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Abstract. There is a standard ‘‘word length’’ metric canonically associated to any set of
generators for a group. In particular, for any integers a and b greater than 1, the additive
group Z has generating sets faigli¼0 and fb jglj¼0 with associated metrics dA and dB,
respectively. It is proved that these metrics are bi-Lipschitz equivalent if and only if there
exist positive integers m and n such that am ¼ bn.
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1. Groups as metric spaces

A beautiful unsolved problem in metric geometry and geometric group theory is to

determine if the additive group of integers with the word metric determined by the

generating set of powers of 2 is quasi-isometric to the additive group of integers

with the word metric determined by the generating set of powers of 3. A related

question is to determine if these two arithmetically defined metric spaces are

bi-Lipschitz equivalent or if their metrics are bi-Lipschitz equivalent. This paper

gives a simple necessary and su‰cient condition for word metrics on Z defined by

geometric series to be bi-Lipschitz equivalent. In particular, it follows that

the word metrics defined by the sets f2 igli¼1 and f3 jglj¼1 are not bi-Lipschitz

equivalent.

This work is related to recent work on phase transitions in infinitely generated

groups (Alpert [1], Jin [2], Nathanson [6], [7]).



In order to make this paper accessible to number theorists as well as geometers,

and to fix terminology, I begin with a brief introduction to bi-Lipschitz equi-

valence and word metrics on groups. For more information on these topics, see

Burago, Burago, and Ivanov [3], de la Harpe [4], and Gromov [5].

Two metrics dA and dB on the same set X are called bi-Lipschitz equivalent

metrics if there exists a number Kb 1 such that

1

K
dAðx1; x2Þa dBðx1; x2ÞaKdAðx1; x2Þ ð1Þ

for all x1; x2 a X . In this paper we study metrics on the additive group Z of inte-

gers that are defined in a natural way by geometric progressions, and give a neces-

sary and su‰cient condition for two such metrics to be bi-Lipschitz equivalent.

More generally, two metric spaces ðX ; dX Þ and ðY ; dY Þ are called bi-Lipschitz

equivalent if there exists a function f from X onto Y such that

1

K
dX ðx1; x2Þa dY

�
f ðx1Þ; f ðx2Þ

�
aKdX ðx1; x2Þ

for some number Kb 1 and all x1; x2 a X . The function f is called a bi-Lipschitz

equivalence; it is necessarily a homeomorphism. In particular, the metrics dA and

dB on a set X are bi-Lipschitz equivalent metrics if and only if the identity map

from ðX ; dAÞ to ðX ; dBÞ is a bi-Lipschitz equivalence.

Let G be a group with identity e, and let A be a set of generators for G. The set

A may be finite or infinite. Let A�1 ¼ fa�1 : a a Ag. A word with respect to A is a

finite product of the form a1a2 . . . an, where ai a AAA�1 for i ¼ 1; . . . ; n. We call

n the length of this word. An element x a Gnfeg has length lAðxÞ ¼ n with respect

to the generating set A if n is the least positive integer such that x can be written as

a word with respect to A of length n. We define lAðeÞ ¼ 0. Every element of G has

finite length because A generates G.

The length function has the following properties. First, lAðxÞ ¼ 0 if and only if

x ¼ e. Second, lAðxÞ ¼ lAðx�1Þ for all x a G. Third, there is the subadditivity

condition

lAðxyÞa lAðxÞ þ lAðyÞ ð2Þ

for all x; y a G.

We use the length function associated with the generating set A to construct a

distance function dA on the group G. For all x; y a G, let dAðx; yÞ be the length of

the group element x�1y, that is,

dAðx; yÞ ¼ lAðx�1yÞ
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for all x; y a X . (If G is an abelian group, written additively, we define

dAðx; yÞ ¼ lAðy� xÞ:) In particular, dAðx; eÞ ¼ lAðxÞ for all x a G. It follows

that dAðx; yÞ ¼ 0 if and only if lAðx�1yÞ ¼ 0, that is, if and only if x�1y ¼ e or

x ¼ y. Similarly,

dAðx; yÞ ¼ lAðx�1yÞ ¼ l
�
ðx�1yÞ�1� ¼ lðy�1xÞ ¼ dAðy; xÞ:

By inequality (2), we have

dAðx; zÞ ¼ lðx�1zÞ ¼ lðx�1yy�1zÞa lðx�1yÞ þ lðy�1zÞ ¼ dAðx; yÞ þ dAðy; zÞ

for all x; y; z a G, and so d satisfies the triangle inequality. Thus, ðG; dAÞ is a

metric space. We call dA the metric associated to the generating set A.

Lemma 1.1. Let A ¼ faigi A I and B ¼ fbjgj A J be generating sets for the group G.

Let lA and lB be the corresponding length functions, and dA and dB the associated

metrics on G. The following conditions are equivalent:

(i) supflAðbjÞ : j a Jg < l and supflBðaiÞ : i a Ig < l.

(ii) The metrics dA and dB are bi-Lipschitz equivalent.

Proof. If KB ¼ supflAðbjÞ : j a Jg < l, then every generator bj a B can be repre-

sented as product of at most KB elements of AAA�1. Taking the inverse of this

representation, we see that the inverse generator b�1
j can also be represented as a

product of at most KB elements of AAA�1. Let x; y a G. If dBðx; yÞ ¼ n, then

x�1y is a product of n elements of BAB�1. Writing each of these as a product

of at most KB elements of AAA�1, we obtain a representation of x�1y as the prod-

uct of at most KBn elements of AAA�1, and so dAðx; yÞaKBn ¼ KBdBðx; yÞ.
Similarly, if KA ¼ supflBðaiÞ : i a Ig < l, then every element in AAA�1 can be

represented as a product of at most KA elements of BAB�1, and dBðx; yÞa
KAdAðx; yÞ. Thus, if KA < l and KB < l, then inequality (1) holds with

K ¼ maxðKA;KBÞ, and the metrics dA and dB are equivalent. This proves that (i)

implies (ii).

Conversely, if the metrics are dA and dB are bi-Lipschitz equivalent, then there

exists a number Kb 1 such that inequality (1) holds. For every generator ai a A

we have

lBðaiÞ ¼ dBðai; eÞaKdAðai; eÞ ¼ KlAðaiÞ ¼ K

and so supflBðaiÞ : i a IgaK < l. Similarly, supflAðbjÞ : j a JgaK < l.

Therefore, (ii) implies (i). This completes the proof. r
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Corollary 1.2. Let A ¼ faigi A I and B ¼ fbjgj A J be generating sets for the group

G. If A and B are finite sets, then the associated metrics dA and dB are bi-Lipschitz

equivalent.

Proof. It su‰ces to observe that the finite sets of numbers flBðaiÞ : i a Ig and

flAðbjÞ : j a Jg have finite upper bounds. r

Corollary 1.3. Let A ¼ faigi A I and B ¼ fbjgj A J be generating sets for the group

G. If A is a finite set and B is an infinite set, then the associated metrics dA and dB
are not bi-Lipschitz equivalent.

Proof. If jAj ¼ r < l, then jAAA�1ja 2r, and for every positive integer s there

are less than ð2rÞsþ1 words with respect to AAA�1 of length at most s. Since B

is infinite, it follows that there are infinitely many generators bj a B with

lAðbjÞ > s, and so supflAðbjÞ : j a Jg ¼ l. Therefore, the metrics dA and dB are

not bi-Lipschitz equivalent. r

It remains to determine when the metrics associated with di¤erent infinite

generating sets for a group are bi-Lipschitz equivalent. This is an open problem

even for Z, the additive group of integers, for which the generating sets are the

sets (finite or infinite) of relatively prime integers. We shall prove the following

theorem, which determines when the metrics associated with infinite geometric

sequences of integers are bi-Lipschitz equivalent.

Main Theorem. Let a and b be integers greater than 1, and consider the additive

group Z with generating sets A ¼ faigli¼0 and B ¼ fb jglj¼0. Let dA and dB be the

metrics on Z associated with the generating sets A and B, respectively. These met-

rics are bi-Lipschitz equivalent if and only if there exist positive integers m and n

such that am ¼ bn.

2. Representations of integer powers to various integer bases

Let a be an integer greater than 1. Every nonnegative integer n has a unique

a-adic representation

n ¼
Xl
i¼0

dia
i ð3Þ

where di a f0; 1; 2; . . . ; a� 1g for all nonnegative integers i, and di ¼ 0 for all

su‰ciently large i. For integers u < v we denote by ½u; vÞ the interval of integers

fu; uþ 1; . . . ; v� 1g. An interval ½u; vÞ is called an a-adic block for the positive
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integer n if, in the a-adic expansion (3), we have di A 0 for all i a ½u; vÞ. The a-adic

block ½u; vÞ for the positive integer n is called a maximal a-adic block if either u ¼ 0

and dv ¼ 0, or ub 1 and du�1 ¼ dv ¼ 0. We define the maximal a-adic block func-

tion MAðnÞ as the number of maximal a-adic blocks in the a-adic expansion of n.

For example, if I is a set of k nonnegative integers, if di a f1; 2; . . . ; a� 1g for

i a I , and if n ¼
P

i A I dia
i, then MAðnÞa k. Moreover, MAðnÞ ¼ k if and only if

no two elements of I are consecutive.

Lemma 2.1. Let ab 2 and rb 1. Let J ¼ f jigr
i¼0 be a strictly decreasing sequence

of nonnegative integers and let dji a f1; 2; . . . ; a� 1g for i ¼ 0; 1; . . . ; r. If

nJ ¼ dj0a
j0 �

Xr

i¼1

dji a
ji

then

MAðnJÞa r

and

nJ ¼ ðdj0 � 1Þa j0 þ
Xj0�1

i¼ jrþ1

d 0i a
i þ d 0jra

jr ;

where d 0i a f0; 1; 2; . . . ; a� 1g for i ¼ jr; . . . ; j0 � 1 and d 0jr A 0.

Proof. The proof is by induction on r. For r ¼ 1 we have

nJ ¼ dj0a
j0 � dj1a

j1

¼ ðdj0 � 1Þa j0 þ ða j0 � a j1Þ � ðdj1 � 1Þa j1

¼ ðdj0 � 1Þa j0 þ
Xj0�1

i¼ j1

ða� 1Þai � ðdj1 � 1Þa j1

¼ ðdj0 � 1Þa j0 þ
Xj0�1

i¼ j1þ1

ða� 1Þai þ ða� dj1Þa j1

and

1a a� dj1 a a� 1:

The nonzero digits of nJ form a single a-adic block, and so MAðnJÞ ¼ 1.
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Let rb 1 and suppose that the Lemma is true for r. Let J ¼ f jigrþ1
i¼0 be a

strictly decreasing sequence of nonnegative integers and let dji a f1; 2; . . . ; a� 1g
for i ¼ 0; 1; . . . ; r; rþ 1. We consider the integer

nJ ¼ dj0a
j0 �

Xrþ1

i¼1

dji a
ji :

Let

mJ ¼ dj0a
j0 �

Xr

i¼1

dji a
ji :

By the induction hypothesis, MAðmJÞa r, and a jr is the smallest power of a that

appears in the a-adic expansion of mJ with a nonzero digit. It follows that

MAðmJÞ � 1aMAðmJ � a jrÞaMAðmJÞa r:

We write

nJ ¼ mJ � djrþ1
a jrþ1 ¼ ðmJ � a jrÞ þ ða jr � djrþ1

a jrþ1Þ:

Again applying the induction hypothesis, we see that the positive integer

a jr � djrþ1
a jrþ1 has exactly one maximal a-adic block, and that the largest power

of a that appears in its a-adic expansion with a nonzero digit is less than a jr . It

follows that

MAðmJÞaMAðnJÞaMAðmJÞ þ 1a rþ 1:

Moreover, a jrþ1 is the smallest power of a that appears in the a-adic expansion of

a jr � djrþ1
a jrþ1 with a nonzero digit, and so a jrþ1 is the smallest power of a that

appears in the a-adic expansion of nJ with a nonzero digit. This completes the

proof. r

Lemma 2.2. Let I and W be disjoint finite sets of nonnegative integers. Let ab 2,

and let di a f1; 2; . . . ; a� 1g for i a I and dw a f1; 2; . . . ; a� 1g for w a W. Then

MA

�X
i A I

dia
i
�
� jW jaMA

�X
i A I

dia
i þ

X
w AW

dwa
w
�
aMA

�X
i A I

dia
i
�
þ jW j:

Proof. It su‰ces to prove the Lemma for jW j ¼ 1. Adding a ‘‘new’’ power of a to

an a-adic representation changes a zero digit to a nonzero digit. If the former zero
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digit was adjacent to two nonzero digits, then the number of maximal a-adic

blocks decreases by 1. If the former zero digit was adjacent to one zero digit and

to one nonzero digit, then the number of maximal a-adic blocks does not change.

If the former zero digit was adjacent to two zero digits, then the number of maxi-

mal a-adic blocks increases by 1. This completes the proof. r

Lemma 2.3. Let ab 2 and kb 1. If n is a positive integer such that

n ¼
X
t AT

etdta
t;

where T is a set of k nonnegative integers, dt a f1; 2; . . . ; a� 1g and et a f1;�1g for

all t a T, then MAðnÞa k.

Proof. Since n is positive, it follows that et� ¼ 1 for t� ¼ maxðTÞ. If et ¼ 1 for

all t a T , then n ¼
P

t AT dta
t is the a-adic representation, which has exactly k

nonzero digits, and so MAðnÞa k.

Suppose that et ¼ �1 for some t a T . Arrange T in strictly increasing order

t1 < t2 < � � � < tk. Let U be the set of all ti with ib 2 such that eti ¼ 1 and

eti�1
¼ �1. Let l ¼ cardðUÞ. We observe that et� ¼ 1 implies that lb 1. Arrange

the elements of U in strictly increasing order

u1 < � � � < ul:

Define u0 ¼ �1. For j ¼ 1; 2; . . . ; l, let

Vj ¼ ft a T : uj�1 < t < uj and et ¼ �1g:

The set Vj is nonempty for all j ¼ 1; 2; . . . ; l. If

vj ¼ minðVjÞ

then

uj�1 < vj < uj for j ¼ 1; . . . ; l:

Moreover, et� ¼ 1 implies that if t a T and et ¼ �1, then t a Vj for some j. Let

V ¼ 6l

j¼1 Vj . We define

nVj
¼ eujduj a

uj þ
X
v AVj

evdva
v ¼ duj a

uj �
X
v AVj

dva
v:
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By Lemma 2.1,

auj�1þ1
a avj a nVj

< aujþ1 ð4Þ

and avj is the smallest power of a that appears in the a-adic expansion of nVj
with a

nonzero digit. Also,

MAðnVj
Þa cardðVjÞ:

We define

n 0 ¼
X

t AUAV

etdta
t ¼

Xl

j¼1

nVj
:

Then

MAðn 0Þa
Xl

j¼1

MAðnVj
Þa

Xl

j¼1

cardðVjÞ ¼ cardðVÞ:

Let W ¼ TnðU AVÞ: Then ew ¼ 1 for all w a W , and

n ¼ n 0 þ
X
w AW

dwa
w:

Let I be the set of all nonnegative integers i such that ai occurs with a non-

zero digit in the a-adic representation of n 0. If i a I , then vj a ia uj for some

j a f1; 2; . . . ; lg. On the other hand, if w a W , then w > ul or uj�1 < w < vj for

some j a f1; 2; . . . ; lg. Therefore, I BW ¼ j. An application of Lemma 2.2 gives

MAðnÞaMAðn 0Þ þ jW ja jV j þ jW j ¼ k � jU ja k � 1:

This completes the proof. r

Let n ¼
Pl

i¼0 dia
i be the a-adic expansion of the positive integer n. We intro-

duce the function

ordAðnÞ ¼ maxfi : di A 0g:

Let r ¼ ordAðnÞ. For every positive integer ka rþ 1, we call the k-tuple

ðdr�kþ1; dr�kþ2; . . . ; dr�1; drÞ a f0; 1; 2; . . . ; a� 1gk�1 � f1; 2; . . . ; a� 1g

the leading k-digit string of n with respect to a.

The following result is presumably well known.
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Lemma 2.4. Let a and b be integers greater than 1 such that amA bn for

all positive integers m and n. Let ðg0; g1; . . . ; gk�2; gk�1Þ be a k-tuple in

f0; 1; 2; . . . ; a� 1gk�1 � f1; 2; . . . ; a� 1g. There exist infinitely many positive inte-

gers n such that bn has leading k-digit string ðg0; g1; . . . ; gk�2; gk�1Þ with respect to a.

Proof. We claim that the positive real number log b=ðk log aÞ is irrational for all
positive integers k. If not, then there exist positive integers r and s such that

log b=ðk log aÞ ¼ r=s, or equivalently, akr ¼ bs, which is absurd.

Let t ¼
Pk�1

i¼0 gia
i. Since gk�1 a f1; 2; . . . ; a� 1g, we have ak�1a t < ak, and

so

0a
k � 1

k
a

log t

k log a
<

logðtþ 1Þ
k log a

a 1:

Let fxg denote the fractional part of the real number x. Since the sequence of

fractional parts of the positive integral multiples of an irrational number is uni-

formly distributed in the unit interval ½0; 1Þ, it follows that there exists a set N of

positive integers of positive asymptotic density log
�
ðtþ 1Þ=t

�
=ðk log aÞ such that,

for every n a N, we have

log t

k log a
a

n log b

k log a

� �
<

logðtþ 1Þ
k log a

:

Thus, for every n a N there is a positive integer m such that

log t

k log a
a

n log b

k log a
�m <

logðtþ 1Þ
k log a

:

This implies that

takm
a bn < ðtþ 1Þakm

and so ordAðbn � takmÞa km � 1. It follows that there exist di a f0; 1; . . . ; a� 1g
for i ¼ 0; 1; . . . ; km � 1 such that

bn � takm ¼
Xkm�1

i¼0

dia
i:

Therefore,

bn ¼
Xkm�1

i¼0

dia
i þ takm ¼

Xkm�1

i¼0

dia
i þ

�Xk�1

i¼0

gia
i
�
akm ¼

Xkm�1

i¼0

dia
i þ

Xk�1

i¼0

gia
kmþi:

Thus, bn has leading k-digit string ðg0; g1; . . . ; gk�2; gk�1Þ with respect to a. r
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Lemma 2.5. Let a and b be integers greater than 1 such that amA bn for all posi-

tive integers m and n. For every positive integer l there exist infinitely many positive

integers n such that MAðbnÞb l.

Proof. By Lemma 2.4, there exist infinitely many positive integers n such that bn

has leading 2l-digit string ð0; 1; 0; 1; . . . ; 0; 1; 0; 1Þ with respect to a. For each

such n we have MAðbnÞb l. r

3. Proof of the Main Theorem

Theorem 3.1. Let a and b be integers greater than 1, and consider the additive

group Z with generating sets A ¼ faigli¼0 and B ¼ fb jglj¼0. Let dA and dB be the

metrics on Z associated with the generating sets A and B, respectively. If there exist

positive integers m and n such that am ¼ bn, then these metrics are bi-Lipschitz

equivalent.

Proof. If am ¼ bn, then for all nonnegative integers q we have aqm ¼ bqn, and so

lBðaqmÞ ¼ 1.

Let i be a nonnegative integer. By the division algorithm, there exist non-

negative integers q and r such that i ¼ qmþ r and 0a ram� 1. Then

ai ¼ aqmar ¼ aqm þ � � � þ aqm|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ar summands

By inequality (2),

lBðaiÞa arlBðaqmÞa ar
a am�1

and so supflBðaiÞ : ai a Ag<l. Similarly, supflAðb jÞ : b j a Bg<l. Lemma 1.1

implies that the metrics dA and dB are bi-Lipschitz equivalent. This completes

the proof. r

Theorem 3.2. Let a and b be integers greater than 1, and consider the additive

group Z with generating sets A ¼ faigli¼0 and B ¼ fb jglj¼0. Let dA and dB be the

metrics on Z associated with the generating sets A and B, respectively. If these

metrics are bi-Lipschitz equivalent, then there exist positive integers m and n such

that am ¼ bn.

Proof. Since dA and dB are bi-Lipschitz equivalent metrics on the group G,

Lemma 1.1 implies that

L ¼ supflAðb jÞ : b j a Bg < l
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and so every generator b j a B can be represented as a word with respect to A

of length at most L. By Lemma 2.3, MAðb jÞaL. If amA bn for all positive

integers m and n, then Lemma 2.5 implies that there exist infinitely many n such

that bn has leading 2ðLþ 1Þ-digit string ð0; 1; 0; 1; . . . ; 0; 1Þ, and for these num-

bers bn we have MAðbnÞbLþ 1. This is a contradiction, and so am ¼ bn for

some m and n. r

It is worthwhile to record the following elementary number theoretic

observation.

Lemma 3.3. Let a and b be positive integers. There exist positive integers m and n

such that am ¼ bn if and only if there exist relatively prime positive integers m 0

and n 0 such that am 0 ¼ bn 0
. There exist relatively prime positive integers m and n

such that am ¼ bn if and only if there exists a positive integer c such that a ¼ cn

and b ¼ cm.

Proof. Let m and n be positive integers such that am ¼ bn. If d is the greatest

common divisor of m and n, then m ¼ m 0d and n ¼ n 0d, where m 0 and n 0 are rela-
tively prime positive integers. We have

ðam 0 Þd ¼ am ¼ bn ¼ ðbn 0 Þd

and so am 0 ¼ bn 0
:

Let m and n be relatively prime positive integers such that am ¼ bn. Let P be

the set of prime numbers. By the fundamental theorem of arithmetic, for every

prime p there exist unique nonnegative integers ap and bp such that ap ¼ bp ¼ 0

for all su‰ciently large p, and

a ¼
Y
p AP

pap and b ¼
Y
p AP

pbp :

Then

Y
p AP

pmap ¼ am ¼ bn ¼
Y
p AP

pnbp

and so map ¼ nbp for all p a P: Because m and n are relatively prime, it follows

that, for all p, there is a nonnegative integer gp with ap ¼ ngp, hence bp ¼ mgp.

Let c ¼
Q

p AP pgp . We have

a ¼
Y
p AP

pap ¼
Y
p AP

pngp ¼ cn
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and

b ¼
Y
p AP

pbp ¼
Y
p AP

pmgp ¼ cm:

Conversely, if a ¼ cn and b ¼ cm, then am ¼ cmn ¼ bn: This completes the

proof. r

4. Quasi-isometry

Problem 1. Let a and b be integers greater than 1, and let dA and dB be the metrics

on Z associated with the generating sets A ¼ faigli¼0 and B ¼ fb jglj¼0, respectively.

By the Main Theorem, the identity map from Z to Z is a bi-Lipschitz equivalence

if and only if there exist positive integers m and n such that am ¼ bn. It is an open

problem to determine if there exists some map f : Z ! Z that is a bi-Lipschitz

equivalence with respect to these metrics, that is, to determine if the metric spaces

ðZ; dAÞ and ðZ; dBÞ are bi-Lipschitz equivalent.

Metric spaces ðX ; dX Þ and ðY ; dY Þ are called quasi-isometric if there are sub-

spaces X 0 JX and Y 0 JY and a number C > 0 such that (i) the metric spaces

ðX 0; dX Þ and ðY 0; dY Þ are bi-Lipschitz equivalent, and (ii) for every x a X there

exists x 0 a X 0 such that dX ðx; x 0Þ < C, and for every y a Y there exists y 0 a Y 0

such that dY ðy; y 0Þ < C.

Problem 2. Let a and b be integers greater than 1, and let dA and dB be the metrics

on Z associated with the generating sets A ¼ faigli¼0 and B ¼ fb jglj¼0, respectively.

Are the metric spaces ðZ; dAÞ and ðZ; dBÞ quasi-isometric? This problem was first

posed by Richard E. Schwartz for the generating sets A ¼ f2 igli¼0 and B ¼ f3 jglj¼0.

Acknowledgements. I am grateful to Jason Behrstock for introducing me to

Schwartz’s question about arithmetic quasi-isometry, which led directly to the

problem of the bi-Lipschitz equivalence of geometric generating sets for Z that is

solved in this paper. I also thank Jacob Fox for many helpful discussions about

this work.

This paper was written while the author was a visiting fellow at Princeton

University. I thank the Princeton math department for its hospitality.

References

[1] H. Alpert, Finite phase transitions in countable abelian groups. Arch. Math. (Basel ) 96
(2011), 311–320.

202 M. B. Nathanson



[2] L. A. Borisov and R. Jin Finding integral diagonal pairs in a two dimensional N-set.
Proc. Amer. Math. Soc. 139 (2011), 2431–2434.

[3] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry. Grad. Stud. Math.
33, Amer. Math. Soc., Providence, RI, 2001. Zbl 0981.51016 MR 1835418

[4] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Math., The
University of Chicago Press, Chicago 2000. Zbl 0965.20025 MR 1786869

[5] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces. Progr.
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