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Abstract. The fundamental problem of distance geometry involves the characterization and
study of sets of points based only on given values of some or all of the distances between
pairs of points. This problem has a wide range of applications in various areas of mathe-
matics, physics, chemistry, and engineering. Euclidean distance matrices play an important
role in this context by providing elegant and powerful convex relaxations. They play an
important role in problems such as graph realization and graph rigidity. Moreover, by
relaxing the embedding dimension restriction, these matrices can be used to approximate
the hard problems e‰ciently using semidefinite programming. Throughout this survey we
emphasize the interplay between these concepts and problems. In addition, we illustrate
this interplay in the context of the sensor network localization problem.
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1. Introduction

The fundamental problem of distance geometry (FPDG) involves the characteriza-

tion and study of sets of points, p1; . . . ; pn a Rr, based only on given values for

some or all of the distances between pairs of points. More precisely, given only

(partial, approximate) distance information dijQkpi � pjk2 for all ij a E1, for

some given subset E of pairs of points, we need to determine whether we can real-

ize such a set of points in a given dimension and also find these points e‰ciently.

This problem has a wide range of applications, in various areas of mathematics,

*The authors are grateful for the support of the Natural Sciences Engineering Research Council of
Canada, MITACS, the AFOSR, and the Alexander von Humboldt Foundation.

1We use the bar to emphasize that these distances are not necessarily exact.



physics, chemistry, astronomy, engineering, music, etc. Surprisingly, there are

many classes of FPDG problems where this hard inverse problem with incomplete

data can be solved e‰ciently.

Euclidean Distance Matrices (EDMs) play an important role in this context

since they provide an elegant and strong relaxation for FPDG. The entries of an

EDM consist of squared Euclidean distances between points: Dij ¼ kpi � pjk2,
i; j ¼ 1; . . . ; n. Using the squared rather than ordinary distances, and further

removing the constraint on the embedding dimension r, means that completing a

partial EDM is a convex problem. Moreover, a global solution for this relaxed

problem can be found e‰ciently using semidefinite programming (SDP). This is

related to problems in the area of compressed sensing, i.e., the restriction on the

embedding dimension is equivalent to a rank restriction on the semidefinite

matrix using the SDP formulation. (See e.g., [19], [88] for details on compressed

sensing.)

A special instance of FPDG is the Sensor Network Localization (SNL)

problem. SNL recently emerged as an important research topic. For SNL, the n

points are sensors that are part of a wireless ad hoc sensor network. Each sensor

has some wireless communication and signal processing capability. In particular,

m of these sensors are anchors (or beacons) whose positions are known, and the

distances between two sensors are (approximately) known if and only if the

sensors are within a given radio range R.

In this survey we concentrate on the SNL problem and its connections with

EDM, graph realization (GRL), graph rigidity (GRD), and SDP. Our goal is

to show that these NP-hard problems can be handled elegantly within the EDM

framework, and that SDP can be used to e‰ciently find accurate solutions for

many classes of these problems. In particular, working within the EDM frame-

work provides strong solution techniques for SNL.

2. Preliminaries, notation

Let Mkl denote the space of k � l real matrices, and let Mk ¼ Mkk. For

M a Mn, we let diagM denote the vector in Rn formed from the diagonal of M.

Then, for any vector v a Rn, Diag v ¼ diag� v is the adjoint linear transformation

consisting of the diagonal matrix with diagonal formed from the vector v. We let

vecX denote the vector formed from the columns of X .

We work with points (real vectors) p1; . . . ; pn a Rr, where r is the embedding

dimension of the problem. We let PT ¼ ½ p1; . . . ; pn � a Mrn denote the matrix

with columns formed from the set of points. For SNL, P ¼
�
A
X

�
, where the rows

pT
i ¼ aT

i , i ¼ 1; . . . ;m, of A a Mmr are the positions of the m anchor nodes, and

the rows xT
i ¼ pT

mþi, i ¼ 1; . . . ; n�m, of X a Mðn�mÞr are the positions of the re-

maining n�m sensor nodes. We let G ¼ ðV ;EÞ denote the simple graph on the
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vertices 1; 2; . . . ; n with edge set E. Typically, for FPDG the distances kxi � xjk,
ij a E, are the ones that are known.

The vector space of real symmetric n� n matrices is denoted Sn, and is

equipped with the trace inner product, 3A;B4 ¼ traceAB, and the correspond-

ing Frobenius norm, denoted kAkF . More generally, 3A;B4 ¼ traceATB denotes

the inner product of two compatible, general, real matrices A, B, and kAkF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceATA

p
is the Frobenius norm. We let Sn

þ and Sn
þþ denote the cone of pos-

itive semidefinite and positive definite matrices, respectively. In addition, A � B

and A � B denote the Löwner partial order, A� B a Sn
þ and A� B a Sn

þþ,
respectively. Moreover, Ab 0 denotes A nonnegative elementwise. We let En

(E when the dimension is clear) denote the cone of Euclidean distance matrices

D a Sn, i.e., the elements of a given D a En are Dij ¼ kpi � pjk2, for some fixed

set of points p1; . . . ; pn. We let ei denote the i-th unit vector, e denote the vector of

ones, both of appropriate dimension, and, by abuse of notation2, E ¼ eeT ; RðLÞ,
NðLÞ denotes the range space and nullspace of the linear transformation L,

respectively; L� denotes the adjoint of L, i.e., 3LðxÞ; y4 ¼ 3x;L�ðyÞ4 for all x,

y; Ly, denotes the Moore–Penrose generalized inverse of L; and A � B ¼ ðAijBijÞ
denotes the Hadamard (elementwise) product of two matrices.

We follow the notation in [70], [73]: for Y a Sn and aJ 1 : n, we let Y ½a� de-
note the corresponding principal submatrix formed from the rows and columns

with indices a. If, in addition, jaj ¼ k and Y a Sk is given, then we define

Snða;YÞ :¼ fY a Sn : Y ½a� ¼ Yg; Sn
þða;YÞ :¼ fY a Sn

þ : Y ½a� ¼ Yg;

i.e., the subset of matrices Y a Sn (Y a Sn
þ ) with principal submatrix Y ½a� fixed

to Y . Similar notation, Enða;DÞ, holds for subsets of En.

The centered and hollow subspaces of Sn (and the o¤Diag linear operator) are

defined by

SC :¼ fB a Sn : Be ¼ 0g ðzero row sumsÞ;
SH :¼ fD a Sn : diagD ¼ 0g ¼ Rðo¤DiagÞ:

ð2:1Þ

The set KHRn is a convex cone if RþðKÞJK , K þ KJK . coneðSÞ denotes the
smallest convex cone containing S, i.e., the generated convex cone of S. A set

F JK is a face of the cone K , denoted F tK , if

x; y a K ;
1

2
ðxþ yÞ a F

� �
¼) ðconefx; ygJF Þ:

2We let E refer to the edge set of the graph G and to the matrix of ones. The meaning is clear from the
context.

55EDMs, SDP and SNL



We write F pK to denote F tK , F AK . If f0gAF pK , then F is a proper

face of K . For SJK , we let faceðSÞ denote the smallest face of K that contains

S. For example, let L be some fixed subspace. Then the set of all positive semi-

definite matrices whose null space contains L is a face of the positive semidefinite

cone.

For a set SHRn, let S � :¼ ff a Rn : 3f;S4JRþg denote the dual cone of S.

That Sn
þ ¼ Sn

þ
� is well known, i.e., the SDP cone is self-dual. Due to the impor-

tance of the SDP cone, we include the following interesting geometric result. This

result emphasizes the di¤erence between Sn
þ and a polyhedral cone: it illustrates

the nice property that the first sum using F? in (2.2) is always closed for any

face; but the sum in (2.3) using span is never closed. The lack of closure leads to

problems in duality. Here F c ¼ Sn
þ BF? denotes the conjugate face of F .

Lemma 2.1 ([105], [87]). Suppose that F is a proper face of Sn
þ , i.e.,

f0gAF pSn
þ . Then

Fþ ¼ Sn
þ þ F? ¼ Sn

þ þ spanF c; ð2:2Þ
Sn

þ þ spanF c is not closed: ð2:3Þ

3. FPDG and EDM

Distance geometry involves the characterization and study of sets of points based

only on given values of some or all of the distances between pairs of points. The

origins of the algebra for distance geometry can be traced back to 1896 and the

work of Grassmann [53] and continued in the modern era in [51], [31], [39] among

others. One of the methods used to study FPDG is to view the problem using the

squared distances, i.e., using EDMs. This allows the application of powerful tools

from convex analysis and linear algebra, and specifically from SDP. This is the

approach we emphasize in this survey.

Theoretical properties of EDMs can be found in [9], [41], [17], [52], [57], [66],

[77], [93]. This includes characterizations as well as graph theoretic conditions

(such as chordality) for the existence of completions of partial EDMs, i.e., for the

EDM completion problem (EDMC). More information can be found in the

survey article [77], and more recently in the book [33]. A discussion on the di‰-

culty of finding e‰cient algorithms for EDMC appears in [98]. There are many

algorithms that find approximate completions. For example [98], [97], [96] present

results on finding EDM completions based on spectral decompositions. The com-

putationally hard part is fixing the rank. Work on finding the closest EDM to

a given symmetric matrix appears in [48], [108], [4]. (The harder global model

without squared distances but with intervals for the distances, is used in [80], [81],

[109].)
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We now present FPDG using the squared distances between the points, the

EDM model. A matrix D ¼ ðDijÞ a Sn with nonnegative elements and zero diag-

onal is called a pre-distance matrix or a dissimilarity matrix. In addition, if there

exist r and points p1; p2; . . . ; pn a Rr such that

Dij ¼ kpi � pjk22 ; i; j ¼ 1; 2; . . . ; n; ð3:4Þ

then D is called a Euclidean distance matrix, denoted EDM. The set of EDM

matrices forms a convex cone in Sn, denoted En. This cone is closed, pointed

(EnB�En ¼ f0g), but has empty interior. Given D a En, then the smallest value

of r such that points pi can be found satisfying (3.4) is called the embedding dimen-

sion of D.

Suppose that we are given a subset of the elements of a pre-distance matrix D,

i.e., we are given a partial EDM, D. Then the EDM completion problem (EDMC)

consists in finding the missing elements of D to complete the EDM, and/or deter-

mine that this is not possible. Equivalently, this means that we have found a set

of points for (3.4). Alternatively, suppose that we are given an approximate pre-

distance (or partial distance) matrix D and a symmetric matrix of nonnegative

weights W . Then the approximate (nearest) EDM completion problem can be

modelled as [65], [2]

minkW � ðD�DÞk such that D a E: ð3:5Þ

The most common norms for the objective function are the Frobenius and l1
norms. The magnitude of the weights in W typically come from consideration of

the magnitudes of the known distances and any knowledge of the error/noise [15]

Wij :¼
1ffiffiffiffiffi
Dij

p if the ij-distance is approximately
ffiffiffiffiffiffi
Dij

q
;

0 otherwise:

8<
: ð3:6Þ

3.1. Distance geometry, EDM , and SDP. Let PT ¼ ½p1 p2 � � � pn� a Mrn be

as defined above in Section 2, where pj, j ¼ 1; . . . ; n, are the points used in (3.4).

We assume that P is full column rank r. Let B ¼ PPT . Then B � 0 is also of rank

r. Now, define the linear operators K and De on Sn by

KðBÞ :¼ DeðBÞ � 2B

:¼ diagBeT þ e diagBT � 2B

¼ ðpT
i pi þ pT

j pj � 2pT
i pjÞ

n
i; j¼1

¼ ðkpi � pjk22Þ
n
i; j¼1

¼ D: ð3:7Þ
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This illustrates the relationship between pj, P, B, D, i.e., a mapping between En,

Sn
þ . Now let J :¼ I � 1

n
eeT denote the orthogonal projection onto the subspace

feg?; and, define the linear operator

TðDÞ :¼ � 1

2
J o¤DiagðDÞJ; ð3:8Þ

where o¤DiagðDÞ replaces the diagonal of D with zeros; see (2.1). The linear

operators K, T are one-to-one and onto between the centered and hollow sub-

spaces of Sn. In the classical literature, the linear operator T is only defined on

the subspace SH . We extend it to all of Sn with the addition of the operator (pro-

jection) o¤Diag. This means that we now have a simple explicit expression for

the Moore–Penrose generalized inverse Ky ¼ T. See (2.1) and Proposition 3.2

below.

From the definition of the positive semidefinite matrix B, we see that the inner

products in the elements Bkl can be used to form the squared distances Dij in (3.4).

Therefore, the linear operators K, T map between the cones Sn
þ , E

n. The follow-

ing linear transformation L provides an alternative to K.

Lemma 3.1 ([5]). Let X a Sn�1 and partition

LðXÞ :¼ 0 diagX T

diagX DeðXÞ � 2X

� �
¼ 0 dT

d D

� �
:¼ D: ð3:9Þ

Then En ¼ LðSn�1
þ Þ and

L�ðDÞ ¼ 2fDiagðdÞ þDiagðDeÞ �Dg; LyðDÞ ¼ 1

2
ðdeT þ ed T �DÞ:

Following are several relationships for K, T acting on Sn. In particular, the

adjoint and generalized inverse of K have explicit, easy to use, expressions.

Proposition 3.2 ([5]). The operators K, T satisfy

KðSn
þÞ ¼ EnBSH ¼ En; TðEnÞ ¼ Sn

þ BSC : ð3:10Þ

The adjoint and generalized inverse of K are, respectively,

K�ðDÞ ¼ 2
�
DiagðDeÞ �D

	
; Ky ¼ T: ð3:11Þ

Moreover,
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RðKÞ ¼ SH ; NðKÞ ¼ RðDeÞ ð3:12Þ
RðK�Þ ¼ RðTÞ ¼ SC ; NðK�Þ ¼ NðTÞ ¼ DiagðRnÞ ð3:13Þ

Sn ¼ SH aDiagðRnÞ ¼ SC aRðDeÞ: ð3:14Þ

3.1.1. Characterizations of the EDM cone and facial reduction. It is well

known that a nonnegative, hollow matrix, 0aD a SH , is a EDM if and only

if D is negative semidefinite on feg?, the orthogonal complement of e; see [93],

[52], [57], [95]. We now collect this with other characterizations [2], [34]. First,

define the n� n orthogonal matrix Q :¼
h

1ffiffi
n

p e; jV
i
, QTQ ¼ I , i.e., VTe ¼ 0 and

V TV ¼ I . Then the projection J ¼ I � eeT

n
¼ VV T . Now define the composite

linear transformation

KV ðBV Þ :¼ KðVBVV
TÞ: ð3:15Þ

The adjoint of KV is

K�
V ðDÞ ¼ VTK�ðDÞV : ð3:16Þ

Let

TV ðDÞ :¼ VTTðDÞV ¼ � 1

2
VTDV : ð3:17Þ

Lemma 3.3 ([2]). KV ðSn�1Þ ¼ SH, TV ðSHÞ ¼ Sn�1, and KV and TV are in-

verses of each other on these two spaces.

Remark 3.4. To obtain a one-to-one mapping between D a En and B a Sn
þ , one

usually adds the centering constraint Be ¼ 0. However, this means that B is re-

stricted to a face of Sn
þ and is singular. Therefore, the Slater constraint qualifica-

tion (strict feasibility) fails for a SDP formulation that uses K. Lemma 3.3 shows

that we can reduce the problem by projecting onto this face, i.e., we facially reduce

the problem. The mapping KV reduces the dimension of the unknown semidefin-

ite matrix and allows for a one-to-one mapping that also has strictly feasible

points, i.e., there exists B̂B a Sn�1
þþ such that KV ðB̂BÞ ¼ D̂D a En and TV ðD̂DÞ ¼ B̂B.

This is essential for interior-point methods and for the stability of numerical

methods. (See Section 3.2 below.)

This is a first step for facial reduction. We will see below, Section 5.2.3, that

we can continue further to reduce the size of the problem and even solve the

problem.

We now present several characterizations of En. These are used to derive

relaxations and algorithms.
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Theorem 3.5. The following characterizations of D a En hold.

(1) D a SH BMn
þB fD a Sn : vTe ¼ 0 ) vTDva 0g.

(2) D ¼ KðBÞ, for some B � 0 with Be ¼ 0, B a Sn.

(3) D ¼ KV ðBV Þ, for some BV a Sn�1
þ .

(4) D ¼ LðBÞ :¼ 0 ðdiagBÞT
diagB DeðBÞ�2B

h i
for some B a Sn�1

þ .

(5) D ¼ 0 ðdiagBÞTþðsBeT�2xT
r Þ

diagBþðsBe�2xrÞ DeðBÞ�2B

h i
for some B a Sn�1

þ where sB :¼ eTBe,

xr :¼ Be.

(6) En ¼ KðSn
þÞ ¼ KV ðSn�1

þ Þ, TV ðEnÞ ¼ Sn�1
þ .

(7) En ¼ SH B ðS?
C �Sn

þÞ ¼ SH B
�
RðDeÞ �Sn

þ
	
.

Proof. (1) Item 1 is the classical characterization of En. Proofs are given in [93],

[52], [57], [95]. The result also follows from (3.10) and the fact that T ¼ Ky.

(2) The linear transformation K is the standard transformation used to map

between En and Sn. Item 2 follows from the definition of K given in (3.7).

(3) Item 3 is proved in [2]. Also, it follows from the definition of V and Item 2.

(4) Item 4 is given in [3], [5].

(5) Item 5 is proved in [5]. It also follows from Item 4 since

K
y
V

0 ðsBeT � 2xT
r Þ

ðsBe� 2xrÞ 0

� �� �
¼ 0:

(6) Item 6 is proved in [2] and is also a summary of previous items.

(7) Item 7 is proved in [34]. We include a self-contained proof that uses our tools

developed above. First we note that coneðEÞpSn
þ and fEg? ¼ SC . From

Lemma 2.1 and Proposition 3.2, we have that

ðSC BSnÞ� ¼ S�
C þSn ¼ RðDeÞ þSn:

Now

En ¼ �ðSC BSn
þÞ

�BSH ; by Item 1;

¼ ðS?
C �Sn

þÞBSH

¼
�
RðDeÞ �Sn

þ
	
BSH ; by Proposition 3:2: r

We have emphasized several times that we are using squared distances. The

advantages are that we get a convex relaxation if we use EDM and relax the

rank constraint. A distance geometry problem is typically specified by the dis-
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tances
ffiffiffiffiffiffi
Dij

p
between nodes i; j a V , for edges ij a E. The solution is the set of

points p1; . . . ; pn a Rr that satisfy

kpi � pjk2 ¼ Dij for all ij a E:

In practice, the distances are only known approximately. For example, upper and

lower bounds may be given

Dl
ij a kpi � pjkaDu

ij for all ij a E:

See also [79], [81] where the unsquared distances are used. If the rank constraint is

not relaxed, then it is well known that the FPDG is NP-hard as it is equivalent to

the set partition problem [46].

3.2. Sdp relaxation of the EDMC problem. Given a partial or approximate

EDM D, we can find the nearest EDM in some norm using (3.5). However, if

the embedding dimension is fixed, then this is an NP-hard problem in general;

see e.g., [61] for complexity issues related to EDMC. This formulation can be

relaxed using the characterizations in Theorem 3.5 and not restricting the rank of

the optimum matrix Y . We replace the unknown EDM D using one of the equi-

valent representations. For example,

min


W �

�
D�KðYÞ

	

2
F

such that Y a Sn
þ ; ð3:18Þ

where we have chosen the Frobenius norm in the objective function. Since

intEk ¼ j and K maps one-to-one between Ek and the face Sk
þ BSC pSk

þ ,
this problem is degenerate, i.e., the optimal set contains the unbounded set

Y � þNðKÞ, for any optimal solution Y �. This means that the Slater constraint

qualification fails for the dual problem. The following smaller dimensional and

more stable problem is derived in [2]. Additional equality or upper and lower

bound constraints (in Du, and Dl , respectively) can be added using additional

weight matrices WE , WUB and WLB, respectively:

min


W �

�
D�KV ðYÞ

	

2
F

such that

WLB �Dl
a

WE �KV ðYÞ ¼ WE �D;

WLB �KV ðYÞ;
WUB �KV ðYÞaWUB �Du;

Y a Sk�1
þ :

8>>>>><
>>>>>:

ð3:19Þ

Here KV is defined in (3.15), and BaC denotes C � Bb 0, elementwise. Though

we have a convex relaxation of EDMC, the approximation is generally poor if
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the optimal solution has a large rank, see e.g. the estimates in [2], Lemma 2.

Reducing the rank is an NP-hard problem and related to compressed sensing

[88], [19].

In Section 5.2.3 we derive recent SDP relaxations of SNL using this approach

and show how to easily obtain low rank solutions.

3.3. Applications of FPDG. The FPDG and EDMs have a seemingly unlimited

number of applications. In this section we present a few of these. It is not our

objective here to present an exhaustive list. Rather, we want to demonstrate to

the reader the striking variety of interesting applications.

A well-known application is in molecular conformation problems from biology

and chemistry. A specific problem of interest is that of determining the structure

of a protein given a (partial or complete) set of approximate pairwise distances

between the atoms in the protein. Understanding the structure of a protein is

key because the structure of a protein specifies its function, and hence its chemical

and biological properties.

Distances between atoms in a protein can be approximated theoretically using

potential energy minimization, or experimentally using X-ray crystallography or

Nuclear Magnetic Resonance (NMR) spectroscopy. The FPDG arises via the

NMR approach to the problem.

NMR spectroscopy is based on the principle that the nucleus of a hydrogen

atom has two spin states. There is a fixed energy separation between the two

states, and the spin flips when a particular frequency is attained. If two atoms

are su‰ciently close, then their spins interact and the frequency at which the spin

flip occurs shifts. This causes the peaks in each atom’s spectrum to shift as well.

Because the intensity of this e¤ect depends on the distance between the two atoms,

the NMR analysis is able to estimate the distance between the two atoms. Thus,

the outcome of NMR is a set of experimentally estimated distances between the

atoms in a molecule. Given such a set of distances, the problem of interest is to

deduce the three-dimensional structure of the molecule.

However, the NMR data is inexact and sparse. One of the most important

problems in computational biology is the determination of the protein given only

the partial inexact EDM. This problem is also called the molecular distance

geometry problem. If the distances between all pairs of atoms in a molecule

are known precisely, then the unique corresponding EDM D is known. Hence

a unique molecular structure can be determined from the points in the rows of

the matrix P a Mnr found using the full rank factorization B ¼ KyðDÞ ¼ PPT ,

see Theorem 3.5. However, if only a subset of the distances is known and/or

the known distances have experimental errors, then the distances may be incon-

sistent; and even if they are consistent, the three-dimensional structure may

not be unique. The early work in this area is presented in the seminal book of
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Crippen and Havel [31]. There has since been huge progress in this area, see [85],

[30], [60], [2], [107], [56] and the references therein.

A second application of EDMs we highlight is in the fields of anatomy and

anthropology. This application is due to the use of so-called landmark data to

analyze biological forms, in particular to study the morphological di¤erences in

the faces and heads of humans. First, one defines a set of landmarks on the

biological structure; for example, the paper [42] uses 16 standardized soft-tissue

facial landmarks that include the pronasale (the nasal apex, or ‘‘tip of the nose’’)

and the soft-tissue pogonion (the most prominent point on the chin). Second, one

obtains coordinates for each of these landmarks on each subject. Of course, what

is really of interest is the relative position of each of these landmarks on each sub-

ject, so we need a representation that is invariant under translation, rotation, and

reflection. The EDM representation of this data is ideal for this purpose. Finally,

the researchers define various measures to compare two biological structures based

on these landmarks. This allows them to quantify phenomena such as the changes

in facial geometry due to growth [18], or the normal levels of facial asymmetry in

humans [42].

Another application of EDMs is in similarity search, a common problem in the

areas of databases and expert systems. The problem of similarity search consists

of finding the data objects that are most similar to a given query object. This

problem is of fundamental importance in applications such as data mining and

geographical information systems (GIS). The objective is to carry out similarity

search in an automatic manner, i.e., without manual intervention.

An EDM-based approach to similarity search was proposed recently in [32].

The gist of this approach is to define a similarity measure between objects. First,

each object is represented as a point in a high-dimensional. feature space, where

the dimensions correspond to features of the objects. A numerical coordinate

representation table (NCRT) is defined as a matrix with one row per feature, and

one column per object. Then, the similarity between two objects is defined based

on the Euclidean distance between their corresponding points in the feature space.

It is clear that an EDM containing all these distances can be generated using the

NCRT.

Computing the similarities between objects is not a static problem, however.

This information is then used within some form of automated learning process,

and as a consequence of this learning, the information in the similarity matrix is

updated. Now we are faced with the problem of ensuring that the resulting matrix

remains an EDM. Furthermore, the updated NCRT is also of interest. This leads

us right to solving an instance of the FPDG.

A closely related application is in the area of statistical language modelling,

where a problem of interest is to predict the next word in a sentence, given

knowledge of the n� 1 previous words. Given a set of sentences, or corpus,
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we can determine how many words appear in the corpus. Then we define, for each

word, a vector of length equal to the number of words in the corpus, with each

entry of the vector containing the probability that the corresponding word follows

the word for which the vector is defined. These vectors thus provide a representa-

tion of the words in the corpus under consideration.

One problem with this representation is that it is typically extremely large. It is

therefore of interest to transform it into a set of vectors in a space of much smaller

dimension that captures as much of the information as possible. A popular

technique to do this is Principal Component Analysis (PCA). Using EDMs, it is

actually possible to do much better. Blitzer et al. [16] propose to generate a new

set of vectors such that two objectives are attained:

(1) vectors representing semantically similar words should be close to each other

(in the sense of vector norm);

(2) vectors representing semantically dissimilar words should be well separated,

i.e., the norm of their di¤erence should be large.

The idea in [16] is to pursue both of these objectives via the following SDP:

max
X
ij

Dij such that TV ðDÞ � 0Dij ¼ kpi � pjk2

for all similar vector pairs pi; pj; ð3:20Þ

where TV is given in (3.17). Thus, if pi and pj lie within some given (small) neigh-

borhood of each other, then the corresponding element Dij is fixed to their current

Euclidean distance. This achieves the first objective above. Simultaneously, the

second objective is achieved by maximizing a weighted objective function of the

non-fixed Dij entries so that other pairs of words have their vector representations

as far apart as possible. A closely related formulation that also preserves the

angles between pairs of vectors was presented in [103].

We briefly mention the application of EDM to graph realization, GRL.

Given a simple graph G with vertices 1; 2; . . . ; n and non-negative edge weights

fDij : ij a Eg, we call a realization of G in Rd is any placement of the vertices of

G in Rd such that the Euclidean distance between pairs of vertices ij a E is given

by the weights Dij . If d is fixed, then GRL is NP-complete; see Saxe [92] and

Aspnes et al. [8]. However, some graph families admit polynomial-time algo-

rithms [10], [11], [12], [20], [20]. Also, Connelly and Sloughter [28] show several

characterizations of r-realizable graphs for r ¼ 1; 2; 3, including the fact that G is

realizable for r ¼ 3 if and only if it does not contain K5 or K2;2;2 as a minor.

The graph realization problem is discussed in more detail with the SNL problem

below. We conclude by mentioning again that our list of applications here is by

no means extensive. Other applications can be obtained from our references.
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4. FPDG and bar framework rigidity

In many applications of FPDG, one is interested in determining whether or not a

given solution of FPDG is either locally unique, unique in the given dimension, or

unique in all dimensions. These notions of uniqueness have been extensively stud-

ied for bar and tensegrity frameworks under the names rigidity, global rigidity and

universal rigidity, respectively. Eren et al. [40] is an excellent paper on the study

of network localizations in the context of bar framework rigidity. In this section

we survey some of the known results regarding the problems of bar framework

rigidity. The problems of tensegrity framework rigidity are beyond the scope of

this paper. Hence in the sequel we use the terms ‘‘framework’’ and ‘‘bar frame-

work’’ interchangeably.

A finite collection of points p1; . . . ; pn in Rr which span Rr is called an

r-configuration p. (Note that the absence of subscript on p indicates that we are

referring to the entire configuration, while subscripts indicate the individual points

in the configuration.) Let G ¼ ðV ;EÞ be a simple graph on the vertices 1; 2; . . . ; n.

A bar framework, denoted by GðpÞ, in Rr, consists of a graph G together with an

r-configuration p, where each vertex i of G is located at pi. To avoid trivialities,

we assume that G is not a complete graph.

Two frameworks GðpÞ in Rr and GðqÞ in Rs are said to be equivalent if

kqi � qjk ¼ kpi � pjk for all ði; jÞ a E, where k:k denotes the Euclidean norm.

The term bar is used to describe such frameworks because in any two equivalent

frameworks GðpÞ and GðqÞ, every two adjacent vertices i and j must stay the same

distance apart. Thus edges of G can be thought of as sti¤ bars and the nodes of G

can be thought of as universal joints. See Figure 1 for an example of 3 bar frame-

works in the plane. Nodes ( joints) of the framework are represented by little

circles, while the edges (bars) are represented by line segments.

Two frameworks GðpÞ and GðqÞ in Rr are said to be congruent if

kqi � qjk ¼ kpi � pjk for all i; j ¼ 1; . . . ; n. That is, GðpÞ and GðqÞ are congruent

Figure 1. An example of three bar frameworks in R2. Frameworks ðaÞ and ðbÞ are equi-
valent and flexible; while framework ðcÞ is rigid.
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if r-configuration q can be obtained from r-configuration p by applying a rigid

motion such as a translation or a rotation in Rr. In this section we do not distin-

guish between congruent frameworks.

A framework GðpÞ in Rr is said to be generic if all the coordinates of p1; . . . ; pn
are algebraically independent over the integers. That is, GðpÞ is generic if there

does not exist a non-zero polynomial f of the components of the pis with integer

coe‰cients such that

f
�
ðp1Þ1; . . . ; ðp1Þr; . . . ; ðpnÞ1; . . . ; ðpnÞr

	
¼ 0:

We begin first by presenting some known results on bar framework rigidity or

local uniqueness.

4.1. Bar framework rigidity. A framework GðpÞ in Rr is said to be rigid (or

locally unique) if for some e > 0, there does not exist any framework GðqÞ in Rr,

which is equivalent to GðpÞ, such that kqi � pika e for all i ¼ 1; . . . ; n. Recall

that we do not distinguish between congruent frameworks. If a framework is not

rigid we say it is flexible. For other equivalent definitions of rigidity, and conse-

quently of flexibility, see [47].

Given a framework GðpÞ, consider the following system of equations:

ðpi � pjÞT ðpi � pjÞ ¼ 0 for all ði; jÞ a E: ð4:21Þ

Any p ¼ ðp1; . . . ; pnÞ that satisfies (4.21) is called an infinitesimal flex of GðpÞ.
We say that an infinitesimal flex is trivial if it results from a rigid motion of GðpÞ.
A framework GðpÞ is said to be infinitesimally rigid if it has only trivial infinitesi-

mal flexes. Otherwise, GðpÞ is said to be infinitesimally flexible [25], [23], [31], [54],

[104].

As the following theorem shows, the notion of infinitesimal rigidity of a frame-

work is stronger than that of rigidity.

Theorem 4.1 ([47]). If a bar framework GðpÞ is infinitesimally rigid, then it is

rigid.

The converse of Theorem 4.1 is false. However, Asimow and Roth [6] showed

that the notions of rigidity and infinitesimal rigidity coincide for generic bar

frameworks.

It is well known [47], [7] that bar framework rigidity is a generic property, i.e.,

if a generic framework GðpÞ in Rr is rigid, then all generic frameworks GðqÞ in Rr

having the same underlying graph G are also rigid.

Given a framework GðpÞ in Rr with n vertices and m edges, let R be the

m� nr matrix whose rows and columns are indexed, respectively, by the edges
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and the vertices of G such that for each ði; jÞ a E, the ði; jÞth row of R is given

by

½0 � � � 0 ðpi � pjÞT
zfflfflfflfflfflffl}|fflfflfflfflfflffl{vertex i

0 � � � 0 ðpj � piÞT
zfflfflfflfflfflffl}|fflfflfflfflfflffl{vertex j

0 � � � 0�: ð4:22Þ

R is called the rigidity matrix of GðpÞ and obviously, the space of infinitesimal

flexes of a framework is the nullspace of its rigidity matrix R, i.e., an infinitesimal

flex of GðpÞ is just a linear dependency among the columns of R.

Theorem 4.2 ([6]). Let R be the rigidity matrix of a generic bar framework GðpÞ
of n vertices in Rr. Then GðpÞ is rigid if and only if

rankR ¼ nr� rðrþ 1Þ
2

: ð4:23Þ

Therefore, the rigidity of a generic bar framework can be e‰ciently determined

via randomized algorithms [76]. Next we consider the problem of combinatorial

characterization of generic bar framework rigidity.

Let GðpÞ be a generic bar framework in R1. Then obviously, GðpÞ is rigid if

and only if G is connected. For generic bar frameworks in the plane we have the

following theorem.

Theorem 4.3 ([74], [78]). Let GðpÞ be a generic bar framework on n vertices in R2

ðnb 2Þ, then GðpÞ is rigid if and only if

2n� 3a
Xk
i¼1

ð2jVEi
j � 3Þ;

for every partition of the edge set E of G into nonempty subsets E1; . . . ;Ek, where

VEi
denotes the set of nodes incident to some edge in Ei.

Thus generic bar framework rigidity in R2 can also be determined in polyno-

mial time [44], [55], [76]. Obtaining a combinatorial characterization of generic

bar framework rigidity in dimension 3 or higher is still an open problem.

4.2. Bar framework global rigidity. A framework GðpÞ in Rr is said to be

globally rigid if there does not exist a framework GðqÞ in the same space Rr

which is equivalent to GðpÞ. Recall that we do not distinguish between congruent

frameworks. Obviously, rigidity is a necessary, albeit not su‰cient, condition for

global rigidity of a framework. Framework (c) in Figure 1 is rigid but not globally

rigid.
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A graph G is said to be k vertex-connected if G remains connected after delet-

ing fewer than k of its vertices. A bar framework GðpÞ is said to be redundantly

rigid if GðpÞ remains rigid after deleting any one edge of G. Recently, the problem

of global rigidity of bar frameworks has received a great deal of attention [27],

[40], [62], [63]. Hendrickson [59], [60] proved that if a generic framework GðpÞ in
Rr with at least rþ 1 vertices is globally rigid, then the graph G ¼ ðV ;EÞ is rþ 1

vertex-connected and GðpÞ is redundantly rigid. Hendrickson also conjectured

that rþ 1 vertex-connectivity of G and redundant rigidity of GðpÞ are su‰cient

for global rigidity of a generic framework GðpÞ. This conjecture, which is obvi-

ously true for r ¼ 1, was shown by Connelly [24] to be false for rb 3.

Jackson and Jordán [62] proved that Hendrickson’s conjecture is true for

r ¼ 2.

Theorem 4.4 ([62], [59]). Given a generic bar framework GðpÞ in R2, then GðpÞ
is globally rigid in R2 if and only if G is either a complete graph on at most three

vertices or G is 3-vertex-connected and redundantly rigid.

Let GðpÞ be a framework in Rr where G has n vertices and m edges. Associate

with each edge ði; jÞ of G a scalar oij . The vector o ¼ ðoijÞ in Rm such that

X
j

oijðpi � pjÞ ¼ 0 for all i ¼ 1; . . . ; n; ð4:24Þ

is called an equilibrium stress for GðpÞ. Note that if o is an equilibrium stress for

GðpÞ then o belongs to the left null space of R, the rigidity matrix of GðpÞ, i.e.,
RTo ¼ 0. Given an equilibrium stress o, let S ¼ ðsijÞ be the n� n symmetric

matrix such that

sij ¼
�oij if ði; jÞ a E;

0 if ði; jÞ B E;P
k:ði;kÞ AE oik if i ¼ j:

8><
>:

S is called the stress matrix associated with o. Connelly [27] gave a su‰cient con-

dition, in terms of S, for a generic framework GðpÞ in Rr to be globally rigid.

Theorem 4.5 ([27]). Let GðpÞ be a given generic bar framework with n vertices in

Rr; and let S be the stress matrix associated with an equilibrium stress o for GðpÞ
such that rank S ¼ n� 1� r. Then GðpÞ is globally rigid in Rr.

Connelly also conjectured that the above su‰cient condition is also necessary.

This conjecture was later proved to be true by Gortler et al.
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Theorem 4.6 ([27], [49]). Let GðpÞ be a given generic framework with n vertices in

Rr. Then GðpÞ is globally rigid in Rr if and only if there exists a stress matrix S

associated with an equilibrium stress o for GðpÞ such that rank S ¼ n� 1� r.

4.3. Bar framework universal rigidity. A framework GðpÞ in Rr is said to be

universally rigid if there does not exist a framework GðqÞ in Rs, for any s,

1a sa n� 1, which is equivalent to GðpÞ. It immediately follows that universal

rigidity implies global rigidity but the converse is not true. The framework (b) in

Figure 2 is globally rigid in R2 but it is not universally rigid.

Alfakih [1] presented a su‰cient condition for generic universal rigidity of bar

frameworks and conjectured that this condition is also necessary. This condition

is given in terms of the Gale matrix Z of the configuration p (see p. 16). As it

turns out, the condition can also be equivalently given in terms of the stress matrix

S since Z and S are closely related as will be shown at the end of this section.

Let GðpÞ be a given framework with n vertices in Rr and let e denote the vector

of all 1’s in Rn. Consider the ðrþ 1Þ � n matrix

PT

eT

� �
¼ p1 p2 � � � pn

1 1 � � � 1

� �
:

Recall that p1; . . . ; pn are not contained in a proper hyperplane in Rr, i.e., the af-

fine space spanned by p1; . . . ; pn has dimension r. Then ra n� 1, and the matrix
PT

eT

h i
has full row rank. Let r ¼ n� 1� r and for rb 1, let L be the n� r matrix

whose columns form a basis for the nullspace of PT

eT

h i
. L is called a Gale matrix

corresponding to P; and the ith row of L, considered as a vector in Rr, is called

a Gale transform of pi [45]. The Gale transform plays an important role in the

Figure 2. An example of two frameworks in R2. It can be shown that the framework in ðaÞ
is universally rigid while the framework in ðbÞ is globally rigid but not universally rigid.
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theory of polytopes. We take advantage of the fact that L is not unique to define

a special sparse Gale matrix Z which is also more convenient for our purposes.

Let us write L in block form as

L ¼ L1

L2

� �
;

where L1 is r� r and L2 is ðrþ 1Þ � r. Since L has full column rank, we can

assume without loss of generality that L1 is non-singular. Then Z is defined as

Z :¼ LL�1
1 ¼ Ir

L2L
�1
1

� �
: ð4:25Þ

Let zi
T
denote the ith row of Z then it readily follows that z1; z2; . . . ; zr, the Gale

transforms of p1; p2; . . . ; pr respectively, are simply the standard unit vectors in Rr.

Theorem 4.7 ([26], [1], [50]). Let GðpÞ be a generic bar framework with n vertices

in Rr for some ra n� 2, and let Z be the Gale matrix corresponding to GðpÞ. Re-

call that r ¼ n� 1� r. Then GðpÞ is universally rigid if and only if there exists a

r� r symmetric positive definite matrix

C : zi
T
Cz j ¼ 0 for all ði; jÞ B E; ð4:26Þ

where zi
T
is the ith row of Z.

Two remarks are in order here. First, the if part of Theorem 4.7 was proved

independently in [26] and [1], while the only if part was conjectured in [1] and

proved in [50]. Second, the statement of Theorem 4.7 in [26], [50] was given in

terms of the stress matrix S of framework GðpÞ. (See Theorem 4.11 in Section

4.4, below.)

4.4. Gale matrices and stress matrices. As we mentioned earlier, the Stress

matrix S of a bar framework GðpÞ is closely related to the Gale matrix Z corre-

sponding to GðpÞ.

Lemma 4.8 ([1]). Given a framework GðpÞ with n vertices in Rr, let Z be the Gale

matrix corresponding to GðpÞ and recall that r ¼ n� 1� r. Further, let S be the

stress matrix associated with an equilibrium stress o for GðpÞ. Then

S ¼ ZCZT for some r� r symmetric matrix C: ð4:27Þ

Furthermore, let zi
T
be the ith row of Z. If C 0 is any r� r symmetric matrix such

that zi
T
C 0z j ¼ 0 for all ði; jÞ B E, then ZC 0ZT is a stress matrix associated with an

equilibrium stress o for GðpÞ.
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The following corollary obtained by Connelly follows immediately from the

previous lemma.

Corollary 4.9 (Connelly [23]). Let S be the stress matrix associated with an

equilibrium stress o for framework GðpÞ with n vertices in Rr, then

rankSa r ¼ n� 1� r: ð4:28Þ

In light of Lemma 4.8, we can express the su‰cient conditions for global rigid-

ity and for universal rigidity of a bar framework in terms of either the stress matrix

S or the Gale matrix Z. Thus Theorems 4.6 and 4.7 can be stated equivalently as

follows:

Theorem 4.10. Let GðpÞ be a given generic framework GðpÞ with n vertices in Rr

for some ra n� 2, and let Z be the Gale matrix corresponding to GðpÞ. Recall that

r ¼ n� 1� r. Then GðpÞ is globally rigid in Rr if and only if there is a r� r sym-

metric non-singular matrix

C : zi
T
Cz j ¼ 0 for all ði; jÞ B E; ð4:29Þ

where zi
T
is the ith row of Z.

Theorem 4.11. Let GðpÞ be a generic framework with n vertices in Rr. Then GðpÞ
is universally rigid if and only if there exists a positive semi-definite stress matrix S

associated with an equilibrium stress o for GðpÞ such that rankS ¼ r ¼ n� 1� r.

The survey so far has focused on theoretical results concerning EDMs. The

next section is concerned with computational algorithms for a particular type of

problem that can be modelled and solved using EDMs, namely SNL.

5. Algorithms specific to SNL

One goal in this survey is to show that EDM is an elegant and powerful tool for

looking at FPDG problems. There are many advantages to using the well studied

linear operators K, T, see e.g. Proposition 3.2. Many algorithms for EDM can

be applied to FPDG problems and, in particular, to the active area of research of

SNL, the problem outlined in Section 1. Wireless sensor networks have many ap-

plications such as monitoring physical or environmental conditions (temperature,

moisture, sound, vibration, pressure, battlefield surveillance, etc.), home automa-

tion, hospital patients, tra‰c control, etc. They are often referred to as smart dust

as they can be used to cover large areas such farmland or chemical plant explosion

sites.
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‘‘Untethered micro sensors will go anywhere and measure anything—tra‰c

flow, water level, number of people walking by, temperature. This is devel-

oping into something like a nervous system for the earth, a skin for the earth.

The world will evolve this way.’’ (See 21 Ideas for the 21st Century, Business

Week. 8/23–30, 1999)

This research area has several workshops and conferences each year, e.g.

MELT 2008, and dedicated publications, e.g. International Journal of Sensor

Networks. Recent related theses and books include [58], [89], [33], [22], [64], [67],

[21], [83], [100]. Research groups include CENS at UCLA and WEBS at UC-

Berkeley. The algorithmic side has advanced quickly. From solving problems

with n ¼ 50 sensors with low accuracy, in the case of exact distances or low level

of noise, current codes can quickly solve problems with 100,000s of sensors to high

accuracy:

http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html

http://www.math.uwaterloo.ca/~ngbkrisl/Publications_files/SNLSDPclique_ver01.tar

However, the performance in terms of accuracy of most of the methods

quickly deteriorates if the noise level becomes significant. This is the actual re-

search direction, and computational studies show the improvements achieved by

some of the most recent methods [68], [69], [72].

The algorithms for SNL often use minor modifications that identify anchors

with sensors. In fact, a set of anchors simply corresponds to a given fixed clique

for the graph of the EDM problem [71], [36], [35], [73]. It can be advantageous to

delay using the di¤erence between anchors and sensors and instead solve the re-

sulting EDM problem. Then, starting from the obtained solution, a best rank-r

approximation is found. Finally, in order to get the sensors positioned correctly,

the approximation is rotated to get the anchors (approximately) back into their

original positions. In fact, it is shown in [73] that it is advantageous to also delay

completing the distances; see Section 5.2.3 below.

In the literature there are many algorithms that are specific to SNL and are not

based on EDM. In these algorithms, the presence of the anchors plays a funda-

mental role, and in some of them their position influences the quality of the solu-

tions obtained. In addition, a significant property that makes SNL unique from

other FPDG problems is its distributed nature, i.e., even for many anchor free

problems, distances between sensors are known only locally.

The SNL problem presents three main di‰culties. It is a nonconvex problem,

and in real applications it requires the localization of a large number of sensors

where, in addition, the measured distances are noisy. Therefore, the algorithms

proposed in the literature on the one hand introduce convex relaxations of SNL,

where the constraints are linear, semidefinite, conic, or polynomial; and, on the

other hand they define distributed, rather than centralized, approaches to handle
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the large size of problems arising from real networks. And, finally, they try to find

a nearest realization of the points using a measure related to a reasonable error

model.

Historically, [37] is one of the early papers based on solving a convex relax-

ation of SNL. In particular, the authors use convex (SDP) constraints to model

the constraints for the proximity between sensors (nodes) that are within radio

range. Let xi; xj a Rr be two sensors that communicate so that their distance

apart is available, i.e., they must be within the radio range R. Then the SDP

constraint

kxi � xjkaR ()
RIr xi � xj

ðxi � xjÞT R

� �
� 0 ð5:30Þ

must hold. As an alternative, the true distance between the two sensors may be

used if available.

A di¤erent convex constraint is obtained by considering information on the

angles between transmitters in the case of sensor nodes with laser transmitters

and receivers that scan through some angle. The receiver first rotates its detector

coarsely, until it gets a signal; and then it rotates finely to get the maximum

strength signal. The angle at which the best signal is obtained provides an

estimate of the angle to the transmitter and a vague estimate of the maximum

distance between receiver and transmitter. This results in three linear, LP, con-

straints: two to bound the angle; and another one to bound the distance. Any

combination of the SDP and LP constraints for each sensor can be used in princi-

ple to get an approximate location of the nodes. In [37], the authors consider

separately the problem obtained by including only the radio range constraints,

and then the problem obtained by considering only the angle derived LP

constraints. The first set of constraints (5.30) can be solved using a second order

cone programming solver, the other set uses an LP solver. A linear objective func-

tion is introduced and its choice is exploited in order to bound the feasible set with

a rectangle parallel to the axes. In the computational tests, the network is solved

many times, each time adding an anchor, until a maximum number of anchors is

reached. The performance is evaluated by using the mean error from the real

positions. The results show that this approach is influenced by the position of

the anchors; indeed, the performance improves if the anchors are on the boundary

of the feasible set, i.e., when all the localized sensors are within the convex hull of

the anchors.

The importance of [37] also lies in providing the first distributive approach and

in introducing the idea of dividing a large network into smaller subnetworks

on the basis of connectivity information. Other papers that use a distributed

approach for SNL include [64], [20], [90], [91]. This idea has been exploited and

further developed by Ye and his coauthors in [14], [10], [11], [12], [94], [102]. Their
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approach is termed the Biswas–Ye (B–Y) SDP relaxation and is used as well in

[86], [68], [69] among others. The above methods use localization near anchors.

A distributed approach based on a natural division using just cliques and indepen-

dent of the anchors is given in [73], see Section 5.2.3.

5.1. Biswas–Ye SDP relaxation, EDMC, and facial reduction. The B–YSDP

relaxation of SNL (see the discussion in Section 5 above and (5.35) below) is used

in many algorithms for solving SNL problems. Therefore, it is of interest to un-

derstand its relationship with the classical relaxations based on EDMC. The B–Y

relaxation can be derived directly from the definitions [13]. Alternatively, we can

use the approach in [71], [36], [73] and derive this relaxation from the EDM

framework. In fact, we now show that the B–Y relaxation can also be obtained

as a restricted second step in facial reduction for the EDM relaxation, following

on the one for centering in Remark 3.4. This second step is based on the fact

that the anchors form a clique in the graph of the SNL (corresponding to a prin-

cipal submatrix in the EDM D) with given embedding dimension r. Therefore, the

corresponding principal submatrix of KyðDÞ has rank restricted to at most rþ 1.

Lemma 5.2 and Remark 5.3, below, provide the details as well as a comparison

between the B–Y relaxation and EDMC.

If we ignore the anchors (and temporarily ignore the upper and lower bounds)

we can use the relaxation in (3.19), where the given approximate (incomplete)

EDM D is approximated by KV ðYÞ ¼ KðVYVT Þ, Y a Sn�1
þ . However, we

have an additional constraint to make use of, i.e., we know the distances for the

clique of anchors. This allows for a facial reduction of SNL. We first give the

basic result for facial reduction for EDMC.

Theorem 5.1 ([36], [73]). Let D a En, with embedding dimension r. Suppose that

D½1 : k� a Ek has embedding dimension t; and let B :¼ KyðD½1 : k�Þ ¼ UBSU
T
B ,

where UB a Mk�t, U T
B UB ¼ It, and S a S t

þþ. Furthermore, let UB :¼
h
UB

1ffiffi
k

p e
i

a Mk�ðtþ1Þ, U :¼ UB 0
0 In�k

h i
, and let

h
V UTe

kU Tek

i
a Mn�kþtþ1 be orthogonal. Then

faceKy�Enð1 : k;D½1 : k�Þ
	
¼ ðUSn�kþtþ1

þ UT ÞBSC

¼ ðUVÞSn�kþt
þ ðUVÞT : ð5:31Þ

Theorem 5.1 shows that if we know the distances for a clique of cardinality k

with embedding dimension t, then we can reduce the size of the matrix variable in

the SDP representation of the EDM from n to n� k þ t. Now suppose that we

are given an SNL problem, i.e., we are given the position of the anchors aj,

j ¼ 1; . . . ;m, and a partial EDM D, i.e., some of the elements are unknown, and,

for pairs of indices in two given index sets Na, Nx, we know the exact squared

Euclidean distance values: the anchor-sensor values Dij between ai and xj for
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ði; jÞ a Na and the sensor-sensor values Dij between xi and xj for ði; jÞ a Nx. We

wish to find a realization of x1; . . . ; xn�m a Rr such that

kak � xjk2 ¼ Dkj for all ðk; jÞ a Na;

kxi � xjk2 ¼ Dij for all ði; jÞ a Nx:
ð5:32Þ

Furthermore, there exist lower and upper bounds on some of the unknown distan-

ces between sensors and between sensors and anchors, i.e., lower bounds rkj for

anchor-sensors ðk; jÞ a La, lower bounds rij for sensor-sensors ði; jÞ a Lx; and,

upper bounds rkj for anchor-sensors ðk; jÞ a Ua, and upper bounds rij for sensor-

sensors ði; jÞ a Ux. The model becomes

kak � xjk2 ¼ Dkj for all ðk; jÞ a Na;

kxi � xjk2 ¼ Dij for all ði; jÞ a Nx;

kak � xjk2b rkj for all ðk; jÞ a La;

kxi � xjk2b rij for all ði; jÞ a Lx;

kak � xjk2a rkj for all ðk; jÞ a Ua;

kxi � xjk2a rij for all ði; jÞ a Ux:

ð5:33Þ

Recall the description of the SNL problem in Section 2. The matrix P of nodes is

partitioned as P ¼
�
A
X

�
, where the position of the anchors pi ¼ ai, i ¼ 1; . . . ;m, are

the columns of AT a Mrm; and the unknown positions of the sensors pmþi ¼ xi,

i ¼ 1; . . . ;m� n, are the columns of X T a Mrðn�mÞ.
Note that the two terms kak � xjk2 and kxi � xjk2 in (5.32) can be expressed as

kak � xjk2 ¼ ðaT
k � eTj Þ

Ir X T

X XX T

� �
ak

�ej

� �
;

kxi � xjk2 ¼ ðei � ejÞTXX Tðei � ejÞ:
ð5:34Þ

In Biswas–Ye [13], problem (5.32) is modelled using the equivalent (5.34) and

is relaxed to the following SDP feasibility problem: find a symmetric matrix

Z a Sn�mþr such that

ðaT
k � eTj ÞZ

ak

�ej

� �
¼ Dkj for all ðk; jÞ a Na;

ðei � ejÞTYðei � ejÞ ¼ Dij for all ði; jÞ a Nx;

Z ¼ Ir X T

X Y

� �
a Sn�mþr

þ :

ð5:35Þ
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We emphasize that this SDP solves a EDMC problem, but it fixes the positions of

the anchors explicitly. This SDP relaxes the equality Y ¼ XX T to Y � XX T ;

equivalently, relaxing to Z ¼ I X T

X Y

h i
� 0. The rows of the X part of the resulting

Z are used as the approximation of the positions of the sensors.

Note that the original P satisfies

0 	 PPT ¼ AAT AX T

XAT XX T

� �

¼ A 0

0 I

� �
I X T

X Y

� �
A 0

0 I

� �T
with Y ¼ XX T : ð5:36Þ

However, if the Y part of the Z found in (5.35) has rank larger than the embed-

ding dimension r, then Z cannot be factored as
�
I
X

��
I
X

�T
. Therefore, it is not clear

that the rows of X yield the best approximation for the localization of the sensors.

For example, a better approximation might be to use the spectral decomposition

of the right-handside in (5.36), i.e., the spectral decomposition of
�
A 0
0 I

�
Z
�
A 0
0 I

�T
.

One can choose the r eigenvectors vi corresponding to the largest r eigenvalues li
to form the approximation P ¼ ½v1 � � � vr�DiagðlÞ. In addition, it may be better

not to fix the I part of Z, i.e., it may be better to allow the anchors to move during

the approximation process. (We amplify on this below.)

Now let

UA a Mm�r and R a Mr satisfy RðUAÞ ¼ RðAÞ; UA ¼ AR�1: ð5:37Þ

Define the linear transformation KUA
ðZÞ : Sn�mþr ! Sn by

KUA
ðZÞ :¼ K

UA 0

0 In�m

� �
Z

UA 0

0 In�m

� �T !
: ð5:38Þ

We can define the weight and bound matrices in (3.19) to coincide with the index

sets and bounds in (5.33). We now combine (5.36) with Theorem 5.1. This yields

the following comparison of the feasible sets in the B–Y and EDM relaxations.

Lemma 5.2. Define the nonnegative weight matrix 0aWE a Mn by

ðWEÞij :¼
1 if ij a NaANx;

0 otherwise;

�

where Na, Nx are defined as in (5.35). Similarly, define the lower and upper bound

weight matrices WLB, WUB. Let UA be defined as in (5.37). Define the feasible

sets

76 A. Y. Alfakih, M. F. Anjos, V. Piccialli and H. Wolkowicz



FEDM
UA

:¼ Z :

WE �KUA
ðZÞ ¼ WE �DE

WLB �Dl aWLB �KUA
ðZÞ

WUB �KUA
ðZÞaWUB �Du

Z a Sn�mþr
þ

8>>><
>>>:

9>>>=
>>>; ð5:39Þ

and

FBY
A :¼ Z :

WE �KAðZÞ ¼ WE �DE

WLB �Dl aWLB �KAðZÞ
WUB �KAðZÞaWUB �Du

Z ¼ I X T

X Y

� �
a Sn�mþr

þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð5:40Þ

Then the feasible sets FEDM
UA

and FBY
A correspond to the EDM and B–Y relaxation,

respectively. Moreover,

Z a FBY
A ¼) R 0

0 I

� �
Z

R 0

0 I

� �T
a FEDM

UA
; ð5:41Þ

where R is as defined in (5.37).

Proof. That FEDM
UA

corresponds to the SDP relaxation follows from the facial re-

duction in Theorem 5.1. That FBY
A is the B–Y relaxation follows upon expanding

the terms.

The inclusion in (5.41) follows upon expanding the right-hand side. r

Remark 5.3. Lemma (5.2) illustrates the benefits and drawbacks of the two relax-

ations.

For both relaxations, the quality of the relaxation results from considering

the quality of the approximation YQXX T ; see the discussion in Section 5.1.2.

Therefore, if we replace the objective functions in Lemma 5.2 with the convex

function traceðZY � ZXZ
T
X Þ, where ZY , ZX are the appropriate blocks of the

unknown matrix Z, then we get a comparison of the strength of the relaxations

in the case that the weight matrix W ¼ 0, i.e., in the case that only exact distances

are considered.

If we choose an appropriate objective value based on minimizing an appropri-

ate error model, then the first relaxation using EDMC provides a better solution

for the objective value, i.e., it is a better least squares approximation. However,

the optimum may have a large rank and the rank r approximation may result in

a poor approximation. The Biswas–Ye relaxation fixes the upper r dimensional

block of Z to I . This has the e¤ect of fixing the anchors. (Since typically
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r a f2; 3g this reduction in variables is small.) The optimum in the Biswas–Ye

relaxation immediately yields an approximation X �
B�Y for the sensors with the

correct rank. There is no need to find a best rank-r approximation or the rotation

Q. However, restricting this rank during the relaxation may result in a larger

objective value.

The tests in [36] show empirically that the relaxation using EDMC is usually

better on randomly generated problems, i.e., treating the anchors as sensors in

the relaxation, using a best rank-r approximation and then rotating the sensors

back so the anchors are as close as possible to their original position generally pro-

vides a better estimate for the sensors, compared to fixing the anchors throughout

the relaxation.

5.1.1. Unique localizability. The notion of localizability is discussed in [40],

[83]. In contrast to using the EDMC approach outlined in Section 5.1 and Lemma

5.2, localizability is based on finding the location of a sensor using neighboring

anchors, i.e., specifically concentrating on the properties of the anchors. Once a

sensor’s location is found, it becomes an anchor. Results in [40] provide condi-

tions that guarantee that all the sensors can be localized and also discuss the

expense/time. (This localizability is related to the geometric build-up discussed

below.)

In [94], the authors introduce the notion of a uniquely localizable problem, i.e.,

(5.32) is uniquely localizable if it cannot have a non-trivial localization (i.e., a lo-

calization di¤erent from the one obtained by setting xj ¼ ðxj; 0Þ, j ¼ 1; . . . ; n�m

where xj is the realization of sensor j in Rr) in some higher dimensional space Rh,

with h > r. (The anchors are augmented to
�
ak
0

	
a Rh, k ¼ 1; . . . ;m.)

If the network is connected, the authors in [94] prove that the solution matrix

Z of Problem (5.40) satisfies Y ¼ XX T if and only if Problem (5.32) is uniquely

localizable. Therefore if the original problem (5.32) is uniquely localizable the

solution of the SDP relaxation (5.40) correctly localizes all the sensors, and it can

be computed in polynomial time.

The condition of unique localizability (or realizability) of a graph is then

related to rigidity theory in [94]. Let G 0 ¼ ðV ;EÞ be the graph having n nodes

corresponding to the sensors and anchors, an edge for each pair ði; jÞ a NaANx,

i; j a f1; . . . ; ng and an edge for each pair ðk; lÞ, with k; l a f1; . . . ;mg, kA l. In

practice, this graph is obtained from the original one by adding the edges connect-

ing the anchors. In [94] the authors prove that, assuming that there are su‰cient

anchors, problem (5.32) is uniquely localizable if and only if the corresponding

graph G 0 is globally rigid.

The notion of unique realizability, although useful, is not stable under

perturbation. For this reason the notion of strong localizability is introduced in

[94]. Strong localizability requires that the optimal solution of the dual of prob-
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lem (5.40) has rank n�m. This notion can be related to the linear independence

of a certain system of linear equations, and it has the desirable property that if a

graph contains a strongly localizable subgraph, then the SDP solution of (5.40)

correctly localizes all the sensors in the subgraph.

5.1.2. Noise in the data. All the results in [94] assume that problem (5.32) is

feasible, i.e that all the distances are exact. However, in practice the distances

and the lower and upper bounds are noisy, so that (5.32) (or (5.33)) may be

infeasible. For this reason, in [13] appropriate nonnegative matrices are used to

represent the error due to the noise. To minimize the errors in the feasibility

model (5.33) we get:

min eT ½W � ðCþ þ C�Þ þWLB � B� þWUB � Bþ�e such that

W �
�
KAðZÞ � Cþ þ C�

	
¼ W �D;

WLB �
�
KAðZÞ þ B�

	
bWLB �Dl ;

WUB �
�
KAðZÞ � Bþ

	
aWUB �Du; Z ¼ I X T

X Y

� �
� 0;

Bþ;B�;Cþ;C�b 0;

ð5:42Þ

where the matrices Bþ, B�, Cþ, C� represent the error.

Suppose that the number of known distances and number of variables are the

same, we have accurate distances and linearly independent constraints, the bound

constraints are feasible, and the optimal value of (5.42) is zero, then we conclude

that (5.42) has a unique solution that is proven to localize the sensors exactly, see

[13]. In the general case where the distances are noisy, a probabilistic analysis is

carried out in [13], where each xj is considered as a random variable ~xxj due to the

errors in the distances. Under this interpretation, the solution of problem (5.42)

provides the first and second moment information on ~xxj, for all j. In particular,

if we are given the solution Z ¼ I X T

X Y


 �
of (5.42), then the quantity Y � XX T

represents the covariance matrix of the random variable ~xxj, j ¼ 1; . . . ; n; and

therefore, the quantity

traceðY � XX TÞ ¼
Xn
j¼1

ðYjj � kxjk2Þ

is a measure of the quality of the approximated distances; while the individual

value

Yjj � kxjk2 ð5:43Þ

is helpful in detect distance measure errors of single sensors.
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The case of noisy distances is also considered in [10]. The authors introduce

upper and lower bounds on the distances that represent confidence intervals for

the measurements. Therefore problem (5.32) is formulated as the problem of

finding an X such that

Dc
kj a kak � xjk2aDc

kj for all ðk; jÞ a Na;

Dc
ij a kxi � xjk2aDc

ij for all ði; jÞ a Nx;
ð5:44Þ

where ½Dc
ij;D

c
ij � represents the confidence interval for the squared distance Dij . Its

SDP relaxation is the problem of finding Z a Snþr such that

W �Dc
aW �KAðZÞaW �Dc; Z ¼ I X T

X Y

� �
� 0: ð5:45Þ

If the distance measurements are exact and the sensor network is uniquely local-

izable, then the SDP relaxations provide the exact localization. In case of noise,

the model (5.45) provides a central solution that is the mean of all the SDP

solutions. However, if the noise level is too high the results obtained by the relax-

ations can be unsatisfactory.

In [11], two di¤erent formulations of the sensor localization problem are

considered. The first one corresponds to minimizing the sum of the absolute

errors in the localization, namely

min
X

X
ði; jÞ ANx

gij j kxi � xjk2 �Dijj þ
X

ðk; jÞ ANa

gkjj kak � xjk2 �Dkjj: ð5:46Þ

The second one corresponds to the sum of squared errors:

min
X

X
ði; jÞ ANx

g2ijðkxi � xjk2 �DijÞ2 þ
X

ðk; jÞ ANa

g2kjðkak � xjk2 �DkjÞ2: ð5:47Þ

In both formulations the weights gij and gkj can be used to exploit the available

information, if any, on the reliability of the measures. By relaxing problem (5.46)

and setting the matrix G ¼ ðgijÞ, the following SDP is obtained:

min eT
�
G �

��W �
�
KAðZÞ �D

	��	e such that Z ¼ I X T

X Y

� �
� 0: ð5:48Þ

The problem (5.47) is relaxed to

min


G �

�
W �

�
KAðZÞ �D

		

2
F

such that Z ¼ Ir X T

X Y

� �
� 0; ð5:49Þ
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i.e., Z, as usual, is as in (5.35). Error bounds depending on the errors in the given

distances are derived for both of these formulations in [11]; and, it is empirically

shown that these bounds are quite strong. Furthermore, in [11] a di¤erent objec-

tive function with a regularization term is considered. The aim of this term is to

reduce the problem of crowding. In fact, when a high rank solution of one of the

SDP problems is projected on Rr, it often happens that the sensors get crowded

together because a large contribution to the distances between two points could

come from a projected dimension. The idea is then to penalize crowding from

the start by subtracting the term l3I � aaT ;Z4 from the objective function

of problem (5.48), where a ¼ ½e=n
Pm

k¼1 ak=
ffiffiffi
n

p
�, and l > 0 is a regularization

parameter. The (heuristic) choice of l used in [11] is

l� ¼ eT
�
G �

��W �
�
KAðZ�Þ �D

	��	e3I � aaT ;Z�4;

where Z� is the optimal solution of problem (5.48) without the regularization

term. Furthermore, the solution obtained by solving problem (5.48) with or with-

out the regularization term can be refined by applying a gradient descent method

to the (smooth, as Dij A 0) problem

min
X AMn�d

f ðXÞ ¼
X

ði; jÞ ANx

g2ijðkxi � xjk �DijÞ2 þ
X

ðk; jÞ ANa

g2kjðkak � xjk �DkjÞ2: ð5:50Þ

Also, in this case each sensor localization is moved along the negative gradient

direction of f ðXÞ. If there is a lot of noise, then a combination of the regulariza-

tion and gradient method generally yields good accuracy in the solution.

5.2. Distributed algorithms. The bottleneck for the SDP relaxations is the large

dimension of the relaxations and the low accuracy of the resulting solutions. For

this reason a distributed SDP algorithm was recently developed in [64], [20] and

further refined in [14] and [10]. The idea is to partition the anchors into many

clusters depending on their physical position. Then each unpositioned sensor is

assigned to a cluster whenever it is directly connected to an anchor in the cluster.

A sensor can be assigned to more than one cluster; and some sensors can remain

unassigned. The SDP problem corresponding to each cluster is solved separately;

and this can be done in an e‰cient way, since the size of the clusters is kept below

a certain threshold. After solving each of these SDP problems, the quality of

localization of each unknown sensor is evaluated by considering a suitable error

measure. In [14] the trace error measure (5.43) is considered; while in [10] the

following error measure is introduced:

LDMEj ¼
P

i AN j
x
ðkxi � xjk �DijÞ2 þ

P
k AN j

a
ðkak � xjk �DkjÞ2

jN j
x j þ jN j

a j
; ð5:51Þ
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where i a N j
x if ði; jÞ a Nx and k a N j

a if ð j; kÞ a Na. If the appropriate error mea-

sure is below a certain threshold, the sensor becomes an anchor and the process is

repeated.

In [14] the SDP model used for the k-th subproblem is based on the nearest

matrix problem in (5.42). In solving the SDP model for each cluster, many of

the lower bound constraints, namely the constraints between two sensor that do

not communicate, are often redundant or not active. For this reason a strategy

of constraint generation is used. First, only a subset of equality and inequality

constraints is added and the problem solved. Then some of the original con-

straints that are violated, if any, are added to the model. The model is solved

again using a warm start approach. One advantage of this distributed strategy is

that the error does not propagate throughout the whole network, but remains in

the cluster.

In [10], after the distributed method has produced a localization, a gradient

based method is applied to the whole network in order to improve the solution.

This phase is often called iterative refinement. In the computational results section

of [10], the authors observe that for problems with low noise and small radio

range, the SDP model (5.56) combined with iterative refinement is better; while

for situations where there is larger noise, the SDP model (5.45) by itself gives a

more accurate solution. In this latter approach, the position of the anchors play

an important role. On the one hand, as usual, if the anchors are positioned on the

boundary of the feasible set, the quality improves, while if many anchors are posi-

tioned in the interior in order to get a good localization, then it is necessary to

have high connectivity (i.e a high number of anchors or a large radio range for

each sensor). On the other hand, since the clusters are built using the positions

of the anchors, the approach proposed in [14] and [10] works better if the anchors

are uniformly distributed.

5.2.1. SPASELOC. To overcome the drawback of poorly positioned anchors,

a di¤erent distributed algorithm is proposed in [20], called SPASELOC. In partic-

ular, in [20], the sensors and anchors for each subproblem are chosen dynamically

according to specific rules. In this way, the resulting subproblems may have dif-

ferent dimensions, but always below a certain maximum value. The algorithm

fixes the maximum number of unlocalized sensors to be included in the considered

subproblem. During the algorithm whenever a sensor is localized with a su‰cient

accuracy, it is labelled as localized. If the accuracy is higher than a certain thresh-

old, then it becomes an acting anchor, i.e., it is treated as an anchor for the rest of

the iterations. All the acting anchors are assigned a certain level depending on

what kind of anchors have been used to localize them. The original anchors are

of level 1. In general, the lower the level the higher the reliability of the acting

anchor. The choice of which sensors to include is based first on the number of
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connected anchors they have and then on the level of connected anchors. The

sensors connected to at least three anchors are considered first. To localize

the ones connected to less than two anchors some geometric heuristics are used.

The sensors not connected to anchors are classified as outliers. Not all the candi-

date anchors are included in the subproblem because adding too many anchors

would increase the number of distance constraints, thus increasing the time needed

to solve the SDP problem and introducing some redundancy. However, in case

of large noise, a large number of anchors improves the quality of the solution, so

there is a trade o¤. In choosing the anchors in each subproblem, the original

anchors have higher priority. Furthermore, a condition of linear independence

between anchors is introduced, and its evaluation requires the computation of

a QR factorization of a suitable matrix. The algorithm favors the independent

anchors since they minimize the redundant information.

For each subproblem the SDP relaxation (5.42) is considered, where the upper

bound constraints are removed, namely WUB ¼ 0. As for the lower bound con-

straints, three strategies are implemented:

(i) Problem (5.42) is solved setting WLB ¼ 0.

(ii) First, problem (5.42) is solved for WLB ¼ 0 and a certain ẐZ is found, and then

it is solved again including only the inequality constraints that are violated

by ẐZ.

(iii) Problem (5.42) is solved first with WLB ¼ 0 and then it is solved again adding

each time violated original inequality constraints until all such inequality con-

straints are satisfied.

The strategy of adding violated inequalities increases the solution time and does

not always yield better solutions. On the other hand, using the geometric heuris-

tics to localize sensors that are connected to less than three anchors, greatly im-

proves the quality of the solutions.

It turns out that, in general, algorithm SPASELOC finds a better localization

than the full SDP approach. This derives from the strategy of building each sub-

problem using sensors that are connected to at least three anchors. This often

yields exact solutions of the SDP relaxations of the subproblems. Furthermore,

SPASELOC is less sensitive to the number of anchors in the network; and, if the

number of anchors is more than 10% of the nodes of the network, then there is no

improvement derived from adding more anchors. The SPASELOC algorithm

originally dealt with problems with embedding dimension r ¼ 2. It has been

extended for solving problems in R3 in [64]. A related distributed algorithm is

presented in [91].

5.2.2. Multidimensional scaling. In [29] a di¤erent distributed localization

algorithm is proposed, that is based on a weighted version of multidimensional
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scaling. Multidimensional scaling consists in finding a low dimensional represen-

tation of a group of objects such that the distances between objects fit as well

as possible a given set of measured pairwise dissimilarities. When the measured

dissimilarities coincide with the exact distances between sensors, classical multidi-

mensional scaling boils down to computing the singular value decomposition of

the centered squared dissimilarity matrix. When the measured dissimilarities

contain noise, it consists in iteratively minimizing a loss function between dissim-

ilarities and distances. The idea in [29] is to define a distributed algorithm where

some local loss functions are minimized. The local nonlinear least squares

problem is then solved by using quadratic majorizing functions. The algorithm

produces a sequence of position estimates with corresponding nonincreasing

global costs and limited communications between sensors. In the paper [29], the

considered global cost function is:

S ¼ 2
X

ði; jÞ ANx

X
1ataK

w
ðtÞ
ij ðkxi � xjk � d

ðtÞ
ij Þ

2

þ
X

ðk; iÞ ANa

X
1ataK

w
ðtÞ
ik ðkxi � akk � d

ðtÞ
ki Þ

2

þ
X

1aian�m

rikxi � xik; ð5:52Þ

where the authors assume that for each distance Dij there are K di¤erent

measurements d
ðtÞ
ij . The weights w

ðtÞ
ij ;w

ðtÞ
ik b 0 characterize the accuracy of each

measurement. The last term is a penalty term that takes into account prior knowl-

edge about node locations. The cost function (5.52) can be rewritten as

S ¼
X

1aian�m

Si þ c; ð5:53Þ

where

Si ¼
X

jAi:ði; jÞ ANx

wijðkxi � xjk � dijÞ2

þ
Xm

k:ði;kÞ ANa

2wikðkxi � akk � dikÞ2 þ
Xn�m

i¼1

rikxi � xik; ð5:54Þ

with wij ¼
PK

t¼1 w
ðtÞ
ij and dij ¼

PK
t¼1 w

ðtÞ
ij d

ðtÞ
ij =wij, and c is an appropriate constant.

The function Si is the local function at node i. Therefore each sensor updates its

position estimate by minimizing its function Si on the basis of the position esti-
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mates of its neighboring nodes. A crucial issue is how to adaptively choose the

neighbors of each node. Given a sensor, its neighborhood contains all the sensors

that are within a certain threshold distance. However, distances contain noise, so

that due to the noise in the measurements, some sensors might not be assigned to

the proper neighbors. In order to take into account noise, the neighbor is built in

two steps: in the first step, only the sensors with measurements below a certain

threshold are included in the neighborhood, and the algorithm is run with this

neighborhood setting, generating certain sensor locations x̂x1; . . . ; x̂xn�m. Then for

each sensor the neighborhood is built again on the basis of the distances

kx̂xi � x̂xjk and the algorithm is rerun. In this way the negative bias e¤ect deriving

from the errors in the distances is removed.

A particular choice of function (5.52) (see [10]) is obtained by setting K ¼ 1,

w
ðtÞ
ij ¼ 1=ð2p1=2sijÞ, wðtÞ

ik ¼ 1=ð2p1=2skjÞ, and ri ¼ 0 for all i ¼ 1; . . . ; n�m:

min vðXÞ ¼
X

ðk; jÞ ANa

1

s2
kj

ekj þ
X

ði; jÞ ANx

1

s2
ij

eij such that

ðkak � xjk �
ffiffiffiffiffiffiffi
Dkj

q
Þ2 ¼ ekj for all ðk; jÞ a Na;

ðkxi � xjk �
ffiffiffiffiffiffi
Dij

q
Þ2 ¼ eij for all ði; jÞ a Nx:

ð5:55Þ

In [10], problem (5.55) is relaxed to the following SDP problem:

min
X

ðk; jÞ ANa

1

s2
kj

ekj þ
X

ði; jÞ ANx

1

s2
ij

eij such that

ð�
ffiffiffiffiffiffiffi
Dkj

q
1ÞMkj

�
ffiffiffiffiffiffiffi
Dkj

q
1

 !
¼ ekj for all ðk; jÞ a Na;

ð�
ffiffiffiffiffiffi
Dij

q
1ÞMij

�
ffiffiffiffiffiffi
Dij

q
1

 !
¼ eij for all ði; jÞ a Nx;

ðaT
k � eTj ÞZ

ak

�ej

� �
¼ vkj for all ðk; jÞ a Na;

�
0T ðei � ejÞT

	
Z

0

ðei � ejÞ

� �
¼ vij for all ði; jÞ a Nx;

Mkj � 0 for all ðk; jÞ a Na;

Mij � 0 for all ði; jÞ a Nx;

Z � 0;

ð5:56Þ
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where Z is defined as in (5.35) and Mkj ¼ 1 ukj
ukj vkj


 �
for all ðk; jÞ a Na and

Mij ¼ 1 uij
uij vij


 �
for all ði; jÞ a Nx. If the noise is multiplicative, i.e., the distances

are equal to ffiffiffiffiffiffi
Dij

q
¼

ffiffiffiffiffiffi
Dij

p �
1þNð0; s2Þ

	
;

where Dij and Dij are the true and measured squared distances respectively,

then sij ¼ Dijs
2. Since the true distances are not known, the variances can be

approximated by the measured distances, and the objective function of (5.56) is

given as

X
ðk; jÞ ANa

1

Dkj

ekj þ
X

ði; jÞ ANx

1

Dij

eij:

In [10], the authors introduce a gradient local search phase to refine the obtained

solution by projecting onto the two dimensional space the solution of the two

SDP relaxations (5.56). The idea is to move each sensor location in the opposite

direction of that of the gradient of the sum of squared errors. In particular, the

maximum likelihood estimation is the solution of the unconstrained optimization

problem

X � a arg min
X

f ðXÞ :¼
X

ðk; jÞ ANa

1

s2
kj

ðkak � xjk �
ffiffiffiffiffiffiffi
Djk

q
Þ2

þ
X

ði; jÞ ANx

1

s2
ij

ðkxi � xjk �
ffiffiffiffiffiffi
Dij

q
Þ2: ð5:57Þ

Let the gradient with respect to sensor xj be denoted ‘xj f . This gradient can be

computed in a distributed way since it depends only on sensors and anchors con-

nected to sensor xj. The location of sensor xj is updated in the following way:

xj ¼ xj � a‘xj f ;

where a is the step size. This updating rule improves the localization obtained by

relaxation (5.56). The e¤ects of this local phase are more pronounced when the

anchors are in the interior of the network.

5.2.3. Exact SNL solutions based on facial reductions and geometric build-
up. A di¤erent distributed SDP approach to SNL is presented in [73]. This

successful technique uses the EDM model and solves the SNL without using an

SDP solver. It e‰ciently finds high accuracy solutions of large problems.
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As in [71], [36], [35], using the positions of the anchors is postponed until after

the corresponding EDMC problem is done. A first elimination phase finds faces of

the SDP cone that correspond to faces of the EDM cone that contain cliques

in the SNL problem. Then, by finding the intersection of appropriate subspaces,

the intersection of faces is found. Each intersection of faces corresponds to com-

pleting the missing distances in the union of the corresponding cliques. However,

finding the distances is postponed. Once the appropriate face of proper dimension

is found, then the second substitution phase solves for all the missing distances

in the EDM at once. Then, the third finalize phase rotates the anchors to their

(approximate) original positions. Extremely large problems can be solved to

high accuracy if the distances are exact. Current tests with random data solve

problems of order n ¼ 100,000, m ¼ 9 on a laptop in 5 minutes to 16 decimals

accuracy. (In the presence of noise, one cannot solve such large problems and

the accuracy deteriorates. But some encouraging results have been obtained very

recently [72].)

The facial reduction approach is closely (dually) related to the geometric build-

up; see the formulas in [9] and the algorithms in [38], [106]. The connection is

through the EDMC problem and the factorization PPT ¼ B ¼ KyðDÞ.

5.3. Sparse relaxations of SNL. In [68], [69] the SNL problem is formulated as

a quadratic optimization problem (QOP), and an e¤ective sparse SDP relaxation

is derived by using tools of polynomial optimization. In the case of exact dis-

tances, the constraints of the QOP corresponding to the SNL problem is given by

the first two equations in (5.33), or equivalently,

Dkj ¼ kakk2 þ
Xr
p¼1

X 2
jp � 2

Xr
p¼1

XjpAkp for all ðk; jÞ a Na;

Dij ¼
Xr
p¼1

X 2
ip þ

Xr
p¼1

X 2
jp � 2

Xr
p¼1

XipXjp for all ði; jÞ a Nx;

ð5:58Þ

where the columns of X T ¼ fx1; . . . ; xn�mg a Rr�n�m.

A sparse relaxation is introduced in [68] that exploits the sparsity of the under-

lying graph of the SNL problem. Let I be the set of subscripts of the matrix vari-

able X . We can write

ðXpi : pi a IÞTðXpi : pi a IÞ ¼ vecXðvecXÞT ¼
X
pi AI

X
qj AI

EpiqjXipXjq;

where Epiqj is the jIj � jIj zero matrix except for the piqj element that is equal to

1. Replacing each term XpiXqj by a single variable Upiqj, we obtain a symmetric

jIj � jIj matrix variable U and a linearization of the constraints, i.e., U ¼ xxT ,
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where x ¼ vecX . A dense relaxation can be obtained by relaxing this equation to

U � xxT . This is equivalent to adding to (5.58) the matrix inequality

1 xT

x U

� �
� 0:

The resulting relaxation of the constraints in (5.58) is

Dij ¼
Xr
p¼1

Upipi þ
Xr
p¼1

Upjpj � 2
Xr
p¼1

Upipj for all ði; jÞ a Nx;

Dkj ¼ kakk2 þ
Xr
p¼1

Upjpj � 2
Xr
p¼1

XjpAkp for all ðk; jÞ a Na;

Z ¼ 1 xT

x U

� �
¼a S

jI j2þ1
þ :

ð5:59Þ

This is proved to be at least as strong as the B–Y relaxation, see [68]; and, it can be

equivalently obtained by using the SDP programming relaxation of order one in

Lasserre [75]. Note that the B–Y relaxation has exactly the same structure except

that the matrix X is not vectorized, i.e., B–Y uses Z ¼ Ir X T

X Y


 �
� 0. Relaxation

(5.59) has a larger dimension than the B–Y relaxation. Thus it is expected to be

more expensive. In [68], two sparse relaxations are derived starting from (5.59)

and from the B–Y relaxation. These sparse relaxations can be obtained by either

applying the sparse SDP relaxation defined in [101] for solving polynomial optimi-

zation problems, or equivalently, by using the results on the positive definite

completion in [43], [82]. Here, we report only on the sparse version of the B–Y

relaxation, SFSDP, since it is the most e¤ective one. In order to build it, only

the sensors are considered, neglecting the anchors.

Let C1; . . . ;Ck be the maximal cliques of the chordal extension of the graph

representing the SNL problem where the anchors and the edges in Na have been

removed. Then the B–Y relaxation is relaxed to

min 0 such that

Dij ¼
Xr
p¼1

Yii þ
Xr
p¼1

Yjj � 2
Xr
p¼1

YpiYpj for all ði; jÞ a Nx;

Dkj ¼ kakk2 þ
Xr
p¼1

Yjj � 2
Xr
p¼1

XjpAkp for all ðk; jÞ a Na;

1 ðvecX T ½Ch�ÞT

vecX T ½Ch�
YðChÞ

0
B@

1
CA � 0 h ¼ 1; . . . ; k;

ð5:60Þ
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where X T ½Ch� is the r� jChj matrix containing the positions xi, i a Ch. If the sizes

of the cliques are relatively small, then this problem becomes less expensive to

solve. (Note that extra work is needed to transform this problem to a standard

equality form SDP problem, see [68].) The size of the system of equations (5.58)

can be further reduced by considering only a subset of the distances, i.e., a sub-

graph of the original graph. This subset is chosen by exploiting the information

on the anchor locations and the edges in Na.

This sparse variant of the B–Y relaxation can be generalized by using instead

of C1; . . . ;Ck a generic family G of nonempty subsets of the set f1; . . . ; n�mg
of sensors. This generalization includes as special cases the two relaxations

NSDP and ESDP proposed in [102] described in the next subsection. In partic-

ular, the node set G ¼ ffi a V : ði; jÞ a Nxg : j a Vg corresponds to the NSDP

relaxation, while the edge set G ¼ fði; jÞ : ði; jÞ a Nxg corresponds to the ESDP

relaxation.

Similar sparse relaxations can be obtained if the distances contain noise, start-

ing from the following QOP:

min
X

ði; jÞ ANx

x2ij þ
X

ðk; jÞ ANa

x2kj such that

Dij ¼
Xr
p¼1

X 2
ip þ

Xr
p¼1

X 2
jp � 2

Xr
p¼1

XipXjp þ xij for all ði; jÞ a Nx;

D
2

kj ¼ kakk2 þ
Xr
p¼1

X 2
jp � 2

Xr
p¼1

Xjpapk þ xkj for all ðk; jÞ a Na;

ð5:61Þ

where xij, xkj are error variables.

The sparse relaxation (5.60) of the original noiseless problem outperforms the

other full SDP relaxations that use an SDP solver in terms of cpu time and accu-

racy [68], [69]. However, it does not do as well as the facial reduction approach

which is not based on an SDP solver.

5.4. Weaker SNL formulations. Recently many authors focused on weaker re-

laxations to be solved more e‰ciently. In [99] a second order cone programming

(SOCP) relaxation is introduced. It uses a di¤erent reformulation of the sensor

network localization problem. As above, we let G ¼ ðV ;EÞ denote the simple

graph on the sensors (and anchors) 1; 2; . . . ; n. Then the SNL problem can be

formulated as

min
x1;...;xn;yij

X
ði; jÞ AE

jyij � d 2
ij j such that yij ¼ kxi � xjk2 for all ði; jÞ a E;
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which can be relaxed to

min
x1;...;xn;yij

X
ði; jÞ AE

jyij � d 2
ij j such that yij b kxi � xjk2 ð5:62Þ

for all ði; jÞ a E, which is an SOCP. This relaxation is always weaker than the

SDP relaxation (5.48) (where all the weights are equal to one). As for the SDP

relaxation, the solution set is bounded if and only if each connected component

of the graph contains an anchor. Indeed, in absence of anchors, the solution set

is unbounded and each solution can be rotated and translated to yield another

solution. For the SOCP (5.62), there exists a unique set BJE of constraints

that are active in all the solutions, namely:

kxi � xjk ¼ yij for all solutions

x1; . . . ; xn; ðyijÞði; jÞ AE of ð5:62Þ () ði; jÞ a B: ð5:63Þ

Any interior solution satisfies (5.63) and satisfies strictly all the other con-

straints of (5.62). Let

NBðiÞ ¼ f j a f1; . . . ; ng : ði; jÞ a Bg; MB ¼ fi a f1; . . . ; n�mg : NBðiÞA jg:

In [99] it is proved that all the points with i a MB belong to the convex hull of the

points for which the distances are exact, namely satisfy

xi a convfxjgj ANBðiÞ; i a MB: ð5:64Þ

Furthermore, each connected component of GB ¼ ðMBA f1; . . . ;mg;BÞ contains
at least an anchor and for every i a f1; . . . ; ng, xi is invariant over all the solu-

tions of (5.62) if and only if i a MB. If a particular solution of (5.62) is con-

sidered, that is called the analytic center solution, i.e., the interior solution that

maximizes

X
ði; jÞ AEnB

logðyij � kxi � xjk2Þ

over all the interior solutions, then

xj a convfxjgj ANEðiÞ:

If the distances contain errors, in [99] it is shown that if the distance error are

small, then ðxiÞi AMB
in a solution of (5.62) has small error that grows proportion-
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ally to the square root of the distance error. Relaxation (5.62) can be solved faster

than the B–Y relaxation, and in [99] a smoothing coordinate gradient descent

method is proposed that is e¤ective in solving problem (5.62). The author also

suggests the use of problem (5.62) as a problem preprocessor or combined with

any method using stronger SDP relaxations.

In the same stream of research, a sum-of-squares (SOS) relaxation is proposed

in [84], starting from the polynomial formulation (5.50) (with all gij ¼ 1) of the

SNL Problem. The idea in [84] is to propose a sparse SOS relaxation that exploits

the special structure of f ðXÞ. In general, the term SOS relaxation describes the

process of approximating nonnegative polynomials by polynomials that can be

expressed as sum of squares. Checking whether a polynomial is SOS is done by

SDP. In particular, a polynomial pðzÞ (z a RN ) of degree 2l is SOS if and only if

there exists a symmetric matrix W � 0 such that

pðzÞCmlðzÞTWmlðzÞ

where mðzÞ is the column vector of monomials up to degree l, of dimension up to�
Nþl
l

	
. The first SOS relaxation for SNL was introduced in [84]:

f �
sos :¼ max g such that f ðXÞ � g ¼ m2ðXÞTWm2ðXÞ; W � 0: ð5:65Þ

If the distances are exact, the SOS relaxation (5.65) is exact, and the solution of its

dual can help finding the sensor locations under a technical condition on the solu-

tion of the dual (called flat extension condition). A more clever relaxation can be

obtained by noting that f ðXÞ can be written in SOS form:

f ðXÞ ¼
X

ði; jÞ ANx

n
ðkxi � xjk2 �DijÞ þ

1

jSj j
X

k:ðk; jÞ ANa

ðkxj � akk2 �DkjÞ2
o
; ð5:66Þ

where Sj ¼ fi : ði; jÞ a Nxg. Then,

f ðXÞ � g ¼
X

ði; jÞ ANx

sijðxi; xjÞ

where sijðxi; xjÞ are SOS polynomials only in variables xi, xj. The corresponding

SOS relaxation is

f ��sos ¼ max g such that f ðXÞ � g ¼
X

ði; jÞ ANx

m2ðxi; xjÞTWijm2ðxi; xjÞ;

Wij � 0; ði; jÞ a Nx: ð5:67Þ
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In this formulation, the size of Wij is equal to ðrþ 1Þð2rþ 1Þ which is independent

from n, and the total number of decision variables is Oðr4jEjÞ, with r ¼ 2 if we are

in the plane. Also in this case, if the distances are exact, the SOS relaxation (5.65)

is exact, and the solution of its dual can help find the sensor locations under the

same technical condition on the solution of the dual. If the distances are per-

turbed by random noises, it can be shown, under some technical assumptions

(including the unique localizability of sensors), that the perturbed solution is accu-

rate within a factor of the perturbation error occurring in the distances.

In [102] the SDP approach is further relaxed. The authors propose two new

SDP relaxations that are obtained by relaxing the single semidefinite matrix cone

into a set of small-size semidefinite matrix cones. In particular, the first relaxation

is a node-based relaxation:

min30;Z4 such that

Zð1;2Þ; ð1;2Þ ¼ I2;

W �KAðZÞ ¼ W �D;

Zi ¼ Zð1;2; i;NiÞð1;2; i;NiÞ � 0 for all i;

ð5:68ÞðNSDPÞ

where Ni ¼ f j : ði; jÞ a Nxg. Here the single ðnþ 2Þ-dimensional cone is replaced

by n smaller 3þ jNij-dimensional matrix cones, and each of these cones is a prin-

cipal submatrix of Z. Problem (5.68) can be relaxed for inexact distances to:

min eT
�
W � ðU þ VÞ

	
e such that

Zð1;2Þ; ð1;2Þ ¼ I2;

W �
�
KAðZÞ �U þ V

	
¼ W �D;

Zi ¼ Zð1;2; i;NiÞð1;2; i;NiÞ � 0 for all i;

U ;V b 0:

ð5:69ÞðNSDPOPÞ

The second relaxation is an edge-based relaxation, as in [84]:

min30;Z4 such that

Zð1;2Þ; ð1;2Þ ¼ I2;

W �KAðZÞ ¼ W �D;

Zð1;2; i; jÞð1;2; i; jÞ � 0 for all ði; jÞ a Nx:

ð5:70ÞðESDPÞ

Here the single ðnþ 2Þ-dimensional cone is replaced by jNxj smaller 4-dimensional

matrix cones, and also in this case each of these cones is a principal submatrix of

Z. In case of inexact distances, it can be relaxed to:
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min eT
�
W � ðU þ VÞ

	
e such that

Zð1;2Þ; ð1;2Þ ¼ I2;

W �
�
KAðZÞ �U þ V

	
¼ W �D;

Zð1;2; i; jÞð1;2; i; jÞ � 0 for all ði; jÞ : Wij > 0;

U ;V b 0:

ð5:71ÞðESDPOPÞ

Given a problem P, let us denote by F P the set of solutions of problem P.

Then the following relation exists between the three relaxations (5.70), (5.68) and

(5.40) (that we denote by SDP):

F SDP HF NSDPHF ESDP:

However, problem (5.40) has ðn�mþ 2Þ2 variables and jNxj þ jNaj con-

straints, while problem (5.68) has at most 4þ 2ðn�mÞ þ
P

i jNij2 variables and

jNxj þ jNaj constraints and problem (5.70) has 4þ 3ðn�mÞ þ jNxj variables and
also jNxj þ jNaj constraints. Therefore, problems (5.68) and (5.70) can be solved

much faster, since in general 4þ 2ðn�mÞ þ
P

i jNij2 and 4þ 3ðn�mÞ þ jNxj are
smaller than ðn�mþ 2Þ2. Furthermore, the two relaxations (5.68) and (5.70),

although weaker than (5.40), preserve some interesting theoretical properties of

relaxation (5.40). Indeed, relaxation (5.68) is proved to be equivalent to relaxation

(5.40) under the chordal condition, i.e., if every cycle of length greater than three

has a chord.

As for relaxation (5.70), in [102] the authors prove that the trace criterion

(5.43) to measure the localization accuracy is still valid, but only for its max rank

solution (that can be easily identified by using a path-following interior-point

method). In fact, if the max rank solution of (5.70) satisfies

Yii � kxik2 ¼ 0; i a f1; . . . ; n�mg; ð5:72Þ

then the i-th column of X is the true location of the i-th sensor, and it is invariant

over all solutions Z of (5.70). Furthermore, although weaker than relaxation

(5.40), relaxation (5.70) is stronger than the SOCP relaxation introduced in [99].

To solve problem (5.70) it turns out that solving the dual is much faster than solv-

ing directly problem (5.70), and a primal solution can be easily derived via the

complementarity conditions (see [102]). Furthermore, the quality of the solution

of problem (5.70) does not depend on the quantity and location of anchors, as for

example in SPASELOC.

The two edge-based relaxations (5.70) and (5.71) are again considered in [86],

and the authors prove that, given a solution of problem (5.70), the trace criterion
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(5.72) is also necessary for the sensor i to be correctly localized by an interior

solution. This desirable property does not hold anymore if the distances are inex-

act, i.e. for relaxation (5.71) (a counterexample is provided). In order to recover

this interesting property, the authors define a robust version of relaxation (5.71)

that maintains this e‰cient characterization of correctly localized sensors for

a certain analytic center solution, provided that the noise in the distances is

su‰ciently small. In particular, they assume that the squared distances are of the

form

Dij ¼ kpi � pjk2 þ dij; for all ði; jÞ a A

where jdijj < rij , and the threshold values r are known. In order to find the

analytic center solution the authors define the problem

min�
X

ði; jÞ ANx

ln detðZð1;2; i; jÞð1;2; i; jÞÞ �
Xm
i¼1

ln det
I xi

xT
i yii

� �

such that
��W �

�
KAðZÞ �D

	��aW � r; Zð1;2Þ; ð1;2Þ ¼ I2; ð5:73Þ

where r is the matrix containing the values rij. In this way, the true solution be-

comes feasible for this relaxation. The authors show that for a certain analytic

center solution ðY ;XÞ of this relaxation the trace criterion (5.72) is necessary and

su‰cient for the correct localization of the sensor i, and that the position error for

sensor i is Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yii � kxik2

q
Þ. Furthermore, they introduce a coordinate gradient

descent method to minimize a log-barrier penalty function in order to find such

analytic center solution. This method is much faster than applying an interior

point method to problem (5.71), gives a comparable accuracy, and is highly paral-

lelizable, a feature that can be exploited for applications where the localization is

required in real time.

6. Summary and outlook

We have shown in this survey that FPDG is an elegant problem with many appli-

cations and solution techniques. In particular, many instances of FPDG such

as GRL, GRD, and SNL, are NP-hard problems that can be handled elegantly

within the EDM framework, and SDP can be used to e‰ciently find solutions

for many classes of these problems.

We focused particularly on the SNL problem. Many algorithms that are spe-

cific for SNL use a distributed approach, SDP and SOCP relaxations, and SDP

(parallel) solvers. The e‰ciency for these algorithms has improved from solving
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instances with about hundreds of nodes in seconds to instances with thousands

with an accuracy of several decimals, see the software at the URLs:

http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html

http://www.stanford.edu/~yyye/Col.html

http://www.convexoptimization.com/dattorro/sensor_network_localization.html

Recently, a di¤erent approach that does not rely on a SDP solver is given in [73],

where, in the exact distance case, problems of order n ¼ 100,000 are solved e‰-

ciently to high accuracy.

Motivated by the many important applications, we have seen a rapid develop-

ment and improvement in both the theory and algorithms for FPDG problems.

Exploiting sparsity and parallelization has just begun. We can expect new e‰cient

algorithms for larger classes of problems, and that are able to deal with high level

of noise.
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