q _uu
qt0

q _uu
qh0

 !
¼ �1:

Since G is a regular curve, the velocity vector
�
t 00ðxÞ; h 0

0ðxÞ
�
is not zero and so the

vector ðux; _uuxÞ does not vanish. This implies that DX ðx; t 0Þ has rank two.

We intend to apply Stokes’ Theorem on Se. Following [3] we consider the

Poincaré–Cartan di¤erential form

W ¼ v du� E dt; E ¼ 1

2
v2 � 1

u
þ pðtÞu:

This form is defined in R3, with coordinates u, v, t and we are going to restrict it

to Se. This means that we consider S ¼ i�W, pull-back form associated to the

inclusion i : Se ! R3. Using x and t as coordinates in Se we express S in terms

of dx and dt,

S ¼ vðux dxþ v dtÞ � E dt:
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Analogously we express dS in terms of dxbdt,

dS ¼ ðvvx � _vvux � Euux � EvvxÞ dxbdt:

By construction Se is composed by trajectories of the Hamiltonian system _uu ¼ Ev,

_vv ¼ �Eu and therefore dS ¼ 0: By Stokes’ Theorem
Ð
qSe

S ¼
Ð
Se
dS ¼ 0 and the

integral on the boundary is split inð
qSe

¼
ð
Ge

þ
ð
~gge

�
ð
~GGe

�
ð
ge

;

where

Ge :

u ¼ e;

v ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
h0ðxÞ þ 1

e

�q
;

t ¼ t0ðxÞ;

8><
>: ĜGe :

u ¼ e;

v ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
H
�
t0ðxÞ; h0ðxÞ; e

�
þ 1

e

�q
;

t ¼ t
�
t0ðxÞ; h0ðxÞ; e

�
8>><
>>:

with x a ½0; 2p� and ge, ~gge are the trajectories associated to x ¼ 0 and x ¼ 2p. The

periodicity of the curve and the di¤erential equation imply that

u
�
t; t0ð2pÞ; h0ð2pÞ; e

�
¼ u
�
t� 2p; t0ð0Þ; h0ð0Þ; e

�
:

As a consequence

~gge ¼ ge þ ð0; 0; 2pÞ and

ð
~gge

S ¼
ð
ge

S:

In this way we arrive at
Ð
Ge
S ¼

Ð
~GGe
S, equivalent to

ð
Ge

E dt ¼
ð
~GGe

E dt

because u ¼ e on GeA ~GGe and so du vanishes on these curves. These integrals can

be expressed as

ð2p
0



h0ðxÞ þ ep

�
t0ðxÞ

��
t 00ðxÞ dx ¼

ð
Ge

E dt ¼
ð
~GGe

E dt

¼
ð2p
0



H
�
t0ðxÞ; h0ðxÞ; e

�
þ ep

�
t
�
t0ðxÞ; h0ðxÞ; e

���
t 0ðxÞ dx;

with

t 0ðxÞ ¼ qt

qt0

�
t0ðxÞ; h0ðxÞ; e

�
t 00ðxÞ þ

qt

qh0

�
t0ðxÞ; h0ðxÞ; e

�
h 0
0ðxÞ:
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Letting e to go to zero and using the property (i) stated in Proposition 6.1,

ð2p
0

h0ðxÞt 00ðxÞ dx ¼
ð2p
0

h1
�
t0ðxÞ; h0ðxÞ

� d

dx
t1
�
t0ðxÞ; h0ðxÞ

�
dx

where t1 ¼ t1ðt0; h0Þ, h1 ¼ h1ðt0; h0Þ, are the components of S. This is precisely the

identity we were looking for. r

7. An asymptotic expansion for the successor map and the completion
of the proofs

In this section we discuss the behavior of the map ðt1; h1Þ ¼ Sðt0; h0Þ when the

energy is negative and tends to infinity. The main result is

Proposition 7.1. Assume that pðtÞ is Lipschitz-continuous and 2p-periodic. Then

t1 ¼ t0 þ pffiffi
2

p
jh0j3=2

þO
�

1

jh0j5=2



;

h1 ¼ h0 þO
�

1

jh0j5=2



;

8><
>:

when h0 ! �l, uniformly in t0 a R.

The method of proof will be comparison with the autonomous equation for

Pþ ¼ kpkl and P� ¼ �kpkl. In the notations of Section 3.3 and according to

Lemma 3.4,

tðh0;P�Þa t1 � t0a tðh0;PþÞ:

A repetition of some of the arguments in the proof of Proposition 3.1 leads to

jh1 � h0ja k _ppklUðh0;PþÞtðh0;PþÞ:

The proof of the above result is a direct consequence of these inequalities and the

following expansions.

Lemma 7.2. For any PA 0,

Uðh0;PÞ ¼
1

jh0j
þO

1

jh0j2

 !
; tðh0;PÞ ¼

pffiffiffi
2

p
jh0j3=2

þO
1

jh0j5=2

 !

as h0 ! �l.
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Proof. The first assertion is almost automatic since Uðh0;PÞ can be expressed as

Uðh0;PÞ ¼
2

�h0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � 4P

q :

For the expansion of t we assume P > 0. The case of negative P is similar. The

polynomial 1þ Px2 þ h0x can be factorized as Pða� xÞðb � xÞ with 0 < a ¼
Uðh0;PÞ < b ¼ �h0þ

ffiffiffiffiffiffiffiffiffiffi
h2
0
�4P

p
2P . Then

tðh0;PÞ ¼
ffiffiffiffi
2

P

r ð a
0

ffiffiffi
x

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� xÞðb � xÞ

p dx;

and the change of variables x ¼ av leads to

tðh0;PÞ ¼
ffiffiffiffi
2

P

r
a

ð1
0

ffiffiffi
v

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� vÞðb � avÞ

p dv:

Next we claim that

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
b � av

p ¼ 1ffiffiffi
b

p þO
1

jh0j5=2

 !
; as h0 ! l uniformly in v a ½0; 1�:

Indeed

0a
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

b � av
p � 1ffiffiffi

b
p a

1ffiffiffiffiffiffiffiffiffiffiffi
b � a

p � 1ffiffiffi
b

p ¼ affiffiffiffiffiffiffiffiffiffiffi
b � a

p ffiffiffi
b

p
ð
ffiffiffi
b

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
b � a

p
Þ

and the claim follows because bjh0j�1 ! 1
P
and ajh0j ! 1 as h0 ! �l. From

ab ¼ 1
P
we observe that

affiffiffi
b

p ¼
ffiffiffiffi
P

p
a3=2 ¼

ffiffiffiffi
P

p 1

jh0j
þO

1

jh0j2

 !0
@

1
A
3=2

¼
ffiffiffiffi
P

p

jh0j3=2
þO

1

jh0j5=2

 !
:

Going back to the integral

tðh0;PÞ ¼
ffiffiffiffi
2

P

r
affiffiffi
b

p ð1
0

ffiffiffi
v

pffiffiffiffiffiffiffiffiffiffiffi
1� v

p dvþO
1

jh0j5=2

 !
¼ pffiffiffi

2
p a3=2 þO

1

jh0j5=2

 !
;

and the expansion for t1 follows from the expansion for a ¼ U . r

Proof of Theorems 1.1 and 1.2. The discussions of Section 5 show that it is enough

to prove the existence of two solutions of the system

Sðt0; h0Þ ¼ ðt0 þ 2pN; h0Þ; t0 a ½0; 2p½; ðt0; h0Þ a D
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for each Nb 1. To this end we are going to apply Theorem 4.1 with y ¼ t0,

r ¼ h0, and

W ¼ fðt0; h0Þ a R2 : a < h0 < cðt0Þg

with a < �2kpk1=2l . The constant a is chosen so that t1 � t0 < 2pN whenever

t1 ¼ t1ðt0; h0Þ and h0 ¼ a. This is possible thanks to Proposition 7.1. It remains

to prove that for each t0 a R there exists h�
0 with a < h�

0 < cðt0Þ such that

t1 � t0 > 2pN with t1 ¼ t1ðt0; h�
0 Þ. We shall distinguish two cases depending on

whether cðt0Þ is finite or infinite.
Case i): cðt0Þ < l. We take an increasing sequence fh0ng converging to cðt0Þ

and prove that, for some n,

t1n ¼ t1ðt0; h0nÞ > t0 þ 2pN:

By a contradiction argument assume that t1n � t0a 2pN for all n. Then we

extract a convergent subsequence t1n ! h a ½t0; t0 þ 2pN�. The use of Lemma 3.4

with p1ðtÞ ¼ �kpkl, p2ðtÞ ¼ pðtÞ implies that t1n � t0b tðh0n;�kpklÞ. Passing

to the limit, t0 þ 2pNb hb t0 þ t
�
cðt0Þ;�kpkl

�
> t0. For large n, t0 < ĥh < t1n

with ĥh ¼ t0þh

2 . From here we deduce that the triplet ðĥh; t0; h0nÞ belong to D

for large n. Here D is the set introduced in Lemma 5.3. Since t1 ¼ þl if

h0 ¼ cðt0Þ we deduce that also
�
ĥh; t0;cðt0Þ

�
a D. In consequence�

uðĥh; t0; h0nÞ; _uuðĥh; t0; h0nÞ
�
!
�
u
�
ĥh; t0;cðt0Þ

�
; _uu
�
ĥh; t0;cðt0Þ

��
as n ! l. The solution u

�
t; t0;cðt0Þ

�
has no collisions after t0 and so it is well

defined and positive on the compact interval ½ĥh; t0 þ 2pN þ 1�. The standard

theorem on continuous dependence applied to (1) says that, for large n, also

uðt; t0; h0nÞ is well defined and positive on this interval. This is contradictory with

the assumption t1n ! ha t0 þ 2pN.

Case ii): cðt0Þ ¼ þl. We go back to Section 3.3 and select h�
0 > 0 large

enough so that tðh�
0 ;PÞ > 2pN with P ¼ �kpkl. By comparison t1 � t0b

tðh�
0 ;PÞ > 2pN.
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R. Ortega, Departamento de Matemática Aplicada, Universidad de Granada, 18071 Gran-
ada, Spain

E-mail: rortega@ugr.es

176 R. Ortega

http://www.emis.de/MATH-item?0386.70001
http://www.ams.org/mathscinet-getitem?mr=0690288
http://www.emis.de/MATH-item?0745.34034
http://www.ams.org/mathscinet-getitem?mr=1145561
http://www.emis.de/MATH-item?1143.70005
http://www.ams.org/mathscinet-getitem?mr=2439573
http://www.emis.de/MATH-item?0920.34045
http://www.ams.org/mathscinet-getitem?mr=1625713
http://www.emis.de/MATH-item?0695.34036
http://www.ams.org/mathscinet-getitem?mr=1009991
http://www.emis.de/MATH-item?0616.34033
http://www.ams.org/mathscinet-getitem?mr=866438
http://www.emis.de/MATH-item?1119.37323
http://www.ams.org/mathscinet-getitem?mr=1919783
http://www.emis.de/MATH-item?1132.54026
http://www.ams.org/mathscinet-getitem?mr=2365229
http://www.emis.de/MATH-item?0860.34017
http://www.ams.org/mathscinet-getitem?mr=1373064
http://www.emis.de/MATH-item?1062.34047
http://www.ams.org/mathscinet-getitem?mr=2039912
http://www.emis.de/MATH-item?0202.24401
http://www.ams.org/mathscinet-getitem?mr=0258331
http://www.emis.de/MATH-item?1181.34051
http://www.ams.org/mathscinet-getitem?mr=2548709
http://www.emis.de/MATH-item?0252.35005
http://www.ams.org/mathscinet-getitem?mr=0271508

