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Abstract. There is a standard “word length” metric canonically associated to any set of
generators for a group. In particular, for any integers a and b greater than 1, the additive
group 7 has generating sets {a'},”, and {b/}”, with associated metrics d4 and dj,
respectively. It is proved that these metrics are bi-Lipschitz equivalent if and only if there
exist positive integers m and n such that a™ = b".
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1. Groups as metric spaces

A beautiful unsolved problem in metric geometry and geometric group theory is to
determine if the additive group of integers with the word metric determined by the
generating set of powers of 2 is quasi-isometric to the additive group of integers
with the word metric determined by the generating set of powers of 3. A related
question is to determine if these two arithmetically defined metric spaces are
bi-Lipschitz equivalent or if their metrics are bi-Lipschitz equivalent. This paper
gives a simple necessary and sufficient condition for word metrics on Z defined by
geometric series to be bi-Lipschitz equivalent. In particular, it follows that
the word metrics defined by the sets {2/}, and {3/}, are not bi-Lipschitz
equivalent.

This work is related to recent work on phase transitions in infinitely generated
groups (Alpert [1], Jin [2], Nathanson [6], [7]).
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In order to make this paper accessible to number theorists as well as geometers,
and to fix terminology, I begin with a brief introduction to bi-Lipschitz equi-
valence and word metrics on groups. For more information on these topics, see
Burago, Burago, and Ivanov [3], de la Harpe [4], and Gromov [5].

Two metrics dy and dp on the same set X are called bi-Lipschitz equivalent
metrics if there exists a number K > 1 such that

1
EdA(Xl,Xz) Sdg(xl,)cz) SKdA(xl,Xz) (1)

for all x;,x; € X. In this paper we study metrics on the additive group Z of inte-
gers that are defined in a natural way by geometric progressions, and give a neces-
sary and sufficient condition for two such metrics to be bi-Lipschitz equivalent.

More generally, two metric spaces (X, dy) and (Y, dy) are called bi-Lipschitz
equivalent if there exists a function f from X onto Y such that

1

g dx(x,x) < dy (f(x1), f(x2)) < Kdx(x1,x2)

for some number K > 1 and all x;, x, € X. The function f is called a bi-Lipschitz
equivalence; it is necessarily a homeomorphism. In particular, the metrics d4 and
dp on a set X are bi-Lipschitz equivalent metrics if and only if the identity map
from (X,dy) to (X,dp) is a bi-Lipschitz equivalence.

Let G be a group with identity e, and let A be a set of generators for G. The set
A may be finite or infinite. Let A~' = {a~! : a € A}. A word with respect to A is a
finite product of the form aja; . ..a,, where a;e Au A~ fori=1,...,n. We call
n the length of this word. An element x € G\{e} has length /4(x) = n with respect
to the generating set A if n is the least positive integer such that x can be written as
a word with respect to 4 of length n. We define Z4(¢) = 0. Every element of G has
finite length because A generates G.

The length function has the following properties. First, /4(x) = 0 if and only if
x =e. Second, Z4(x) = /4(x~") for all x e G. Third, there is the subadditivity
condition

la(xy) < 2a(x) + 2a(y) (2)

for all x, y € G.

We use the length function associated with the generating set A to construct a
distance function d,4 on the group G. Forall x, y € G, let d4(x, y) be the length of
the group element x~'y, that is,

da(x,y) = la(x""y)
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for all x,ye X. (If G is an abelian group, written additively, we define
dy(x,y) =24(y —x).) In particular, dy(x,e) = Z4(x) for all x € G. It follows
that d4(x, y) = 0 if and only if Z4(x~'y) = 0, that is, if and only if x~'y = e or
x = y. Similarly,

da(x,y) = Ca(x'y) = (') 7 = 20 ) = du(2, %)
By inequality (2), we have
da(x,2) = /(x"'2) = /(x"yy7lz) < 4y + (07 2) = dalx, y) +da(y,2)

for all x,y,z € G, and so d satisfies the triangle inequality. Thus, (G,dy) is a
metric space. We call d, the metric associated to the generating set A.

Lemma 1.1. Let A = {a;};.; and B = {b;},_; be generating sets for the group G.
Let {4 and (g be the corresponding length functions, and d4 and dg the associated
metrics on G. The following conditions are equivalent:

(1) sup{Z4(b;) : j € J} < oo and sup{/p(a;) :i e I} < 0.

(i) The metrics d4 and dg are bi-Lipschitz equivalent.

Proof. If Kg = sup{Z4(b;) : j € J} < oo, then every generator b; € B can be repre-
sented as product of at most Kp elements of 4 U A~!. Taking the inverse of this
representation, we see that the inverse generator bj’1 can also be represented as a
product of at most Kp elements of 4 U A~!. Let x,y € G. If dg(x, y) = n, then
x~ 'y is a product of n elements of Bu B~!. Writing each of these as a product
of at most K elements of 4 U A~!, we obtain a representation of x~'y as the prod-
uct of at most Kpzn elements of 4 U A~!, and so d4(x,y) < Kpn = Kpdg(x, ).
Similarly, if K4 = sup{/s(a;) : i € I} < oo, then every element in 4 U A~! can be
represented as a product of at most K, elements of Bu B!, and dp(x, y) <
Kyd4(x,y). Thus, if K4 <o and Kp < co, then inequality (1) holds with
K = max(K,, Kp), and the metrics d4 and dp are equivalent. This proves that (i)
implies (ii).

Conversely, if the metrics are d4 and dp are bi-Lipschitz equivalent, then there
exists a number K > 1 such that inequality (1) holds. For every generator ¢; € 4
we have

/B((l,‘) = dB(a,», 6) < KdA(ai, e) = K/A((l,‘) =K

and so sup{/z(a;):iel} <K < oco. Similarly, sup{/4(b;):jeJ} <K < .
Therefore, (ii) implies (i). This completes the proof. O
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Corollary 1.2. Let A ={a;};.; and B = {b;};.; be generating sets for the group
G. If A and B are finite sets, then the associated metrics d4 and dg are bi-Lipschitz

equivalent.

Proof. Tt suffices to observe that the finite sets of numbers {/z(a;) : i € I} and
{¢4(b;) : j € J} have finite upper bounds. O

Corollary 1.3. Let A = {a;};.; and B = {b;};_; be generating sets for the group
G. If A is a finite set and B is an infinite set, then the associated metrics d4 and dp
are not bi-Lipschitz equivalent.

Proof. 1f |A| = r < oo, then |4 U A~!| < 2r, and for every positive integer s there
are less than (2r)*™" words with respect to 4 U A~ of length at most s. Since B
is infinite, it follows that there are infinitely many generators b; € B with
Z4(b;) > s, and so sup{Z4(b;) : j € J} = co. Therefore, the metrics d4 and dp are
not bi-Lipschitz equivalent. O

It remains to determine when the metrics associated with different infinite
generating sets for a group are bi-Lipschitz equivalent. This is an open problem
even for Z, the additive group of integers, for which the generating sets are the
sets (finite or infinite) of relatively prime integers. We shall prove the following
theorem, which determines when the metrics associated with infinite geometric
sequences of integers are bi-Lipschitz equivalent.

Main Theorem. Let a and b be integers greater than 1, and consider the additive
group 7 with generating sets A = {a'}, ", and B = {bj}_fio. Let dy and dg be the
metrics on Z associated with the generating sets A and B, respectively. These met-
rics are bi-Lipschitz equivalent if and only if there exist positive integers m and n
such that a™ = b".

2. Representations of integer powers to various integer bases

Let a be an integer greater than 1. Every nonnegative integer n has a unique
a-adic representation

n= f:é,-ai (3)
i=0

where J; € {0,1,2,...,a— 1} for all nonnegative integers i, and J; = 0 for all
sufficiently large i. For integers u < v we denote by [u,v) the interval of integers
{u,u+1,...,v—1}. An interval [u,v) is called an a-adic block for the positive
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integer 7 if, in the a¢-adic expansion (3), we have d; # 0 for all i € [u,v). The a-adic
block [u, v) for the positive integer n is called a maximal a-adic block if either u = 0
andd, =0,oru>1andd, | =9, =0. We define the maximal a-adic block func-
tion M 4(n) as the number of maximal a-adic blocks in the a-adic expansion of n.
For example, if I is a set of k nonnegative integers, if J; € {1,2,...,a — 1} for
iel,andifn=>,_,da’, then M,(n) < k. Moreover, M,(n) = k if and only if

iel
no two elements of I are consecutive.

Lemma 2.1. Leta >2andr > 1. LetJ = {j;}_, be a strictly decreasing sequence
of nonnegative integers and let 6;, € {1,2,...,a— 1} fori =0,1,...,r. If

r
ny = oja” — E 0j,a’
i=1

then
MA(VI_/) <r
and
. j[)_l . .
ny = (0, —a* + Y dla’ +3/a”,
=41
where 9 € {0,1,2,...,a—1} for i = j,, ..., jo — 1 and 5, # 0.

Proof. The proof is by induction on r. For r =1 we have

ny = 6;a" —é;a’
= (@~ b + (@ — ) = (3 — D
= (0, — Da ’0+Za—1 — (0, — Da”
Jo—1

= (J;, — Da® + Z (a—1)a' + (a -3} )a”

i=ji+1

and
l<a-06;, <a-1.

The nonzero digits of n, form a single a-adic block, and so M4(n;) = 1.
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Let r > 1 and suppose that the Lemma is true for r. Let J = { j,}i’io1 be a
strictly decreasing sequence of nonnegative integers and let 9;, € {1,2,...,a — 1}
fori=0,1,...,r,r+ 1. We consider the integer

r+1

ny = o;a” — E oja’.
i=1

Let

.
my = 9dj,a” — E oja’.
i=1

By the induction hypothesis, M 4(m;) < r, and @’ is the smallest power of a that
appears in the a-adic expansion of m; with a nonzero digit. It follows that

MA(mJ) -1 < MA(YVIJ - (lj") < MA(m_]) <r.
We write
ny =my =0, = (my —a”) + (a" =0 ,a"").

Again applying the induction hypothesis, we see that the positive integer
a’r —9;  a’+' has exactly one maximal a-adic block, and that the largest power
of a that appears in its a-adic expansion with a nonzero digit is less than a/. It
follows that

My(my) < My(ny) < My(my) +1<r+1.

Moreover, a’~! is the smallest power of a that appears in the a-adic expansion of
a’ — ;. ,a’' with a nonzero digit, and so a/+' is the smallest power of a that
appears in the a-adic expansion of n; with a nonzero digit. This completes the
proof. O

Lemma 2.2. Let I and W be disjoint finite sets of nonnegative integers. Let a > 2,
and let 6; € {1,2,....,a— 1} forie I and d,, € {1,2,...,a— 1} forwe W. Then

MA(Z(S,a") V4 <MA<Z5a +3 b )SMA(Zé,a") + W),

iel weW iel

Proof. 1t suffices to prove the Lemma for | W] = 1. Adding a “new” power of a to
an a-adic representation changes a zero digit to a nonzero digit. If the former zero
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digit was adjacent to two nonzero digits, then the number of maximal a-adic
blocks decreases by 1. If the former zero digit was adjacent to one zero digit and
to one nonzero digit, then the number of maximal a¢-adic blocks does not change.
If the former zero digit was adjacent to two zero digits, then the number of maxi-
mal a-adic blocks increases by 1. This completes the proof. |

Lemma 2.3. Leta > 2 and k > 1. If nis a positive integer such that

n= E g0.a’,

teT

where T is a set of k nonnegative integers, o, € {1,2,...,a — 1} and ¢ € {1,—1} for
all t € T, then M4(n) < k.

Proof. Since n is positive, it follows that g- = 1 for t* = max(T). If ¢ =1 for
all te T, then n=)",_,0d,a" is the a-adic representation, which has exactly k
nonzero digits, and so M4(n) < k.

Suppose that &, = —1 for some # € T. Arrange T in strictly increasing order
1 <ty<---<t. Let U be the set of all #; with i > 2 such that ¢, =1 and
&, = —1. Let/ = card(U). We observe that ¢+ = | implies that / > 1. Arrange

the elements of U in strictly increasing order

u < - < uy.
Define uy = —1. For j=1,2,....,7, let

Vi={teT:u <t<ujand e = —1}.

The set Vj is nonempty forall j =1,2,...,7. If

vy = min(V;)
then

g <vp<u; forj=1,...,7.

Moreover, &+ = 1 implies that if 7 € T and ¢ = —1, then 7 € V; for some j. Let
V= Ujil V;. We define

ny, = &,0,a" + E &0,a" = 0y,a" — g o0,a’.

veV; veV;
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By Lemma 2.1,
au,-71+1 < qY SnV] < auj+1 (4)

and a” is the smallest power of a that appears in the a-adic expansion of ny, with a
nonzero digit. Also,

M 4(ny,) < card(V}).

We define

Then
/ /
My(n') < ZMA(an) < Z card(V;) = card(V).
= =
Let W=T\(UuV). Theng¢, =1 forallwe W, and
n=n+ Z opa.
weW

Let I be the set of all nonnegative integers i such that a’ occurs with a non-
zero digit in the @-adic representation of n’. If i € I, then v; <i <u; for some
je{1,2,...,7}. On the other hand, if w e W, then w > u, or uj_; <w < v; for
some j € {1,2,...,/}. Therefore, I n W = (. An application of Lemma 2.2 gives

Myn) < Myn")y+|W|<|V|+|W|=k—-|Ul <k-1.
This completes the proof. |

Let n =Y. d:a’ be the a-adic expansion of the positive integer n. We intro-
duce the function

ord,(n) = max{i:dJ; # 0}.
Let r = ord4(n). For every positive integer k < r + 1, we call the k-tuple
(OrtestsOrsns 01,0, € {0, 1,2, ,a— 1Y x {1,2,...,a— 1}

the leading k-digit string of n with respect to a.
The following result is presumably well known.
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Lemma 2.4. Let a and b be integers greater than 1 such that a™ # b" for

all positive integers m and n.  Let (Yo, 715+, Vi, Vk_1) be a k-tuple in
{0,1,2,...,a— l}kf1 x {1,2,...,a— 1}. There exist infinitely many positive inte-
gers n such that b" has leading k-digit string (39,71, - - -, Vi—2s V1) With respect to a.

Proof. We claim that the positive real number logb/(kloga) is irrational for all
positive integers k. If not, then there exist positive integers r and s such that
logh/(kloga) = r/s, or equivalently, a*" = b*, which is absurd.

Let 1 =S ' yia’. Since 3., € {1,2,...,a—1}, we have a* ! <1 < a¥, and
o)

ng—l - logt  log(t+1)
k kloga kloga

Let {x} denote the fractional part of the real number x. Since the sequence of
fractional parts of the positive integral multiples of an irrational number is uni-
formly distributed in the unit interval [0, 1), it follows that there exists a set .4 of
positive integers of positive asymptotic density log((¢+ 1)/1)/(kloga) such that,
for every n € A", we have

logt - nlogh log(t+1)
kloga ~ |kloga kloga

Thus, for every n € ./ there is a positive integer m such that

log ¢ <n10gbim log(z+1)
kloga ~ kloga kloga

This implies that

takm < b" < (l-l— l)akm
and so ord(b" — ta*") < km — 1. It follows that there exist 6; € {0,1,...,a — 1}
fori=0,1,...,km — 1 such that

km—1

b" — ta* = Z Sia.
i=0

Therefore,
km—1 km—1 k—1 km—1 k—1
b = S i km __ S i i\  km __ S i km—+i
= a +tav = a + ya jas = a + ya .
i=0 i=0 i=0 i=0 i=0

Thus, b" has leading k-digit string (7o, 71, - - - » Yk—2s Vx—1) With respect to a. O
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Lemma 2.5. Let a and b be integers greater than 1 such that a™ # b" for all posi-
tive integers m and n. For every positive integer { there exist infinitely many positive
integers n such that M 4(b") > /.

Proof. By Lemma 2.4, there exist infinitely many positive integers »n such that b”
has leading 2/-digit string (0,1,0,1,...,0,1,0,1) with respect to a. For each
such n we have M 4(b") > /. O

3. Proof of the Main Theorem

Theorem 3.1. Let a and b be integers greater than 1, and consider the additive
group Z with generating sets A = {a'}, and B={b’}". Let ds and dp be the
metrics on Z associated with the generating sets A and B, respectively. If there exist
positive integers m and n such that a™ = b", then these metrics are bi-Lipschitz
equivalent.

Proof. 1f a” = b", then for all nonnegative integers ¢ we have a?" = b, and so
(g(a®™) = 1.

Let i be a nonnegative integer. By the division algorithm, there exist non-
negative integers ¢ and r such that i = gm+rand 0 <r <m —1. Then

al=a™g" =g 4 ... 4 g™m
—_——

a’” summands
By inequality (2),
lg(a’) < a'lg(a™) < a" <a™!

and so sup{/s(a'):a' € A} < oo. Similarly, sup{/4(b’):b/ € B} < ov. Lemma 1.1
implies that the metrics d4 and dp are bi-Lipschitz equivalent. This completes
the proof. O

Theorem 3.2. Let a and b be integers greater than 1, and consider the additive
group 7 with generating sets A = {a'}, and B={b’}". Let ds and dp be the
metrics on Z associated with the generating sets A and B, respectively. If these

metrics are bi-Lipschitz equivalent, then there exist positive integers m and n such
that a™ = b".

Proof. Since d4 and dp are bi-Lipschitz equivalent metrics on the group G,
Lemma 1.1 implies that

L =sup{/4(b’) : b/ € B} < ©
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and so every generator b/ € B can be represented as a word with respect to 4
of length at most L. By Lemma 2.3, M4(b/) < L. If a™ # b" for all positive
integers m and n, then Lemma 2.5 implies that there exist infinitely many » such
that 5" has leading 2(L + 1)-digit string (0,1,0,1,...,0,1), and for these num-
bers " we have M,4(b") > L+ 1. This is a contradiction, and so a” = b" for
some m and n. |

It is worthwhile to record the following elementary number theoretic
observation.

Lemma 3.3. Let a and b be positive integers. There exist positive integers m and n
such that a™ = b" if and only if there exist relatively prime positive integers m’
and n' such that a™ = b". There exist relatively prime positive integers m and n
such that a™ = b" if and only if there exists a positive integer ¢ such that a = c”"
and b = c™.

Proof. Let m and n be positive integers such that «” = b". If d is the greatest
common divisor of m and n, then m = m'd and n = n’d, where m’ and n’ are rela-
tively prime positive integers. We have

)d = am = bn = (bn,)d

and so ™ = b"'.

Let m and n be relatively prime positive integers such that ¢” = b". Let P be
the set of prime numbers. By the fundamental theorem of arithmetic, for every
prime p there exist unique nonnegative integers o, and 8, such that o, =, =0
for all sufficiently large p, and

a:Hp“” and b:Hpﬂﬂ.

peP peP

Then

Hpmcx,, —ad" =p" = H pnﬂp

peP peP

and so ma, = nf}, for all p € P. Because m and n are relatively prime, it follows
that, for all p, there is a nonnegative integer y, with o, = ny,, hence f, = my,.
Letc=1]],.pp’. We have

P
a:Hpotp:Hpnyp:Cn

peP peP
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and

b= Hpﬂ/, _ Hpmyp — M

peP peP

Conversely, if a=c¢" and b =", then a™ = ¢™ = b". This completes the
proof. [

4. Quasi-isometry

Problem 1. Let a and b be integers greater than 1, and let d4 and dg be the metrics
on Z associated with the generating sets A = {a'}”, and B = {b’},, respectively.
By the Main Theorem, the identity map from 7 to 7 is a bi-Lipschitz equivalence
if and only if there exist positive integers m and n such that a™ = b". It is an open
problem to determine if there exists some map f :7Z — Z that is a bi-Lipschitz
equivalence with respect to these metrics, that is, to determine if the metric spaces
(Z,d4) and (Z,dg) are bi-Lipschitz equivalent.

Metric spaces (X,dy) and (Y,dy) are called quasi-isometric if there are sub-
spaces X' = X and Y’ < Y and a number C > 0 such that (i) the metric spaces
(X',dy) and (Y’,dy) are bi-Lipschitz equivalent, and (ii) for every x € X there
exists x’ € X' such that dy(x,x") < C, and for every y € Y there exists ' € Y’
such that dy(y, ') < C.

Problem 2. Let a and b be integers greater than 1, and let d4 and dg be the metrics
on Z associated with the generating sets A = {a'} and B = {b’} -, respectively.
Are the metric spaces (Z,dy) and (Z,dg) quasi-isometric? This problem was first
posed by Richard E. Schwartz for the generating sets A = {2'}, and B = {3/ }_/io-
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