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Abstract. In this note we prove that the Fibonacci version of the Brocard–Ramanujan
Diophantine equation n!þ 1 ¼ m2, that is, Fn . . .F1 þ 1 ¼ F 2

m has no solution in positive
integers n, m.
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1. Introduction

In 1876, Brocard [3] and independently Ramanujan [10], [11], p. 327, in 1913,

posed the problem of finding all integral solutions of the Diophantine equation

n!þ 1 ¼ m2; ð1Þ

which is then known as Brocard–Ramanujan Diophantine equation.

The only known solutions to (1) are ðn;mÞ a fð4; 5Þ; ð5; 11Þ; ð7; 71Þg. In 1906,

Gérardin [6] claimed that if m > 71, then m must have at least 20 digits. Gupta [7]

stated that calculations of n! up to n ¼ 63 gave no further solutions. Recently,

Berndt and Galway [1] did not find further solutions up to n ¼ 109. We also point

out the existence of several variants for this equation, for instance, see [5] and the

very recent paper [8].

Let ðFnÞnb0 be the Fibonacci sequence given by F0 ¼ 0, F1 ¼ 1 and Fnþ2 ¼
Fnþ1 þ Fn, for nb 0. The first few terms are 0; 1; 1; 2; 3; 5; 8; 13; 21; . . . .

In this note we shall prove the unsolubility of the Fibonacci version of the

Brocard–Ramanujan equation, where in equation (1) we replace m, n with their
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respective Fibonacci numbers and we use the usual notation nF ! ¼ Fn . . .F1. Actu-

ally, our more general result is the following

Theorem 1.1. The Diophantine equation

FnFnþ1 . . .Fnþk�1 þ 1 ¼ F 2
m ð2Þ

has no solution in positive integers n, m, k.

We point out that Luca and Shorey [9] proved, in particular, that if t is any

fixed rational number which is not a perfect power of a di¤erent rational number,

then the equation

FnFnþ1 . . .Fnþk�1 þ t ¼ ym

has only finitely many integer solutions n; k; y;mb 2. However this does not

apply to (2) since t ¼ 1 is a perfect power.

2. The proof of Theorem

2.1. Auxiliary results. Before proceeding further, some results will be needed in

order to prove the theorem.

A primitive divisor p of Fn is a prime factor of Fn which does not divideQn�1
j¼1 Fj. It is known that a primitive divisor p of Fn exists whenever nb 13.

The above statement is usually referred to as the Primitive Divisor Theorem (see

[2] for the more general version).

The sequence of the Lucas numbers is defined by Lnþ1 ¼ Ln þ Ln�1, with

L0 ¼ 2 and L1 ¼ 1. Let us state some interesting and helpful facts which will be

essential ingredients in the proof of Theorem 1.1.

For all nb 1, we have

(L1) F2n ¼ FnLn;

(L2) (Binet’s formulae) If a ¼ ð1þ
ffiffiffi
5

p
Þ=2 and b ¼ ð1�

ffiffiffi
5

p
Þ=2, then

Fn ¼
an � b n

a� b
and Ln ¼ an þ b n:

The proof of these properties are well known and can be found in [12],

Chapter 1.

The equation Fn þ 1 ¼ y2 and more generally Fne 1 ¼ yl with integer y and

lb 2 have been solved in [13] and [4], respectively. The solution for the last equa-
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tion makes appeal to Fibonacci and Lucas numbers with negative indices which

are defined as follows: let Fn ¼ Fnþ2 � Fnþ1 and Ln ¼ Lnþ2 � Lnþ1. Thus, for

example, F�1 ¼ 1, F�2 ¼ �1, and so on. Bugeaud et al. [4], Section 5, used these

numbers to give factorizations for Fme 1. Let us sketch their method for the

convenience of the reader.

Since that the Binet’s formulae remain valid for Fibonacci and Lucas numbers

with negative indices, one can deduce the following result.

Lemma 2.1. For any integers a, b we have

FaLb ¼ Faþb þ ð�1ÞbFa�b:

Proof. The identity a ¼ ð�bÞ�1 leads to

FaLb ¼
aa � b a

a� b
ðab þ b bÞ ¼ Faþb þ

aab b � b aab

a� b
¼ Faþb þ ð�1ÞbFa�b: r

Lemma 2.1 gives immediately the following factorizations for Fne 1, depend-

ing on the class of n modulo 4:

F4k þ 1 ¼ F2k�1L2kþ1; F4k � 1 ¼ F2kþ1L2k�1;

F4kþ1 þ 1 ¼ F2kþ1L2k; F4kþ1 � 1 ¼ F2kL2kþ1;

F4kþ2 þ 1 ¼ F2kþ2L2k; F4kþ2 � 1 ¼ F2kL2kþ2;

F4kþ3 þ 1 ¼ F2kþ1L2kþ2; F4kþ3 � 1 ¼ F2kþ2L2kþ1:

ð3Þ

Now we are ready to deal with the proof of the theorem.

2.2. The proof. Equation 2 can be rewritten as

Fn . . .Fnþk�1 ¼ ðFm � 1ÞðFm þ 1Þ:

By the relations in (3), we have that Fn . . .Fnþk�1 ¼ ðFm � 1ÞðFm þ 1Þ ¼ FaFbLcLd ,

where a < b, c < d are close to m=2. In fact, each of 2a, 2b, 2c, 2d is in

fm� 2;m� 1;mþ 1;mþ 2g. By (L1), we have Ls ¼ F2s=Fs and our equation

becomes

Fn . . .Fnþk�1FcFd ¼ FaFbF2cF2d : ð4Þ

A quick computation reveals that we can assume that nþ k � 2 > 12. Indeed,

Fl . . .F1 þ 1 is prime for l ¼ 1; . . . ; 8 and
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F9 . . .F1 þ 1 ¼ 599 � 3719;
F10 . . .F1 þ 1 ¼ 1373 � 89237;
F11 . . .F1 þ 1 ¼ 181 � 60245821;
F12 . . .F1 þ 1 ¼ 631 � 2488505671;

which clearly are not perfect squares. Now, if we assume that m > 14, then

2c > maxf12; b; dg. Thus on the right-hand side of (4), we have a product of

Fibonacci numbers with the largest two being of indices 2c, 2d both larger

than d. By the Primitive Divisor Theorem, these two indices should be the largest

ones on the left-hand side as well, but these are the consecutive (hence, not both

even), indices nþ k � 2, nþ k � 1. This is a contradiction.
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