Portugal. Math. (N.S.) Vol. 68, Fasc. 2, 2011, 177–183 DOI 10.4171/PM/1886 **Portugaliae Mathematica** © European Mathematical Society

On the endomorphism monoid of a profinite semigroup

Benjamin Steinberg*

(Communicated by Jorge Almeida)

Abstract. Necessary and sufficient conditions are given for the endomorphism monoid of a profinite semigroup to be profinite. A similar result is established for the automorphism group.

Mathematics Subject Classification (2010). Primary 22A15; Secondary 20E18. Keywords. Profinite semigroups, endomorphism monoids, automorphism groups.

1. Introduction

A classical result in profinite group theory says that if G is a profinite group with a fundamental system of neighborhoods of the identity consisting of open characteristic subgroups, then the group $\operatorname{Aut} G$ of continuous automorphisms of G is profinite with respect to the compact-open topology [8]. This applies in particular to finitely generated profinite groups. Hunter proved that the monoid of continuous endomorphisms End S of a finitely generated profinite semigroup S is profinite in the compact-open topology [6]. This result was later rediscovered by Almeida [4], who was unaware of Hunter's result. Almeida was the first to use to good effect that End S is profinite [2], [5], [3], in particular with respect to the study of maximal subgroups of finitely generated free profinite semigroups. In this note I give necessary and sufficient conditions for Aut S and End S to be profinite for a profinite semigroup S. This came out of trying to find an easier proof than Almeida's for the finitely generated case. This led me unawares to exactly Hunter's proof, which I afterwards discovered via a Google search. Like Hunter [6] and Ribes and Zalesskii [8], I give an explicit description of End S and Aut S as inverse limits in the case they are profinite. I also deduce the Hopfian property for S in this case (in [6], [8] this is done only in the finitely generated case). Recall that a topological

^{*}The author was supported in part by NSERC.

semigroup S is *Hopfian* if each surjective continuous endomorphism of S is an automorphism.

2. The main result

My approach, like that of Hunter [6], but unlike that of Almeida [4] and Ribes and Zalesskii [8], relies on the uniform structure on a profinite semigroup and Ascoli's theorem. Recall that a congruence ρ on a profinite semigroup S is called *open* if it is an open subset of $S \times S$. It is easy to see that open congruences are precisely the kernels of continuous surjections from S to finite semigroups [7], Chapter 3. A congruence ρ on S is called *fully invariant* if, for all continuous endomorphisms $f: S \to S$, one has $(x, y) \in \rho$ implies $(f(x), f(y)) \in \rho$. Equivalently, ρ is fully invariant if and only if $\rho \subseteq (f \times f)^{-1}(\rho)$ for all $f \in \text{End } S$. In group theory, it is common to call a subgroup invariant under all automorphisms 'characteristic.' As I do not know of any terminology in vogue for the corresponding notion for congruences, it seems reasonable to define a congruence ρ on S to be *characteristic* if $(x, y) \in \rho$ implies $(f(x), f(y)) \in \rho$ for all continuous automorphisms f of S. Again, this amounts to $\rho \subseteq (f \times f)^{-1}(\rho)$ for all $f \in \text{Aut } S$. Clearly, any fully invariant congruence is characteristic.

Let (X, \mathscr{U}) and (Y, \mathscr{V}) be uniform spaces. Recall that a family \mathscr{F} of functions from X to Y is said to be *uniformly equicontinuous* if, for all entourages $R \in \mathscr{V}$, one has $\bigcap_{f \in \mathscr{F}} (f \times f)^{-1}(R) \in \mathscr{U}$. Of course, a uniformly equicontinuous family consists of uniformly continuous functions. It is clearly enough to have this condition satisfied for all R running over a fundamental system of entourages for the uniformity \mathscr{V} .

Every compact Hausdorff space X has a unique uniformity compatible with its topology, namely the collection of all neighborhoods (not necessarily open) of the diagonal in $X \times X$. The following theorem is a special case of the Ascoli theorem for uniform spaces.

Theorem 1 (Ascoli). Let X, Y be compact Hausdorff spaces equipped with their unique uniform structures and let $\mathscr{C}(X, Y)$ be the space of continuous map from X to Y equipped with the compact-open topology. Then, for a family $\mathscr{F} \subseteq \mathscr{C}(X, Y)$, the following are equivalent:

- (1) \mathcal{F} is compact in the compact-open topology;
- (2) \mathcal{F} is closed and (uniformly) equicontinuous.

In the case of a profinite semigroup S the uniform structure is given by taking the open congruences as a fundamental system of entourages. The multiplication on S is uniformly continuous and all continuous endomorphisms of S are uniformly continuous. The following result gives a sufficient condition for a profinite semigroup to have a fundamental system of entourages consisting of open fully invariant congruences. The *index* of an open congruence ρ on a profinite semigroup S is the cardinality of S/ρ .

Proposition 2. Let *S* be a profinite semigroup admitting only finitely many open congruences of index *n* for each $n \ge 1$. Then *S* has a fundamental system of open fully invariant congruences. This applies in particular if *S* is finitely generated.

Proof. Let \mathscr{F}_n be the set of open congruences on S of index at most n and let $\rho_n = \bigcap \mathscr{F}_n$; it is open because \mathscr{F}_n is finite. Clearly, the family $\{\rho_n \mid n \ge 1\}$ is a fundamental system of entourages for the uniformity. I claim ρ_n is fully invariant. Indeed, let $f \in \text{End } S$ and $\sigma \in \mathscr{F}_n$. Then if $p : S \to S/\sigma$ is the quotient map, one has $(f \times f)^{-1}(\sigma) = \ker pf$ and hence is of index at most n. Thus

$$(f \times f)^{-1}(\rho_n) = (f \times f)^{-1} \left(\bigcap \mathscr{F}_n \right) = \bigcap_{\sigma \in \mathscr{F}_n} (f \times f)^{-1}(\sigma) \supseteq \bigcap \mathscr{F}_n = \rho_n$$

as required.

To prove the final statement, suppose that S has a finite generating set X. Let T_{n+1} be the monoid of all maps on an (n + 1)-element set. As T_{n+1} contains an isomorphic copy of each semigroup of order n, it follows that every open congruence of index n on S can be realized as the kernel of a continuous homomorphism from S to T_{n+1} . Such a homomorphism is determined by its restriction to X. Since there are only finitely many maps from X to T_{n+1} , it follows that S has only finitely many open congruences of index n.

Remark 3. There are non-finitely generated profinite groups that satisfy the hypothesis of Proposition 2. For example, one can take the direct product of all finite simple groups (one copy per isomorphism class); see [8], Exercise 4.4.5.

It is well known that, for any locally compact Hausdorff space X, the compactopen topology turns $\mathscr{C}(X, X)$ into a topological monoid with respect to the operation of composition. The main result of this note is:

Theorem 4. Let S be a profinite semigroup. Then End S (respectively, Aut S) is compact in the compact-open topology if and only if S admits a fundamental system of open fully invariant (respectively, characteristic) congruences. Moreover, if End S (respectively, Aut S) is compact, then it is profinite and the compact-open topology coincides with the topology of pointwise convergence.

Proof. I just handle the case of End S as the corresponding result for Aut S is obtained by simply replacing the words 'fully invariant' by 'characteristic' and 'endomorphism' by 'automorphism'.

First observe that End S is closed in $\mathscr{C}(S, S)$. Indeed, suppose that $f: S \to S$ is a continuous map that is not a homomorphism. Then there are elements $s, t \in S$ such that $f(st) \neq f(s)f(t)$. Choose disjoint open neighborhoods U, V of f(st) and f(s)f(t) respectively. By continuity of multiplication one can find open neighborhoods W, W' of f(s) and f(t) so that $W \cdot W' \subseteq V$. Then let N be the set of all continuous functions $g: S \to S$ such that $g(st) \in U, g(s) \in W$ and $g(t) \in W'$. Then $f \in N$ and N is open in the compact-open topology. Clearly, if $g \in N$, then $g(s)g(t) \in W \cdot W' \subseteq V$ and $g(st) \in U$, whence $g(st) \neq g(s)g(t)$. Thus End S is closed.

Assume that End S is compact. By Ascoli's theorem, it is uniformly equicontinuous. Let ρ be an open congruence on S. Then uniform equicontinuity implies that

$$\sigma = \bigcap_{f \in \operatorname{End} S} (f \times f)^{-1}(\rho)$$

is an entourage of the uniformity on S. Evidentally, σ is a congruence. It must contain an open congruence by definition of the uniformity on S and so σ is an open congruence (the open congruences being a filter in the lattice of congruences on S). Since the identity belongs to End S, trivially $\sigma \subseteq \rho$. It remains to observe that σ is fully invariant. Indeed, if $g \in \text{End } S$, then

$$(g \times g)^{-1}(\sigma) = \bigcap_{f \in \operatorname{End} S} (fg \times fg)^{-1}(\rho) \supseteq \bigcap_{h \in \operatorname{End} S} (h \times h)^{-1}(\rho) = \sigma$$

establishing that σ is fully invariant. Thus S has a fundamental system of open fully invariant congruences.

Conversely, suppose that S has a fundamental system of open fully invariant congruences. Uniform equicontinuity follows because if ρ is an open fully invariant congruence, then for any $f \in \text{End } S$, one has $(f \times f)^{-1}(\rho) \supseteq \rho$ and hence $\bigcap_{f \in \text{End } S} (f \times f)^{-1}(\rho) \supseteq \rho$. Since the set of entourages is a filter, it follows that $\bigcap_{f \in \text{End } S} (f \times f)^{-1}(\rho)$ is an entourage. Because the open fully invariant congruences form a fundamental system of entourages for the uniformity on S, this shows that End S is uniformly equicontinuous.

Compactness of End S is now direct from Ascoli's theorem. Let us equip S^S with the topology of pointwise convergence. Since the compact-open topology is finer than the topology of pointwise convergence, the natural inclusion $i: \text{End } S \to S^S$ is continuous. As End S and S^S are compact Hausdorff, it follows that i is a topological embedding and hence the compact-open topology on End S coincides with the topology of pointwise convergence. Also End S is totally disconnected being a subspace of S^S . Thus End S is profinite.

In light of Proposition 2, Hunter's result for finitely generated profinite semigroups (and the corresponding well-known result for automorphism groups of finitely generated profinite groups) is immediate.

Corollary 5. If S is a finitely generated profinite semigroup, then End S is a profinite monoid and Aut S is a profinite group in the compact-open topology, which coincides with the topology of pointwise convergence.

Theorem 4 also implies the converse of [8], Proposition 4.4.3: a profinite group G has profinite automorphism group if and only if it has a fundamental system of neighborhoods of the identity consisting of open characteristic subgroups.

Remark 6. If S is a profinite semigroup generated by a finite set X, then we have the composition of continuous maps $\operatorname{End} S \to S^S \to S^X$ where the last map is induced by restriction. Moreover, this composition is injective. Since $\operatorname{End} S$ is compact, it follows that $\operatorname{End} S$ is homeomorphic to the closed space of all maps $X \to S$ that extend to an endomorphism of S equipped with the topology of pointwise convergence. In the case S is a relatively free profinite semigroup on X, we in fact have $\operatorname{End} S$ is homeomorphic to S^X . Under this assumption, if T is the abstract subsemigroup generated by X (which is relatively free in some variety of semigroups), then it easily follows that T^X is dense in S^X and so $\operatorname{End} T$ is dense in $\operatorname{End} S$.

A corollary is the well-known fact that finitely generated profinite semigroups are Hopfian. In fact, there is the following stronger result.

Corollary 7. Let S be a profinite semigroup admitting a fundamental system of open fully invariant congruences, e.g., if S is finitely generated. Then S is Hopfian.

Proof. Suppose that $f: S \to S$ is a surjective continuous endomorphism that is not an automorphism and let f(x) = f(y) with $x \neq y \in S$. Then there is an open fully invariant congruence ρ so that $(x, y) \notin \rho$. Since ρ is fully invariant, there is an induced endomorphism $f': S/\rho \to S/\rho$, which evidentally is surjective. Thus f' is an automorphism by finiteness. But if [x], [y] are the classes of x, y respectively, then f'([x]) = f'([y]) but $[x] \neq [y]$. This contradiction shows that S is Hopfian.

Remark 8. In fact a more general result is true. Let X be a compact Hausdorff space and let M be a compact monoid of continuous maps on X with respect to the compact-open topology. Then every surjective element of M is invertible cf. [1]. The proof goes like this. First one shows that the surjective elements of M form a closed subsemigroup S (its complement is the union over all points $x \in X$

of the open sets $\mathcal{N}(X, X \setminus \{x\})$ of maps f with $f(X) \subseteq X \setminus \{x\}$). Clearly, the identity is the only idempotent of S. But a compact Hausdorff monoid with a unique idempotent is a compact group so every element of S is invertible. Consequently, any compact Hausdorff semigroup whose endomorphism monoid is compact must be Hopfian.

Not all profinite semigroups have a fundamental system of open fully invariant congruences. For instance, if S is any infinite profinite space equipped with the left zero multiplication, then S is a profinite semigroup, every continuous map on S is an endomorphism and every equivalence relation on S is a congruence. We claim that the only open congruence on S which is fully invariant is the universal equivalence relation. Indeed, if ρ is an open equivalence relation that is not universal, then since S is infinite, some class of ρ contains two distinct elements x, y. Because S is a profinite space, there is continuous map $f: S \to \{0, 1\}$ with $f(x) \neq f(y)$. As ρ contains at least two classes, there is a map $g: \{0, 1\} \to S$ with g(0) and g(1) in distinct ρ -classes. The composition $gf: S \to S$ is a continuous endomorpism of S with $(gf(x), gf(y)) \notin \rho$. We conclude ρ is not fully invariant.

As another example, let *F* be a free profinite group on a countable set of generators $X = \{x_1, x_2, ...\}$ converging to 1 [8]. Let $\sigma : F \to F$ be the continuous endomorphism induced by the shift $x_1 \mapsto 1$ and $x_i \mapsto x_{i-1}$ for $i \ge 2$. Then σ is surjective but not injective and so End *F* is not profinite.

As is the case for automorphism groups of profinite groups [8], Proposition 4.4.3, End S can be explicitly realized as a projective limit of finite monoids given a fundamental system of open fully invariant congruences on S. For finitely generated profinite semigroups, this was observed by Hunter [6].

Theorem 9. Let *S* be a profinite semigroup and suppose that \mathscr{F} is a fundamental system of entourages for *S* consisting of open fully invariant congruences. If $\rho \in \mathscr{F}$, then there is a natural continuous projection $r_{\rho} : \operatorname{End} S \to \operatorname{End} S/\rho$. Let $\hat{\rho}$ be the corresponding open congruence on End *S*. Let $\hat{\mathscr{F}} = {\hat{\rho} | \rho \in \mathscr{F}}$. Then

$$\operatorname{End} S \cong \lim_{\mathfrak{F}} \operatorname{End} S / \hat{\rho}.$$
⁽¹⁾

The analogous result holds for $\operatorname{Aut} S$ if there exists a fundamental system of open characteristic congruences for S.

Proof. First we must show that r_{ρ} is continuous so that $\hat{\rho}$ is indeed an open congruence. Indeed, if $f \in \text{End } S$, then $r_{\rho}^{-1}r_{\rho}(f)$ consists of those endomorphisms $g \in \text{End } S$ that take each block B of ρ into the block of ρ containing f(B). But since each block of ρ is compact and open, and there are only finitely many blocks, it follows that $r_{\rho}^{-1}r_{\rho}(f)$ is an open set in the compact-open topology on End S. Thus $\hat{\rho}$ is an open congruence.

Since the open fully invariant congruences on S are closed under intersection, the set $\hat{\mathscr{F}}$ is closed under intersection and so it makes sense to form the projective limit in (1). Since the canonical homomorphism from End S to the inverse limit on the right hand side of (1) is surjective, to prove that it is an isomorphism it suffices to show that $\hat{\mathscr{F}}$ separates points. If f, g are distinct endomorphisms of S, we can find $s \in S$ so that $f(s) \neq g(s)$. Then since \mathscr{F} is a fundamental system of entourages, there exists $\rho \in \mathscr{F}$ such that $(f(s), g(s)) \notin \rho$. It follows that $r_{\rho}(f) \neq r_{\rho}(g)$.

Acknowledgments. I would like to thank Luis Ribes for some helpful remarks.

References

- E. Akin, J. Auslander, and E. Glasner, The topological dynamics of Ellis actions. *Mem. Amer. Math. Soc.* 195 (2008), no 913. Zbl 1152.54026 MR 2437846
- J. Almeida, Dynamics of implicit operations and tameness of pseudovarieties of groups. *Trans. Amer. Math. Soc.* 354 (2002), 387–411. Zbl 0988.20014 MR 1859280
- Z. Almeĭda, Profinite groups associated with weakly primitive substitutions. Fundam. Prikl. Mat. 11 (2005), 13–48; English transl. J. Math. Sci. 144 (2007), 3881–3903. Zbl 1110.20022 MR 2176678
- [4] J. Almeida, Profinite semigroups and applications. In *Structural theory of automata, semigroups, and universal algebra*, NATO Sci. Ser. II Math. Phys. Chem. 207, Springer, Dordrecht 2005, 1–45. Zbl 1109.20050 MR 2210124
- [5] J. Almeida and M. V. Volkov, Subword complexity of profinite words and subgroups of free profinite semigroups. *Internat. J. Algebra Comput.* 16 (2006), 221–258. Zbl 1186.20040 MR 2228511
- [6] R. P. Hunter, Some remarks on subgroups defined by the Bohr compactification. Semigroup Forum 26 (1983), 125–137. Zbl 0503.22001 MR 685122
- [7] J. Rhodes and B. Steinberg, *The q-theory of finite semigroups*. Springer Monogr. Math., Springer, New York 2009. Zbl 1186.20043 MR 2472427
- [8] L. Ribes and P. Zalesskii, *Profinite groups*. 2nd ed., Ergeb. Math. Grenzgeb. (3) 40, Springer-Verlag, Berlin 2010. Zbl 1197.20022 MR 2599132

Received April 5, 2010; revised October 24, 2010

B. Steinberg, School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

E-mail: bsteinbg@math.carleton.ca