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Uniform decay rates of coupled anisotropic
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Cleverson Roberto da Luz and Gustavo Alberto Perla Menzala

(Communicated by Enrique Zuazua)

Abstract. This work is devoted to study the asymptotic behavior of the total energy associ-
ated with a coupled system of anisotropic hyperbolic models: the elastodynamic equations
and Maxwell’s system in the exterior of a bounded body in R®. Our main result says that
in the presence of nonlinear damping, a unique solution of small initial data exists globally
in time and the total energy as well as higher order energies decay at a uniform rate as
t — +00.
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1. Introduction

The propagation of electromagnetic waves in very special materials (like crystals)
is quite different and interesting: The energy in general does not propagate along
the normals to the fronts, but along rays which may be distinct from the normals
(see [18]). Thus, in these kind of mediums the so-called permittivity and perme-
ability are no more scalar-valued functions, but 3 x 3 symmetric matrices. Very
seldom both will be diagonal matrices (see [18]). As a consequence, in this case
the Maxwell equations cannot be reduced (in general) to a second order vector-
wave equation for which a large amount of results are available.

Maxwell’s equations provide a natural mathematical framework to understand
the propagation of electromagnetic waves through bodies like the above special
materials. These are the so-called anisotropic Maxwell equations. Due to recent
Industrial applications specially with the so-called “‘smart materials’ (see [1]) engi-
neers needed to consider the interaction of anisotropic Maxwell equations with
anisotropic elastic waves. In the mathematical literature we find very few articles
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giving exact properties of such coupled systems (see [13], [16] and references
therein).

Motivated by the above discussion this paper is devoted to study the asymp-
totic behavior of a coupled system of equations: The elastodynamic system and
Maxwell equations both anisotropic. The phenomenon happens in the exterior
of a bounded body. Let us describe the model: Let Q = R? be an exterior domain
(unbounded with bounded complement) with boundary dQ of class >. We de-
note points in the space/time cylinder Q x (0,+o0) by (x,7) where x € Q is the
spatial variable and ¢ denotes time. Let u = u(x,t), E = E(x,t) and H = H(x,)
be vector valued functions each of them with three components denoting the dis-
placement vector, the electric field intensity and the magnetic field intensity,
respectively. We consider the coupled system

3
0 ou
Uy — ETM(AU(X)T@) +yeurl E + F(u;) =0, (1.1)
L=
e(x)E; —curl H + gE — ycurlu, = 0, (1.2)
w(x)H; + curl E = 0, (1.3)
div(u(x)H) =0 (1.4)

in Qx (0,+00). Here, ¢ =¢(x) and u = u(x) denote the electric permittivity
and magnetic permeability respectively. They are 3 x 3 symmetric matrices which
are uniformly positive definite almost everywhere for x in Q. The parameter
o > 0 is called the electric conductivity, y is the coupling constant and F(u,) =
(Fi(us), F>(u;), F3(u;)) is a nonlinear damping term which will satisfy suitable
growth assumptions.

We complement system (1.1)—(1.4) with initial conditions

(u,u;, E,H)|,_o = (uo,u1, Eg, Hy) 1in Q (1.5)
and boundary conditions

u=0, yxE=0 ondQx(0,+00), (1.6)
where # = 7(x) denotes the unit normal vector at x € 0Q pointing the exterior

of Q. Here x is the usual vector product in R>.
The total energy associated with system (1.1)—(1.6) is given by

(1) = %L[Iut(l)2 + Ju(?) + e(x)E(1) - E(1) + p(x)H (1) - H(r)] dx  (1.7)
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where

3

3 - N2
B = 3 4500 and 0P =Y (540) . (9

i,j=1 j=1

Here the dot - means the usual inner product in R*.

Let us mention briefly a reason for choosing the coupling y curl £ and —y curl u,
between the Lame system and the Maxwell system: It is known that several
materials of the family of crystals, polymers or ceramics have the property that
an electric field acting on the material creates stress and as a response to deforma-
tions is “produced” a polarization vector. These are the so called piezoelectric
materials. The theory of linear piezoelectricity can be found in references [11]
or [14]. The coupling for these electromechanical interaction is given by the terms
23:1 % (A7 E) and Zle A; % (see the above references or [17]) where 4; are 3 x 3
symmetric matrices. In the simplest case, if the medium is isotropic, then the
matrices A; are such that 377 | ch, (A7E) = ycurl E and 37, A,-% = —ycurluy,.

There is a large literature concerning the decay of semilinear hyperbolic prob-
lems in exterior domains. E. Zuazua [23] considered the semilinear wave equation
with localized damping in unbounded domains. M. Nakao [19] considered the
semilinear scalar wave equation with a “localized” dissipation on a neighborhood
of a part of the boundary and “near” infinity. He proved the existence of global
solutions for small initial data and found polynomial decay rates in time for the
total energy (see also R. Ikehata [15] and C. R. da Luz and R. C. Chardo [4]).
R. C. Chardo and R. Ikehata [3] proved that the solutions of a nonlinearly
damped of elastic waves with a localized damping near infinity decay in an alge-
braic rate to zero (see also [12]). Recently, the coupled model of elastodynamic
with the isotropic Maxwell equation was treated in exterior domains by M. V.
Ferreira and G. Perla Menzala [13] assuming that F(u,;) = u, — f(u,) with suitable
assumptions on f. The main result in [13] was the uniform decay as t — +oo of
the “second level”” energy

3 | 1O + o) + ol B + st (0]
Q

The final results given in [13] (see Theorems 3.1 and 3.2) did not give any infor-
mation about the decay of the quantities [, u|H | dx and JqJudx. The results
presented in this work improve the ones in [13] considering model (1.1)—(1.6) in
appropriate function spaces and treating the full anisotropic case.

In [7] we have found polynomial decay rates for the total energy of the linear
coupled system of anisotropic elastic waves and by the anisotropic Maxwell
system in exterior domains. In the present work we use some ideas given in [7]
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in order to treat the coupled system (1.1)—(1.4). The discussion given in [7] for the
linear problem is not enough to obtain the existence of solutions for the non-
linearly damped problem. We will need more regular solutions to conclude our
results. In Theorem 4.1 we obtain several uniform rates of decay as ¢t — +o0 using
an iterative procedure using ideas in [7].

Let us mention recent related results: For the anisotropic Maxwell equations
in bounded regions Q, M. Eller [10] established an observability inequality also
known as an inverse inequality. By a duality argument this observability inequal-
ity implies exact controllability of an electromagnetic field in Q by a current flux
on the boundary 0Q. C. R. Luz and G. P. Menzala [5] studied the asymptotic
behavior of the anisotropic Maxwell equations with internal dissipation in exterior
domains. In [6], the problem with boundary dissipation of Silver-Muller’s type in
bounded domains was treated. B. V. Kapitonov and G. P. Menzala [16] studied
a transmission problem for a system of isotropic electromagneto-elasticity in a
bounded domain. Under suitable geometric conditions imposed on the domain
they proved results of stabilization and exact controllability for the model.
S. Nicaise [20] studied the stabilization problem for the electromagneto-elastic
system. Higher order energy decay for damped wave equations was recently
studied by P. Radu et.al. in [22].

The paper is organized as follows. Well posedness of the linear problem is
analyzed in Section 3 using semigroup theory. In Section 4 we study the asymp-
totic behavior for the linear problem using multiplier methods and properties of
an auxiliary evolution coupled system of first order. In Section 5 we study global
existence and decay properties for the nonlinearly damped system. Here we use
some ideas due to M. Nakao [19] and R. Ikehata [15] where they studied the
wave equation in exterior domains in the presence of dissipations. We adapted
their techniques to our more complicated situation.

2. Notations and assumptions

Let Q be an exterior domain in R, that is, Q = IR3\@, being ¢ open and bounded
with boundary ¢ of class 4°. We consider the set .# of all 3 x 3 matrices
a = o(x) = [o;7(x)]5,; which are symmetric and uniformly positive definite ones
for almost every x in Q, that is, there exist o9 > 0 in such a way that

Ea(x)E > op|é]*  for any & € R? almost everywhere in Q. (2.1)

The entries o;; are real-valued functions and belong to L*(Q2). In (2.1) we denote
¢ .

by &' = (é) whenever & = (&, & &) with & e R, j=1,2,3. Also [¢]> =27 &.
: . .

3
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Let o € .4, we define the space

L*(Q;0) = {v(x) = (v1(x),v2(x), v3(x)) in such a way that
3
JQ v(x)a(x)v'(x) dx = ,; JQ o, j(xX)v;(x)vj(x) dx < +oo}

with the norm

3
610 = D | o))
ij=1
Clearly L*(Q;x) = [L2(Q)]? where [L2(Q)]® = L2(Q) x L*(Q) x L2(Q) and
the norms in L2(Q; ) and [L2(Q)]* are equivalent in the space [L2(Q)]®. Besides
that, L?(Q; o) is a Hilbert space with the following inner product:

3

(090 = D | o))y ()

i.j=1
where v(x) = (v1(x), v2(x),v3(x)) and w(x) = (w1 (x), wa(x), w3(x)).
From now on, we will always assume the following conditions:
(H1): The matrices ¢ and p belong to ..
(H2): Each 4; is a 3 x 3 matrix whose entries belong to W' *(Q) and there exists

a positive constant ay such that

3

3
S A(E] &= a0y 14l (22)

ij=1
for any vectors & € R®, i =1,2,3.
(H3): The entries C,Z(x) of the matrix 4;(x) are of the form
Ciy(x) = (1 = Gudje)augn (x) + Oudndig(x)

1 ifl=k,
0 ifl#k,
elastic tensor with the symmetric properties

where oy = { and ayg(x) are the Cartesian components of the

iy (x) = ajiry(x) = ap(x)  almost everywhere in Q. (2.3)

The symmetric assumptions (2.3) imply that the transpose of A;;(x) is 4;;(x).
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Observe that (H1) implies that ¢ and u are invertible almost everywhere in Q.
In fact, since they belong to .# then their eigenvalues are positive. Consequently,
the determinant of each one of them is also positive. Hence, &(x) and u(x) are
invertible. We can easily prove that the entries of ¢! and x~! belong to L*(Q).

Without loss of generalization we can assume that F(0) =0 thus we will
consider F of the form F(&) =&+ f(&) where x>0, £e R® and f(¢) =
(f1(¢), f2(&), f3(&)) will satisfy suitable growth conditions given in the Section 5.

In order to simplify notations we will denote by ||v|| the norm of v in [L2(Q)]*.
All notations we use in this article follow the ones given in [8]. From now on
we will denote by C a positive constant which may be of different values from

line to line.

3. Linear system: existence and uniqueness

In this section we recall a result proved in [7] (Theorem 3.1) where we considered
the linear coupled system:

ut,—ii:laii(Aijaa;)—kku,—kycurlE—O in Q x (0, c0), (3.1)
eE, —curl H + 6FE — ycurlu, =0  in Q x (0, o0), (3.2)

uH, +curlE=0 in Q x (0, o0), (3.3)

div(iuH) =0 inQ x (0, c0), (3.4)

u(x,0) =up(x), w(x,0)=u(x) inQ, (3.5)

E(x,0) = Ey(x), H(x,0)=Hy(x) inQ, (3.6)
u=0, Exn=0 ondQ x(0,0c0). (3.7)

We used semigroup theory in the Hilbert space X = [H/ (Q)]® x [L2(Q)]’ x
L*(Q;e) x L*(Q; 1) with the inner product:

@ =] { i (400 52 9) - G+ 1000

+ j 02(x) w2 () dx + (03, 5) 20y + (28 98) 20
Q

for any v = (v1, v2,v3,04), w = (W1, w2, w3, w4) in X.
Next, we consider the unbounded linear operator 4: D(4) < X — X, with
domain

D(A) = [H*(Q) n H} (Q)]? x [H (Q)]® x Hy(curl; Q) x H(curl; Q) (3.8)
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given by
Aw = (wy, Lw; — wy — ycurl ws, ye ' curl way + &' curl wy, —p ! curl w3)
for any w = (wy, wa, w3, ws) € D(A), where L is the operator defined by
>0 0
b= ,; ax; ( x,)'
In (3.8) we denote by
H(curl; Q) = {vin [L?(Q)]’ such that curl v belong to [L*(Q)]*}

with inner product

0, W) g (eurt; ) = JQ [v(x) - w(x) + curl v(x) - curl w(x)] dx

and

Hy(curl; Q) = {v in H(curl; Q) such that # x v|,, = 0}

where 77 = 5(x) is the unit normal vector at x € 0Q pointing the exterior of Q.
It can be verified that Hy(curl; Q) is a closed subspace of H(curl; Q) (see [9])
and the property

J v(x) - curl w(x) dx = J curl v(x) - w(x) dx (3.9)
Q Q

holds for any v € Hy(curl; Q) and w € H(curl; Q).
We consider now the bounded linear operator B : X — X given by

Bw = (0,w; — kwy, —ae~'w3,0)

for any w = (wy, wa, w3, ws) in X.

The infinitesimal generator of problem (3.1)—(3.3), (3.5)—(3.7) is given by
o/ = A+ B with domain D(7) = D(A4). Clearly (3.4) will be satisfy for any 7 if
we choose initial data Hy such that div(uHy) = 0. Since we are interested in decay
properties of the solutions of problem (1.1)—(1.6) using the techniques we will
describe in the following sections, we will need more regular solutions. Therefore
by standard procedure we can obtain:
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Theorem 3.1. Let Q < R? be as in Section 2 and assume that (H1), (H2) and (H3)
hold.  If (uo,u1, Ey, Hy) belongs to D(/*) Y, then, system (3.1)-(3.7) has a
unique (strong) solution
(u,ur, E,H) € ([0, +00); D(/*) N Y)
NG ([0,+0);D(/) N Y) N6 ([0,+0); Y)

where Y = {(w1, w2, w3, wq) in X such that div(uws) = 0 in Q}.

By definition, D(.7*) = {w € D(.</) such that .«/w € D(.7)}. We can easily
verify that

D(/%) = {w = (w1, wp, w3, wy) such that wy, wy € [H*(Q) n H} (Q)]*;
w3 € Hy(curl; Q);wy € H(curl; Q); Lwy — ycurlws € [Hy (Q))°;
—ge 'wy + pe curlwy + & curl wy € Hy(curl; Q);

w ' eurlws e H(curl; Q)}
and the norms
||WH§)({Q/2) = ||M}||%(,m7) + ||&{W||§)(,g/)
and
Iw1? = il Gz + 19ll 2 + 193 a0 + 19allrcun

-1 -1 -1 2
+ |—oe w3 + e curlwy + & curl wa| ey )

+ || Lw; — ycurl W’3H[21_11<Q)]3 + ||p ! curl W3||é<curl;g> (3.10)

are equivalent.

4. Linear system: asymptotic behavior

In this section we study the asymptotic behavior of the solutions of the linear
coupled system described in Theorem 3.1. The information we have from our
previous work [7] are not enough to obtain de decay of the nonlinearly damped
problem (1.1)—(1.6). We have:

Theorem 4.1. Let us assume that Q, e, u and the matrices Aj, 1 <1, j <3, have
the same assumptions as in Theorem 3.1. Let (ug,u;, Eg, Hy) € D(#*) N Y such
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that uHy = curl s, for some \, € Ho(curl; Q) and (ug + u;) € [L¥5(Q)]*. Then,
the corresponding solution (u,u;, E,H) of system (3.1)—(3.7) satisfies the decay
properties

) @I + 1H @)1 < Ch(l + 07!

—

ii) J Ju(x, 1) dx + |[E(0)||* + |[curl H(0)||* < Cly(1 + 1) 2
Q
iii) ()1 + [ Lu(0)]|* + | H(0)]|* + eurl E@)|1* < CI(1 4 1)~

) ||E(0)]? + |lcurl H,(1)||* + J Juy(x,0) dx < CIh(1 + 1)~
Q

V) (0] + JQ Juy(x, 1) dx + | Ea(0)||* + | Ha(0)]| + [|curl E, (1)
+ [l (O + | L (0)||* < Cho(1+ 1)
where C > 0 is a constant independent of the initial data,
Iy = ||(uo, w1, Eo, Ho) || 2y + 1o + u1||[2L6/5(Q)]3 + oI,
J is given by (1.8) and 1)—v) hold for any t > 0.

In order to provide a more transparent proof, we divided the discussion into
some Lemmas. In all Lemmas below we will assume all hypothesis of Theo-
rem 4.1, C will denote a positive constant which may be of different values from
line to line.

Lemma 4.2. The estimate

t

(1+z)$1(t)+;cj

(1 +s>\|us<s>||2ds+oj (1 + )| E(s)|| ds < Clo
0 0

holds for any t > 0.

Proof. Let us take the inner product in [L2(Q)]* of (3.1) with u,(7), (3.2) with E(7)
and (3.3) with H(¢). By adding the corresponding identities we find

T ) 4 wllalo) P+ ol ) = 0 (@)

where % (¢) is given by (1.7). Multiplying (4.1) by (1 + ¢) and integrating by parts
over [0, 7] we obtain
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t 5 t 5
(1+0)%A(1) —I—KJ (1 + 5)||us(s)]| ds—i—aJ (L+9E)|" ds
0 0

—z@+£z@w

(4.2)

We take the inner product in [L2(Q)]* of (3.1) with u(7) and integrate it over

the interval [0, 7] to obtain

K i K !
fme+jjm®wm:4mW+jM@Wm
2 0Jo 2 0
t

_Luz() ()dx+JQu1 'uodx—yj

0

Clearly if v € [H'(Q)]’ then by condition (2.2) we have

(x)
ax,

J |curl v(x)| dx<22j

dx < 2J Ju(x) dx.
Q

dop

Using (3.9) and (4.4) we obtain from (4.3) for any ¢ > 0 the estimate

S+ [ [ Juts) dvas < i [ P s+ 2 o)
K 2 !
+ S ()12 +2 J E(s)|| ds + C5J0J9Ju(s)dxds.

Choosing ¢ > 0 sufficiently small in (4.5) it follows that

t
J J Ju(s) dxds < CI
0Jo

for some positive constant C.
We also know (see [7]) that

t

t
L VH($)| 0 ds < Chy + cj

J Ju(s) dx ds.
0Jo

J curl E(s) - u(s) dx ds.
Q

(4.7)

Using (4.6), (4.7) and (4.1) we deduce from (4.2) the estimate the conclusion of

Lemma 4.2.

OJ
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Lemma 4.3. The estimate

(1+ 0" 2(1) +%ﬁ(1 + 0 NEQ@I + 2KJ;(1 + ) s (5)| dis

t
+20J (1+ )P | Ey(s)|12 ds < Cly
0

holds for p = 1,2 or 3 and any t > 0.

Proof. By taking the derivative with respect to ¢ of problem (3.1)—(3.7) we
obtain

Upis — 23: % <AU%> + Kxuy +ycurlE, =0 inQ x (0, 0), (4.8)
ij=1 M ]

eE, —curl H + 6E, — yecurlu, =0 in Q x (0, o0), (4.9)

uHy +curlE, =0 inQ x (0,00), (4.10)

div(uH;) =0 inQ x (0, c0), (4.11)

uy(0) = up = Lug — kuy — ycurl Ey  in Q, (4.12)

E(0)=E; =& 'curl Hy — oe 'Eg + ye 'curly;  inQ, (4.13)

H,(0)=H, = —u'eurlEy  inQ, (4.14)

uy =0, E xn=0 ondQx(0,00). (4.15)

We take the inner product in [L2(Q)]’ of (4.8), (4.9) and (4.10) with u,,(1), E,(1)
and H,(¢) respectively. By adding the corresponding identities we find

d<s

— 0+ i||un(0)||* + ol E(2)]|* =0 forany >0 (4.16)

where %»(¢) is the second order analogous of (1.7)

1
220 = 5 { IO + | 200+ 1B+ 1HADN 2}

Integration of identity (4.16) on [0, 7] give us

L (1) + KJO \|uags (5) || ds + UL | Es(s)||* ds = £(0) < Cl. (4.17)
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Multiplying (4.16) by (1 + t)ﬁ where f = 1,2 or 3 and integrating the result by
parts over [0,7] we obtain

(1+ 0 () + KL(l + ) luss(5)|2 s + O—JOU + )P Ey(s)]| ds

t
0

= %(0) +ﬂj (145" 2 (s) ds. (4.18)

Clearly our next step will be to estimate the term f [,(1 + )" %5 (s) ds and
(1+ 0" EQ@)||? by Ch.

Next, we take the inner product in [L2(§2)]3 of (3.1), (4.9) and (3.3) with u,(?),
E(r) and H,(r) respectively and add the corresponding identities to obtain

2 2 2
e (O™ + 1 H (D 20,0 — 1B 220050 — JQ Juy(t) dx

+%{§wmm2+§wvm2+wM%Emhwm

- JQ i: [Aijaa—;(t)] -Z_zj(z) dx} =0. (4.19)

=1

Multiplying (4.19) by (1 + t)ﬂ ~! and integrating the result by parts over [0, 7]
give us

t

t
J;<1 +—s>ﬂ1|uﬁ<s>n2ak«+-J;<1 + )P () [ S

-1 2,0 ~1 2_Kypo2 9 p2
U+ 0" u(0)* +5 L+ 0" E@I =3 | + 5 11 Eoll
0

p
+§w—1qkl+w“wmmm%h+§w—1ﬂk1+w“wE@mﬂh

t
+ u+w“ﬂawﬁmm%+Jja+®“mmwww
' 0JQ

+(p-1) Jt JQ(I + )2 23: {A[jj}t‘(s)} : gz (s) dx ds. (4.20)
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Using condition (2.2) we obtain from (4.20) for any 6 > 0 the estimate

t
97 a6 s+ 50+ 0" EON <

+ cjlu +5)P 2 ug(s)|| > ds + CJt(l + )P 2| E(s)| ds
0 0

+ CJI“ )P (o)) ds + c” (14 5)" Juy(s) dx ds
0 0JQ

(1+ f)ﬂ_1||Ez(f)||22<g;g> +Co(1+ 0P Y E@?

(1+ t)’”j

Q

| =

+

Sdie

+ Ju(1) dx + Co(1 + z)ﬂJ Juy (1) dx

Q

1
4 cJ J (1 + 5)P = Ju(s) dx ds (4.21)
0Jo

for some positive constant C.

Using (4.6) and Lemma 4.2 we deduce from (4.21), 0 > 0 sufficiently small and
f=120r3

t
[0+ 9 U 5+ 50+ 0B <

+ CJI(I + )Y Eg(9)]12 ds + c” (14 )PV ug(s) dx ds
0 0JQ
_ 1
+ L+ )" E D] 20 *ﬁ(l + t)”JQ Juy (1) dx. (4.22)

Next, we take the inner product in [L2(Q)]* of (4.8) with u,(7). The resulting
identity we multiply by (1 4+ t)ﬂ ~! and integrate by parts over [0,7] to obtain

S0 0l + [ ] (197 o) s =
g - [ )P 72| uy ()] ds — Ll U x
5= 19 @I ds = (1407 | ) uind

+p-1)

J (1 + s)ﬂizusx(s) : US(S) dxds
0JQ

t
+J U - U dx+J (1 +s)ﬁ71||uss(s)||2ds
Q 0

— t $YPVE(s) - curl uy(s) dx ds
yJOJQ(l—i-) E(s) - curluy(s) dx d.
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! B—2 2 1 B—1 2
< C10+CJ (1+ 9" uy(s)| ds+~(1 + 0 (1)
0

7 (U 0" (1)1 + CL(I +9)" s (s)]| ds

&=

o (! _
+25J (14 8) Y Ey(s )||2ds+%J (14 5)"Y|curl uy(s)||* ds (4.23)
0
for any 0 >0 and f=1,2 or 3. Using (4.23), Lemma 4.2 and choosing ¢ > 0
sufficiently small we deduce

1(! _
EJ J (1 + 5P u(s) dds < Cly + C(1 + 0P Ju (1))
0JQ

+ cjtu + 5P uss(5)1* ds + CJt(l + )P E(9)|Pds. (4.24)
0 0

Now, we use estimate (4.22) into (4.18) and use (4.24) to obtain

(1+1)f
2

afs

D(0) + ( L+ 0 E®)? +KJ0(1+S)ﬁ|\uss(S)|2dS

+ aL(l + )P E(s)|Pds < Clo + CB L(l + )P uss(s)|? ds

+ Cﬁj (149N E(s)|| > ds + CB(1 + f)ﬂ*l||Ez(f)||i2(Q;;,-)

+ CB(L+ 0" My (1)) (4.25)

for f=1,20r 3 and any ¢ > 0.
Setting # = 1 in (4.25) and using (4.17) we get

t
(1 0220 + GIEW | + 2| (149 uels) |
0
t
+2JJ (1 + )| Eo(s)||> ds < Cll. (4.26)
0
Now, letting f = 2 in (4.25) and using (4.26) it follows

(140220 + (1 + 0| EQ|? + 2KJ0(1 52l ()| ds

2

t
+20J (1+ )| Es(s)||> ds < Clo.
0
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Similarly if f = 3 we get

3 t
(107 23(0) + 5 (14 OEQ I + 2| (149 uas)] ds
0
t
4 20J (1+ )| Es(s)||> ds < Clo (4.27)
0
which concludes the proof of Lemma 4.3. O

Lemma 4.4. The estimates

a) (1+z)2J

t
Ju(1) dx + KJ (14 5)2|us(s)||* ds < CI
Q 0

and

t
b) (1 +t)3||u,(t)||2+2J J (1 + ) Juy(s) dx ds < Cl,
0Jo
hold for any t > 0.
Proof. Taking inner product in [L2(Q)]* of (3.1) with u,(7) we obtain

d
dt

N —

Nt (1)) —|—% %JQ Ju(?) dx + «l|u, (1)) * + 7 L} curl E(z) - u,(t)dx = 0. (4.28)

Multiplying identity (4.28) by (1 + 1)2 and integrating by parts over [0,7] we
obtain

N —

(140 (o)) + % (1+ z)zj Ju(t) dx + ;cj (1+5)*[lus(s)1* ds
Q 0

1 1 !
=5l +§J Jug dx—i—J (14 8)[us(s)[| ds
Q 0

+ Jt L}(l + 5)Ju(s) dx ds — yJ

0 0

t

J (1+5) curl E(s) - uy(s) dxds.  (4.29)
Q

Now, we use Lemma 4.1, (3.3) and the following result obtained in [7]
(Theorem 4.2)

(1+ 0)[Ju(n)||* + J; Jg(l + 5)Ju(s) dx ds < CI (4.30)

to deduce from (4.29) for any 0 > 0 the estimate
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t

Ju(?) dx + Kjo(l + 5)Jus(s)|2 ds

N —

(1407 |

Q

~

< Cl+ VJO(I + S>2(HS(S)7 us(s))Ll(Q;ﬂ) ds

t

V
<Cl+=
< 10+5J

(1 + ) [ Hy(5)1Z 2 0 5 + C15J (1+9)?flus(s) 1 ds. (431)
. :

t
0

Choosing 0 > 0 sufficiently small, using (4.22), (4.24) (with f = 3) and (4.27)
together with (4.31) we obtain the conclusion of part a) of Lemma 4.4.

Observe that (4.23) remains valid for f =4,5,.... Finally, we use (4.23) with
S = 4 to obtain

t
E(1+z)3||u,(z)||2+J J (1 + 5) Juy(s) dx ds
4 0JQ
! 2 2 1 3 2
<ChL+C 0(1+s) (s ()| ds+;(1+t) e ()|
t t
O [ s ol s+ 5 [ (1 B as
0 0

70 (" 3 2
+7 (14 s)7||curlug(s)||~ ds.
0

Using (4.27), part a) of lemma and choosing ¢ > 0 sufficiently small we con-
clude part b) of Lemma 4.4. n

Lemma 4.5. The estimate

(14 0 uwe ()]|* + (1 4 1)° JQ Jug (1) dx + (1 + t)5||En(t)||iz(Q;£)

S50
+ (1 + 0’ Ha (O 20 +5 (1 O E ()]

t

+40J (1+5)°| Ew(s)|2 ds < Clo
0

hold for any t > 0.

Proof. We differentiate system (4.8)—(4.15) with respect to ¢ to get

3
0 0 .
Ut — Z E (Alj aixt]t) + KUt + ycurl Elt - 0 m Q X (0, OO), (432)
ij=1""" -

(O,En[ - CuI’l H” + O-E[[ - ycurl u[n — O 11’1 Q X (0, OO)7 (433)
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uHy +curlE, =0  inQ x (0,0), (

div(uH,) =0 inQ x (0, 0), (

Un(0) = (u2,u3, B>, Hy) = «/*Uy  inQ, (4.36
uy; =0, E;xn=0 ondQx (0,00) (

where .o/ is given as in Section 3. We take the inner product in [L2(Q)]’ of (4.32)
with u,(1), (4.33) with E,(¢) and (4.34) with H,(¢). By adding the corresponding
identities we obtain

d¥
7;(1) + k|| (D)||* + || Ex(2)]|> =0,  forany >0 (4.38)

where
1 2 d 2 2
(1) = 3 l[etea (D) |7 + QJUn(l) X+ | Eu(Dl 2y + 1 (Ol 220 -

Multiplying (4.38) by (1 + 7)* where A = 1,2,3,4 or 5 and integrate the result-
ing identity by parts over [0, 7] give us

(14 0)2(0) +KL(1 5t ()| dis + GJO(I +5) | Ex(s)|? ds

— 200+ /IJO(l + 91 %), (4.39)

Now, we take the inner product in [L2(Q)]” of identities (4.8), (4.33) and (4.10)
with (1), E/(t) and H,(t) respectively. Adding the corresponding results we
obtain

2 2 2
e D" + 1 Hu (Ol 22029 — 1Ea(D | 1200,0) — JQ Juy (1) dx

+ % { % e (8)]| + % IE(D? + (Ea(0), ED)) 12 0
3 ja)
+ JQ Z {Al/% (Z)} : gb;ﬂ (7) dx} =0. (4.40)
i,j=1 ] i

Now, we can use similar calculations we did to get (4.22) in order to obtain the
estimate
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t
_ ag _
9 9 g s+ S+ 0 B

t
< Cly+ CJ (1+9)" N Es(s)I ds + C(1L+ 0" En(0)1 2
0

t .
+ CJ J (14 )" Jug(s) dx ds + i(1 + t)”J Juy (1) dx (4.41)
0lJo 27 Q

for A =1,2,3,4 or 5. Let us take the inner product in [L2(Q)]* of (4.32) with u;(7)
we obtain the equality
i d

d
5 E Hutl(l)Hz + JQ Ju[[(l) dx = — EJQ um(l) . Un‘(t> dx

(D)2 = JQ Eu(t) - curl ug (1) dx. (4.42)

We multiply (4.42) by (1 +7)*" and integrate the result by parts over [0, 7] to
obtain for any 0 > 0

t

S 0 )] + L JQ(I 57 g (s) dx ds

K K ! J— A—
=5 llwl* +5 (-1 L(l +9) P g (s)[|P ds — (1 + )" L e (1) - (1) dx

t

+ JQ us -uydx + (A —1) Jo JQ(I + s);’fzum(s) U () dx ds

t t
+J (1 +s)’171||um(s)\|2ds - yJ J (1 +s)'HESS(s) - curl ug(s) dx ds
0 0Ja

13
_ 1 —
< Cly + cj (1+9)" s ()1 s+~ (14 ) (0)
0
K A— ! A—
H 0 )+ € | (149 )] ds
0

- S (! L
+%J (145" 1||Ess(s)||2ds+%J (1 +5)" " "|curl ug(s)||* ds. (4.43)
0 0

Now we use (4.27) to get from (4.43), 2 =1,2,3,4 or 5 and ¢ > 0 sufficiently
small the estimate

1

t i ,
2J J (1+8)" " Jug(s) dxds < Cly + C(1 4 )" |u ()|
0JQ

t t
+ CJ (14 )7 g () | > ds + cJ (14 5)* || Ew(s)| ds.
0 0
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Using the previous estimate and (4.41) in (4.39) we obtain

(1+1)" al
7 B +3

(L+ 0 NE@I? + Kjo(l +5) s (5) | s

t t
+ aJ (14 5)"|| Ess(s)||* ds < CIy + C/IJ (14 5) "7 |ugss ()| > ds
0 0
t

+ Cij (1+8) " Es)N ds + CA1+ 0N Eu(0)l|220
0

+ CA1+ 0" Mg (1)) (4.44)

Choosing 4 = 1 in (4.44) we obtain

t

(1 +t)$3(t)+2KJ

t
(1 +s)||um(s)||2ds+2aj (14 5)||Eg(s)||*ds < CI, ~ (4.45)
0 0

due to (4.38). Next, choosing 4 = 2 in (4.44) and using (4.45) we have
t t
(1402 2(0) + 2KJ (1 -+ 5) uts()] 2 s + 2aJ (1+ 52| Ew(s)|? ds < Chy.
0 0
Similarly, choosing /4 = 3,4 and 5 using the same idea we obtain the estimates

t t
(1+ 02400 + 2KJ (1 + 5) s (5)]| s + 2aJ (1 + 5)°||Ew(s)|2 ds < Clo,
0 0

1 t
(140 %) +2xj (1 +s>“||um<s>||2ds+2aj (1 -+ 5)* | Ew(s)? ds < Cly
0 0

and
(1+0% A0 + 520+ 1B + 26 [ 149 sl s
+ 20J;<1 +5)°|| E(s)||* ds < CI (4.46)
which proves Lemma 4.5. O

Lemma 4.6. The estimates
a) (14 t)4J Ju,(t) dx < CI
Q

and
b) (14 0)°||ua(1)|* < Cly
hold for any t > 0.
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Proof. We take the inner product in [LZ(Q)]3 of (4.8) with u,(r). Afterwards, we
multiply the identity by (1 +¢)*, integrate by parts over [0,7] and use estimates
obtained in Lemmas 4.3 and 4.4 to obtain

1

(0 O + 51+ 0* | o)t [ (145 (o) ds
Q 0

| —

1 1 !
HEYIE +—J Juydx + 2J (1 + 5) s (s)|* s
2 2o 0

t

+2 J; JQ(I + 8)*Jug(s) dx ds — yJO JQ(I + 5)* curl Ey(s) - ug(s) dx ds

< Clp— yJ JQ(I +s)4is[curlEs(s) - uy(s)] dx ds

0

t
—H/J J (14 5)* curl Ey(s) - uy(s) dx ds
0Jo

=Chh—y(1+ t)4J curl E,(1) - u,(t) dx + yJ curl £y - uy dx
Q

Q
t

—|—4yj JQ(I +5)° curl Ey(s) - uy(s) dxds

0

!
—l-yJ J (14 5)* curl E(s) - u(s) dx ds.
0Jo

Using equation (4.10) it follows

t

Juy (1) dx + KJ (14 5)*||uss ()| > ds < CI
0

Sa+0*|

Q

t
+ C(L+ 0| Hu(0) | 2y + €1+ 0 (1)) + CL(l +5) | Ey(s)]|* ds

t t
+ CJ (1 +5)°||curl uy(s)||* ds + CJ (1 +5)°|| Eg(s)]| ds. (4.47)
0 0

Finally, using our estimates obtained in Lemmas 4.3, 4.4 and 4.5 we conclude
that all terms on the right hand side of (4.47) are bounded by CIj, consequently

(1+ z)“J Ju, (1) dx + KJt(l + 5) Y ugs(s)||> ds < Cl. (4.48)
0

N —

Q

Next, we consider 4 = 6 in (4.43) to obtain
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K t
20+ 1) || (1) || +J J (14 5)°Jug(s) dx ds < CI
Q
1
" cj (149 a2 ds (14 00 + cj (14 5)° tg(5)]1 s

5 t
+ L J (14 5)3|| Exs(s )||2ds+y—J (1+ 5)°|[curl s (s)| ds.
20 2 ),

Choosing ¢ > 0 sufficiently small and using (4.46) and (4.48) we deduce the
part b) of Lemma 4.6. |

Proof of Theorem 4.1. 1) follows using Lemma 4.2 and (4.30). Part ii) follows
using Lemmas 4.3, 4.4 together with (3.2). To prove iii) we can use Lemmas 4.3,
4.4 and (3.3) to prove the decay rate for the terms ||u,(?)||, || H,(¢)|| and ||curl E(7)]|.
The term ||Lu(t)|| decays at that rate using Lemmas 4.3 and 4.4 together with
(3.1). Next, iv) follows using Lemmas 4.5 and 4.6 together with (4.9). Finally,
v) follows for the terms |[u(7)|], [ Juu () dx, ||[E4(t)|| and ||H; (1) due to Lemma
4.5. The term ||curl E,(7)|| decay to the requlred rate due to Lemma 4.5 and (4.10).
The terms |u,(7)|| and ||Lu,(7)|| decay at rate (1+ ) using Lemma 4.6 and
Lemmas 4.5 and 4.6 together with (4.8) respectively.

Corollary 4.7. Under the assumptions of Theorem 4.1, the solution (u,u,, E, H) of
system (3.1)—(3.7) satisfies the estimates:

i) [|Lu(t) = yeurd E(0)| g < Co(1+1)7°
i) ||—oe 'E(t) + ye ! curlu, (1) + ¢! curlH(t)||§{<Curl;Q) < Cly(1 +1)
iii) [l curl E(0)l|7cun.0) < Clo(1+ 1)

-2

for any t > 0 where C is positive constant independent of the initial data.

Proof. By having Uy € D(«#?) and U,(t) = «/U(t) then U,(t) = ./ U,(t) and
AU (1) = 2*U(t). Thus, U,(t) = .«/>U(1), that is,

uy () = Lu(t) — xu,(t) — yeurl E(1), (4.49)
e (t) = Luy(t) — kLu(t) + *u,() + ry curl E(z)
— yeurl(—ae 'E(t) + ye~ ' curlu, (1) + &' curl H(7)), (4.50)

Eu(t) = o e VE(t) — oye e curluy (1) — oe e curl H(7)
+ ye " eurl (Lu(t) — xu (1) — yeurl E(¢)) — & ' curl(p ' curl E(7)), (4.51)
Hy(t) = —p ' eurl(—ae  E(t) + pe~ " curlu,(¢) + &' curl H(r)). (4.52)
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Using (4.49) and Theorem 4.1 we obtain

2 2 -3
L) — yeurl ()0 0y = ln(0) + x(0) | Fs gy < Clo(1+ 1),

By (4.50) we have

curl(—ae ' E(t) + ye~ ' curlu,(t) + &' curl H(1))

1 1 2
= =S tl0) + L) = gLu(t) + %u,(l) +rcurll E(r).  (4.53)

It follows from (4.53) and Theorem 4.1 the estimates
|—oe ' E(r) + e~ curluy (1) + &' curl H()|| 3y cun. 0
= ||—oe "E(1) + ye " curlu, (1) + &' curl H(7)||?

1 -
+ 2 | —=t470:(2) + Luy(£) — kLu(t) + 12u (1) + yecurl E(n)||* < Cly(1 +1)~*

By (4.51) and (4.49) we have
curl (i curl E(1)) = —¢E,(t) + o ' E(1)
—oye Leurlu (t) — oe curl H(¢) + yeurlu,(t).  (4.54)
Using (4.54) and Theorem 4.1 we obtain
" curl E(0) 3y = ™ curl (1)

+ || —eE4(t) + a?e ' E(t) — aye ! curlu, (1)
—oe curl H(1) + yeurl u, ()|
<CL(l+1)7

where we used the estimates
leurl (1)) < cJ Ju(ydx and  feurlug(d)|? < CJ Jug(£) dx.
Q Q
Thus, the Corollary 4.7 is proved. O

5. The nonlinearly damped system: well posedness and asymptotic behavior

Using the results obtained in Section 4 for the linear system we now we will prove
the global well posedness of system (1.1)—(1.6) and the asymptotic behavior of the
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solutions. Let us write F(&) = k¢ + f(&) with k > 0 and ¢ € R®. We will assume:
(H4): Let /= (fi, />, /3) with f;: R® — R such that f; € ¥*(R?). There exist
positive constants k;, j =1,2,3 such that for some p > 2 we have the growth
conditions

£ < kel
VA < kaleTh, i=1,2,3
’ aaf<>’<klé“ ij=123

Xj

for any ¢ € R®. Here | - | denotes the norm in R>.
Problem (1.1)—(1.3) with F(&) = ¢ + f(£) and initial condition (1.5) is equi-
valent to

”;_’[J(z) = A U(1) + G(U(1)) (5.1)
U(0) = Uy

where U(1) = (u(1), u,(1), E() H(t)), Uy = (ug,ur,Eo,Hy), </ is the operator
defined in Section 3 and G(U(1)) = (0, — f (u(2)),0,0).

Lemma 5.1. Assume that the entries of ¢ and u belong to W'*(Q). The map

G : D(#?) — D(4?) satisfies
1) Given any positive constant M, there exists Ly such that

1G(v) = GOW)lIp(ery < Ll = wlip()

for any w,v € D(.o/?) such that Wl o2y < M and [|v]| p(,2) < M.
i) The map G takes bounded sets of D(4?) into bounded sets of D(.o/?).

Proof. With the same notations as in Section 3, let w,v € D(.7%) such that

Wl p(2y <M and [[v][p,2) < M. Let us denote by w = (wi, w2, w3, ws) and
v= (01,02,03, v4). Clearly

1G(v) = G)lly = 1./ (v2) — Z 1fie2) = fi(w2)ll)- (5:2)

Using the mean value theorem in (5.2) follows the existence of a positive
constant C = C(M) such that

1G() = GO < C(M) o2 = w2* < C(M)l|o = w]()-
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By definition of the operator .7 we have

| (G(®) = G) || = [0, £ (12) = £(2),0,0) |3
= || (f (02) = f(w2), =f (v2) + 1S (w2), ye Leurl £(vy) — ye ! curl f(ws), )HX

< Cllf (02) = )y = CZ 1fiw2) = fiw) 71

Remains to prove that there exists a positive constant C = C(M) such that

P 2

a(fi(uz) — fi(w)) < C(M)|lv— W[},  holds for i, j=1,2,3.
J

L2(Q)

Let Uy = (1)271, 022, 1)273) and Wy = (W2,1,W2,2, 11/273). USil’lg the chain rule
we obtain for each i, j = 1,2, 3.

P 2

— (fi(v2) = fi(w2))

an

L(Q)

Ovay Ovan Ov OWs | Owyy OW 2
= J ‘Vfi(uz) . < 2,1 0022 2.3> —Vfi(wa) - < 2,1 2,2 2’3>‘ .
I

6)(] ’ ﬁxj ’ 5Xj 8Xj ’ an ’ ﬁxj
O0vp 1 Ovy gy Ov . 0wy 1 Owy o Ow 2
<2 vt (G20 522, 020) - wpen) - (G2t D22 D22
Q
aWz 1 (3Wz 2 511/2 3 aWz 1 (3Wz 2 511/2 3 2
2 vi : ) ; -V : ) - ) , d
+ JQ fi(2) <§xj ox; =~ 0x; filwa) - ox; ' 0x;  0x; *
6W27 1 (3W2,2 6Wz7 3 2
6xj ’ an ’ 6Xj

dx

Ox; ~ 0x; = 0x; ox;  0x; ' Ox;
< CHVfi(U2)H[ZLx(Q)]3||UZ - W2||[ZHI(Q)]3

+ C||Vfi(v2) — Vﬁ(WZ)H[Zu(Q)]‘

1A

2 2 2
< C(M)||va — WZH[HI(Q)]3 + Ci(M)|lv2 — WZH[L4(Q)]3 < C(M)|v— W”D(,;/)

which proves 1).
Next, let w e D(./?), w = (w1, ws, w3, ws) such that [Wllp(e2) < M. Due to
item 1) we know

IGONIIE + [l (Gom) [ < c(a).
Using the definition of the operator .o/ (see Section 3), we have

/(GO = |20, £ (02).0.0) [ = Cl e
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To conclude the prove of ii) remains only to verify the existence of a positive
constant C = C(M) such that

*f;

01 0X;

2
(w2)

LX(Q)

<C(M), foranyi, j k=123

Let wy = (w2, 1, w22, w2,3) then an straightforward calculation

o%f; S dwa dwag | N e
A (‘VZ)n;_:l{ag,naé,(WZ) e o +m;azm 0v2) e

where fi(&) = fi(&, &, &).

Therefore, we obtain the estimate

ol <o S R (2
o gy o Pl el 0x el 8% 1l
621412m ’
+ CIVE) 1 ) Z e < C(M)
which proves item ii) of Lemma 5.1. |

We will use a well known result for evolution systems, see for instance the
book of H. Brezis and T. Cazenave [2].

Theorem 5.2. Let X, be a reflexive Banach space and G : D(</) — D(<#1) where
o1 is the infinitesimal generator of a 6y semigroup in X,. Assume

1) G maps bounded sets of D(.<y) into bounded sets of D(./}).

ii) For every M > 0 there exists a positive constant C = C(M) such that

1G(v) = GW)ly, < C(M)][v = wlly,
for all w,v € D(o/) such that ||w|p ., < M, ||[v]lp,) < M.

Then, for every vy € D(.7)) there exists a unique strong solution of the problem

dv
E(z) = oAv(1) + G(v(1))

v(0) = vy

defined on the maximal interval of existence [0, T,,). Furthermore, either T,, = + o0
or T,, < oo In the later case

lim (Jo(0)ll, + [ 0(0) ) = +o.
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We can now use Theorem 5.2 to prove local existence for system (5.1).

Theorem 5.3. Let Q = R be an exterior domain (unbounded with bounded com-
plement) with boundary 0Q of class 6°. Assume conditions (H1), (H2), (H3) and
(H4). Furthermore, let us suppose that the entries of & and u belong to W= (Q). If
(uo,u1, Eo, Hy) belongs to D(%z) N Y, then there exist T,, > 0 such that problem
(1.1)—(1.6) (with F(u,) = xu, + f(u;)) has a unique solution

(u,ur, E,H) € 6([0, T,0); D(4*) 0 Y) 06" ([0, T); D(A) A Y).
Furthermore, T,, = +o0 or T,, < +o0 in this case

lim [| (u(0), we(0), E(0), H (1)) | 2y = +00

=Ty n
where || - || p(,2) is the norm defined in (3.10).

Proof. Let X; = D(</). We define the operator .o/; with domain D(.</)) =
{w e X1; o/w € X} and given by

\w=./w, foranywe D(<).

Clearly, .7 is the infinitesimal generator of a semigroup %, in X; and if we
denote by {Si(7)},-, the semigroup generator by .¢/; and {S(#)},-, the one gener-
ated by .o/ we have

Si()w= S(t)w, foranywe X; and ¢ > 0.

Observe that D(.«7) = D(.«/*), therefore using Lemma 5.1 the map G : D(.«Z|)
— D(.</)) satisfies the assumptions of Theorem 5.2. In a similar way as done in [7]
we can show that whenever divuHy = 0 then divuH(t) = 0 for any ¢ > 0. The
proof of Theorem 5.3 is now complete. O

Next, we prove global existence of the nonlinearly damped system using the
decay estimates for the associated linear system. We recall that || - | means the
norm in [L3(Q)]°.

Let w = (wy, wa, w3, wa) € D(o/ 2) N Y and define the quantities
ity = [lwill + [[wall;

1/2
lwlly = ||ws]| + [[curl wal| + (J Jwi(x) dx)
Q

+ || —oe'wy + e curlwy + &7 curl wall g (curt: ) T | curl W3l g1 (curt; )
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w5 = ||wall + [[Lw1]| + [|curlws|| + ||Lw; — ycurl W3H[H1(Q)]3;

1/2

Il = ( | watorax) "
Q
[wlls = [[Lwa - (53)
Our aim in this section is to prove the following.

Theorem 5.4. Under the assumptions of Theorem 5.3, let (ug,uy, Ey, Hy) €
D(4*) N Y such that uHy = curlyy, for some y, € Ho(curl; Q) and (uy + uy) €
[LS/5(Q)]°. Then, there exists 5y > 0 sufficiently small such that if Iy < &y, system
(1.1)—(1.6) (with F(u,) = xu, + f(u;)) has a unique strong solution

(u,ur, E,H) € 6([0,+00); D(/*) A Y) %" ([0,4+0); D(«/) N Y)

and has the following decay rates
D) u()l® + [H@)* < Ch(1+1)"

i) |E()|)* + |lcurl H(2)|)* + JQJu(x, 1) dx < CIhy(1+1)?
iii) |, (2)|* + || Lu(2)||* + ||curl E()||* < Clo(1 41)°

iv) JQ Juy(x,0) dx < Clh(1 + 1)~

V) L (0)|* < Chy(1 4 1)~

for any t > 0 where C is a positive constant (independent of the initial data) and I,
is given as in Theorem 4.1.

Proof. We recall that {S()},. , is the semigroup generated by .«/. With our nota-
tions in (5.3) and the results of Theorem 4.1 we have that

||S t [u(),ul,E(),Ho]Hl < C]OI/Z(I +1 12

(1) )
(1) P14 0)”
1S () w0, 1, Eo, Hol|ls < CI,*(1+ 1)/ (5.4)
() P+
(1) (141"

1

S(t [uo,ul,E(),H()]Hz < Clol 1+t

2 2

||S t [uo,ul,E(),Ho]||4 < Clol 1+¢

1/2

1S (0) o, w1, Eo, Ho)lls < CI. "

1 +1¢

holds for some positive constant C and for any # > 0. Let us define

Io(s) = ||f(”t(s))||[21-12(g)]3 + ||f(“f(s))”[2L6/5(Q)]3
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for 0 < s < T, and u is the solution given in Theorem 5.3. We claim that

Ip(s) < é||u,(s)||[21§2(9)]3 for 0 <s < T, (5.5)

In fact, using (H4) and denoting by u,(s) = (u; (s),u?(s),u; (s)) we have

zuf () 2y + 11 (ae)) | sy

3
Z 1 ) 2 + 17 @) [ 12(0) + Cllue( 1T

=< C1||u1( )||[L7,} Q) + C]HM;( )H [Lo/5(Q)]?

3 62
Z aém ) ®

0 o ouk |7
+j7§165maék( ) Gy ) 7 0] S ol 1A
2,1 2, 2,3 2
—i—CzZJ |uy(x, ) 2p-1) (%xzt (x,5), 66 2 (x,s),aaxg (x,s)) dx
: u u? 3 ¢
# G 3| 7 (G 9. G o S )|
[[ur(s)
which prove our claim (5.5). As a consequence of (5.4) we deduce
1St = 9)G(U))||, < > ()1 +1—5)7"/2
IS =9)G(U@)], < L +1=5)"
IS =9)G(UE)|, < Cl ()1 +1 -5 (5:6)
ISt =9GUE) ||, = Cl 1 +1=5)7
ISt =9G(UE) s < Cl )1 +1 =57

for any 0 <s<tand 0 <t< T,. Let K a positive constant such that K > C
where C is the constant which appears in (5.4) and (5.6).
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We will prove Theorem 5.4 by contradiction: Assume that at least one of the
following inequalities is untrue for 0 <7 < T,

1/2
(1 +0"2| U@, <K1'
(1+0)|U@)], < K1,
1+ 0| U@, < K1, (5.7)
(140Ul < K12
(141)

5/2 1/2
1+ 0 u)]s < K1y,

Suppose (for example) that the first inequality of (5.7) is untrue. Then, by con-
tinuity we should have some 7 with 0 < T} < T, such that

1+ 0" |U@)|, < KI,?,  forany 0 <1< T,
1/2
(1+ 1)U, = K1y
A+ U@, > K1}, forany Ty <t < T\ +é
for some ¢ > 0. It may happen that other inequality in (5.7) be also untrue. Sup-

pose (for example) the second inequality in (5.7) is untrue. Then, by continuity we
will have some 75 with 0 < 7> < T}, such that

1+ 0)|U®@)|l, < KI)?,  forany 0 << T,
(1+ D) U(D)|, = K1y

1+ 0)|U®@)||, > KI,?,  forany Ty <t < Th + ¢
for some & > 0. Taking ﬁ = min{7}, 7>} we will have

1+ 02U, < KL}, forany 0 <1< T,

1+ )|U®)|l, < K1), for any 0 < 7 < T

and at least one of the following identities be valid

(1+ To) | U(Ty)||, = K1,
(14 To)|U(To)|l, = KI,"*.
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Then, by continuity we should have some Ty, 0 < Ty < T, such that

(l—l—l)l/zHU()H <KII/2 forany 0 <t < Ty
1+ )| U @), < K1}, for any 0 < 7 < T,
1+ 02| U@)|l; < KI,”?,  forany 0 <1< T,
(1+71) ||U()||4<KII/2 forany 0 <t < Ty
(1+ 02| U@)||s < KI,”?,  forany 0 <1< T,

and at least one of the following identities be valid

(1+ 7o) | U(To)ly = K1,

(1+ To)| U(To)ll, = K1,

(1+ 7o) U(To)[l5 = K1y (5.8)
(1+ To)? | U(To)ll, = K1,

(1+ To) | U(T) s = K1, .

Now, we will reach the contradiction using the estimates below. We obtain
the existence of some J; >0, i =1,...,5 such that if Iy < min{d;,d,,d3,d4,05}
then

(1+0"2|U@), <K11/27 forany 0 <t < T
1+ 0| U@, < KT}, forany 0 < 1 < T,
1+ 0| U@)|, < KI,”?,  forany 0 <1< T,
(1+t)2||U()||4<K11/2 forany 0 <t < T
1+ 02| U@)||s < KI,”?,  forany 0 <7< T,

which is in contradiction with (5.8). The estimates are the following:

Since g = —Lu,(1) + u,(f) belongs to [L2(Q)]” in our region Q (for 0 < 1 < T,,)
we can use elliptic regularity to obtain from —Lu,(t) + u,(t) = ¢ that wu,(¢) €
[H2(Q)]? and

ol < CollZaD]] + [ 0) 3

for some positive constant Cy. Therefore, for any p > 2 we have

O < CEUNT@s + 1V}
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(see (5.3)), where U(t) = (u(1),u,(1), E(t), H(t)). Using (5.8) it follows that

2 - .
Hur(I)HFHZ(Q)f < Cé)KP[(‘;’/ {(1 +Z) 5/2+(1 +l) 3/2}17
<2CPKPIP (140777 (5.9)
for any 0 <t < Ty.
Now, we use (5.4), (5.6) and the variation of parameter’s formula
t

U(t) = S(1)Uy + JO S(t — $)G(U(s)) ds

to estimate in the norma || - ||, for any 0 < ¢ < Ty

t
WU, < (1 + 07" + cJ (41— )V (5) ds
0

t
<1+ 4 cc? J0(1 1= ) Pl (] g0
<cn(1+0)7'?
t
+ 2cgccl/2J (141 =) 2KPIPP(1 + 5) P2 ds (5.10)
0

where we used (5.5) and (5.9). In the last term on the right hand side of (5.10) we
can use a calculus lemma (see R. Racke [21] or R. Ikehata [15]) which says that the
estimate

t
+t—s + 5 s < +t orany t >
1 a4y Pas< 1+ f 0
0

holds as long as f > 1. Thus, from (5.10) we obtain
U@, < CL*(1+ 072 4 2¢2CCVPCukP TP (1 + 1)~

for any 0 < ¢ < Tj. Letd; > 0 such that

2/(p—-1
K_C /(p=1)
51 S # .
2CLCC'PCyKkr

Therefore, if we take Iy < 0, it follows that

NU)]l; <K101/2(1+z)’1/2, for any 0 < ¢ < Ty. (5.11)
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Similarly, if we use the calculus estimates (see [21])

t
J O T e e Cp(1 + 0", whenever > 1
0
and
t
Jo(l +1—8) "1 +s)Pds< C(B,m)(1+1)™, whenever 1 <m <p
we obtain
U@, < KL (1+ 07!
U5 < Kl (1+0)72 (5.12)
U@, < KL, (1+ 1)
1U()lls < Ky (1+ 1)~

forany 0 <t < Ty.

Observe that the norms Y7, | - ||, and || - I p(es2) are equivalent in D(7?).
Thus, we conclude the existence of d > 0 such that if [y < J then the solution of
problem (5.1) satisfies || U(7) | p(.,2) < K> for any 7 € [0, 7},) and some positive con-
stant K. Therefore, Theorem 5 3 implies that 7}, = + 0. O
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