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1. Introduction

In this paper we analyze solutions of infinite horizon variational problems associ-

ated with the functional

ðT2

T1

f
�
vðtÞ; v 0ðtÞ

�
dt;

where T1b 0, T2 > T1, v : ½T1;T2� ! Rn is an absolutely continuous (a.c.) func-

tion and f : Rn � Rn ! R1 belongs to a space of integrands described below. It

should be mentioned that the study of properties of solutions of optimal control

problems and variational problems defined on infinite domains and on su‰ciently

large domains has recently been a rapidly growing area of research. See, for ex-

ample, [2], [3], [5], [10], [15], [17], [24], [26] and the references mentioned therein.

In this paper we study solutions of infinite horizon variational problems asso-

ciated with a certain class of integrands. We consider c-optimal solutions which

were introduced and used for models of solid-state physics [1], [20] and in the



theory of thermodynamical equilibrium for materials [4], [11]–[14] and agreeable

solutions which were introduced for models of economic dynamics [7]–[9]. We

show that if an integrand possesses an asymptotic turnpike property, then these

two optimality notions are equivalent.

Denote by j � j the Euclidean norm in Rn. Let a be a positive constant and

let c : ½0;lÞ ! ½0;lÞ be an increasing function such that cðtÞ ! l as t ! l.

Denote by A the set of all continuous functions f : Rn � Rn ! R1 which satisfy

the following assumptions:

A(i) for each x a Rn the function f ðx; �Þ : Rn ! R1 is convex;

A(ii) f ðx; yÞbmaxfcðjxjÞ;cðjyjÞjyjg � a for each ðx; yÞ a Rn � Rn;

A(iii) for each M; e > 0 there exist G; d > 0 such that

j f ðx1; y1Þ � f ðx2; y2Þja emaxf f ðx1; y1Þ; f ðx2; y2Þg

for each y1; y2; x1; x2 a Rn which satisfy

jxijaM; jyijbG; i ¼ 1; 2; jx1 � x2j; jy1 � y2ja d:

The set A contains many integrands. Examples of functions f a A can be

found in [21]–[24].

It is easy to show that an integrand f ¼ f ðx; yÞ a C1ðR2nÞ belongs to A

if f satisfies assumptions A(i), A(ii) and if there exists an increasing function

c0 : ½0;lÞ ! ½0;lÞ such that

maxfjqf =qxðx; yÞj; jqf =qyðx; yÞjgac0ðjxjÞ
�
1þ cðjyjÞjyj

�

for each x; y a Rn.

Example 1.1. It is not di‰cult to see that if cðtÞ ¼ t for all tb 0, n ¼ 1, if func-

tions h1; h2 a C1ðR1Þ satisfy

h1ðxÞb jxj þ 1; x a R1

and if the function h2 : R
1 ! R1 is convex and

y2 þ 1a h2ðyÞa c0ðy2 þ 1Þ; jh 0
2ðyÞja c0ðy2 þ 1Þ

for all y a R1; where c0 is a positive constant, then the function

f ðx; yÞ ¼ h1ðxÞh2ðyÞ; ðx; yÞ a �R1 � R1;

belongs to A.
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For the set A we consider the uniformity which is determined by the following

base:

EðN; e; lÞ ¼ fð f ; gÞ a A�A : j f ðx; yÞ � gðx; yÞja e

for all x; y a Rn satisfying jxj; jyjaNg

B fð f ; gÞ a A�A j
�
j f ðx; yÞj þ 1

��
jgðx; yÞj þ 1

��1
a ½l�1; l�

for all x; y a Rn satisfying jxjaNg;

where N; e > 0 and l > 1. In this paper we consider the space A equipped with

the topology induced by this uniformity. It was shown in [21], [24] that the uni-

form space A is metrizable and complete.

We consider functionals of the form

I f ðT1;T2; vÞ ¼
ðT2

T1

f
�
vðtÞ; v 0ðtÞ

�
dt; ð1:1Þ

where f a A, 0aT1 < T2 < l and v : ½T1;T2� ! Rn is an absolutely continuous

(a.c.) function.

For f a A, y; z a Rn and real numbers T1, T2 satisfying 0aT1 < T2 we set

U f ðT1;T2; y; zÞ ¼ inffI f ðT1;T2; vÞ j v : ½T1;T2� ! Rn

is an a:c: function satisfying vðT1Þ ¼ y; vðT2Þ ¼ zg ð1:2Þ

and

s f ðT1;T2; yÞ ¼ inffU f ðT1;T2; y; zÞ j z a Rng: ð1:3Þ

It is easy to see that �l < U f ðT1;T2; y; zÞ < l for each f a A, each y; z a Rn

and all numbers T1, T2 satisfying 0aT1 < T2.

Let f a A. For any a.c. function v : ½0;lÞ ! Rn we set

JðvÞ ¼ lim inf
T!l

T�1I f ð0;T ; vÞ: ð1:4Þ

Of special interest is the minimal long-run average cost growth rate

mð f Þ ¼ inffJðvÞ j v : ½0;lÞ ! Rn is an a:c: functiong: ð1:5Þ

Clearly �l < mð f Þ < l.

Here we follow [5], [10], [24] in defining good functions for variational prob-

lems.
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Let f a A. An a.c. function v : ½0;lÞ ! Rn is called an ð f Þ-good function if

the function

T ! I f ð0;T ; vÞ � mð f ÞT ; T a ð0;lÞ;

is bounded.

In [21] we showed that for each f a A and each z a Rn there exists an

ð f Þ-good function v : ½0;lÞ ! Rn satisfying vð0Þ ¼ z.

We follow [12] in defining c-optimal functions.

An a.c. function v : ½0;lÞ ! Rn is called c-optimal with respect to f (or just

c-optimal if the function f is understood) if supfjvðtÞj j t a ½0;lÞg < l and if for

each T > 0 the equality

I f ð0;T ; vÞ ¼ U f
�
0;T ; vð0Þ; vðTÞ

�
holds.

Note that any c-optimal with respect to f function is ð f Þ-good (see Proposition

5.2 of [21]).

For the proof of the following result see Theorem 1.1 of [21] and Theorem 1.1

of [22].

Proposition 1.2. For each f a A and any z a Rn there exists a c-optimal with

respect to f function v : ½0;lÞ ! Rn such that vð0Þ ¼ z.

The notion of c-optimality is a slight modification of the notion of minimality

introduced in [6] and discussed in [16], [18], [19]. The di¤erence is that in our

paper c-optimal solutions are bounded and defined on the interval ½0;lÞ while

in [16], [18], [19] minimal solutions are defined on the whole space Rn and the

boundedness is not assumed. Note that an analogous notion of minimality was

used in infinite discrete models of solid-state physics related to dislocations in

one-dimensional crystals [1], [20].

In the sequel we use the following result (see Proposition 1.1 of [23]).

Proposition 1.3. Let f a A. Then for any a.c. function v : ½0;lÞ ! Rn either

I f ð0;T ; vÞ � Tmð f Þ ! l as T ! l or

supfjI f ð0;T ; vÞ � Tmð f Þj jT a ð0;lÞg < l:

Moreover any ð f Þ-good function v : ½0;lÞ ! Rn is bounded.

An a.c. function v : ½0;lÞ ! Rn is called ð f Þ-agreeable if for each T0 > 0 and

each e > 0 there exists Te > T0 such that for each T > Te there exists an a.c. func-

tion w : ½0;T � ! Rn such that

wðtÞ ¼ vðtÞ; t a ½0;T0�;
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and

I f ð0;T ;wÞa s f
�
0;T ; vð0Þ

�
þ e:

The notion of agreeable functions (programs) is well-known in the eco-

nomic literature [7]–[9]. In the present paper we introduce its following strong

version.

An a.c. function v : ½0;lÞ ! Rn is called strongly ð f Þ-agreeable if for each

T0 > 0 and each e > 0 there exist Te > T0 and a neighborhood U of f in A such

that for each g a U and each T > Te there exists an a.c. function w : ½0;T � ! Rn

such that

wðtÞ ¼ vðtÞ; t a ½0;T0�

and

I gð0;T ;wÞa sg
�
0;T ; vð0Þ

�
þ e:

Results known in the literature which establish existence of agreeable functions

(solutions) were obtained under strong assumptions on an objective function

which determines an optimality criterion [7]–[9]. In particular, it was assumed

that the objective function is convex (concave) as a function of all its variables.

In the present paper we show that for many integrands c-optimality and agree-

ability are equivalent.

In the definition of c-optimal functions we assume that they are bounded while

in the definition of agreeable functions there is no boundedness requirement. On

the other hand in view of Proposition 3.1 any agreeable function is bounded.

We denote dðx;BÞ ¼ inffjx� yj j y a Bg for x a Rn, BHRn and denote by

distðA;BÞ the Hausdor¤ metric for two sets A;BHRn. For every bounded

a.c. function v : ½0;lÞ ! Rn define

WðvÞ ¼ fy a Rn j there exists a sequence ftigli¼0 H ð0;lÞ
for which ti ! l; vðtiÞ ! y as i ! lg ð1:6Þ

which is called a limiting set of v.

We say that an integrand f a A has the asymptotic turnpike property, or

briefly ATP, if Wðv2Þ ¼ Wðv1Þ for all ð f Þ-good functions vi : ½0;lÞ ! Rn, i ¼ 1; 2

(see [12], [21], [24]). In other words WðvÞ is the same for all ð f Þ-good func-

tions v.

In [21] we established the existence of a set FHA which is a countable inter-

section of open everywhere dense subsets of A such that each integrand f a F

possesses ATP. Thus a typical integrand possesses ATP.
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Denote by M the set of all functions f ¼ f ðx; yÞ a C1ðR2nÞ which satisfy the

following assumptions:

qf =qyi a C1ðR2nÞ for i ¼ 1; . . . ; n;

the matrix ðq2f =qyiqyjÞðx; yÞ, i; j ¼ 1; . . . ; n is positive definite for all ðx; yÞ a R2n;

f ðx; yÞbmaxfcðjxjÞ;cðjyjÞjyjg � a for all ðx; yÞ a Rn � Rn;

there exist a number c0 > 1 and monotone increasing functions fi : ½0;lÞ !
½0;lÞ, i ¼ 0; 1; 2 such that

f0ðtÞ=t ! l as t ! l;

f ðx; yÞbf0ðc0jyjÞ � f1ðjxjÞ; x; y a Rn;

maxfjqf =qxiðx; yÞj; jqf =qyiðx; yÞjg
af2ðjxjÞ

�
1þ f0ðjyjÞ

�
; x; y a Rn; i ¼ 1; . . . ; n:

It is easy to see that MHA.

The following theorem is our main result.

Theorem 1.4. Let f a M possess ATP and v : ½0;lÞ ! Rn be an a.c. function.

Then the following assertions are equivalent:

1. v is strongly ð f Þ-agreeable;
2. v is ð f Þ-agreeable;
3. v is c-optimal with respect f .

It is clear that assertion 1 of Theorem 1.4 implies assertion 2. In the proof

of Theorem 1.4 we show that assertion 2 implies assertion 3 and that assertion 3

implies assertion 1. Note that assertion 2 implies assertion 3 for any f a A. In

order to show that assertion 3 implies assertion 1 we need to assume that f a M

and that f possesses ATP.

Note that in the literature there are no examples of agreeable functions which

are not strongly agreeable. It is interesting to construct such an example but this

problem is not simple because most integrands possess ATP and in this case by

Theorem 1.4 our two notions are equivalent.

The paper is organized as follows. In Section 2 we consider perfect solutions

and state a result (Theorem 2.1) which shows that if f a M possesses ATP, then

a function v is c-optimal if and only if it is perfect. Section 3 contains auxiliary

results. Theorem 2.1 is proved in Section 4 while Theorem 1.4 is proved in

Section 5.
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2. Perfect functions

Let f a A. By a simple modification of the proof of Proposition 4.4 of [11]

(see also Theorems 8.1 and 8.2 of [21]) we obtain the following representation

formula

U f ð0;T ; x; yÞ ¼ Tmð f Þ þ p f ðxÞ � p f ðyÞ þ y
f
T ðx; yÞ; x; y a Rn; T > 0; ð2:1Þ

where p f : Rn ! R1 is a continuous function defined by

p f ðxÞ ¼ inf
�
lim inf
T!l

½I f ð0;T ; vÞ � mð f ÞT � j v : ½0;lÞ ! Rn

is an a:c: function satisfying vð0Þ ¼ x
�
; x a Rn; ð2:2Þ

and ðT ; x; yÞ ! y
f
Tðx; yÞ a R1, ðT ; x; yÞ a ð0;lÞ � Rn � Rn, is a continuous non-

negative function which satisfies the following condition: for every T > 0 and

every x a Rn there is y a Rn for which y
f
T ðx; yÞ ¼ 0:

For each t1b 0, t2 > t1, each r1; r2 a ½t1; t2� satisfying r1 < r2 and each a.c.

function v : ½t1; t2� ! Rn set

G f ðr1; r2; vÞ ¼ I f ðr1; r2; vÞ � p f
�
vðr1Þ

�
þ p f

�
vðr2Þ

�
� ðr2 � r1Þmð f Þ: ð2:3Þ

In view of (2.1), (2.3) and nonnegativity of y f
T ,

G f ðr1; r2; vÞb 0 for each t1b 0; t2 > t1; each r1; r2 a ½t1; t2�
satisfying r1 < r2 and each a:c: function v : ½t1; t2� ! Rn: ð2:4Þ

We follow [14] in defining perfect functions.

An a.c. function v : ½0;lÞ ! Rn is called ð f Þ-perfect if for all T > 0,

G f ð0;T ; vÞ ¼ 0:

We will prove the following result.

Theorem 2.1. Let f a M possess ATP and v : ½0;lÞ ! Rn be an a.c. function.

Then the following assertions are equivalent:

1. v is c-optimal with respect f ;

2. v is f -perfect.

A prototype of Theorem 2.1 was obtained in [14] for one-dimensional second

order variational problems with real valued functions arising in continuum

mechanics. Here the result of [14] is extended for the variational problems with

vector valued functions considered in this paper.
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Note that in [26] we constructed examples of c-optimal functions which are not

perfect.

3. Auxiliary results

In order to prove Theorem 1.1 we need the following results.

Proposition 3.1 ([22], Theorem 1.3). Let f a A and M1, M2, c be positive

numbers. Then there exist a neighborhood U of f in A and a number S > 0 such

that for each g a U, each T1 a ½0;lÞ and each T2 a ½T1 þ c;lÞ the following

properties hold:

(i) if x; y a Rn satisfy jxj; jyjaM1 and if an a.c. function v : ½T1;T2� ! Rn sat-

isfies

vðT1Þ ¼ x; vðT2Þ ¼ y; I gðT1;T2; vÞaU gðT1;T2; x; yÞ þM2;

then

jvðtÞjaS; t a ½T1;T2�; ð3:1Þ

(ii) if x a Rn satisfies jxjaM1 and if an a.c. function v : ½T1;T2� ! Rn satisfies

vðT1Þ ¼ x; I gðT1;T2; vÞasgðT1;T2; xÞ þM2;

then the inequality (3.1) is valid.

Proposition 3.2 ([25], Lemma 4.2). Let f a M possess ATP and let Hð f ÞHRn be

such that WðvÞ ¼ Hð f Þ for each ð f Þ-good function v.

Assume that e a ð0; 1Þ. Then there exist numbers q; d > 0 such that for each

h1; h2 a Rn satisfying d
�
hi;Hð f Þ

�
a d, i ¼ 1; 2, and each T b q there exists an a.c.

function v : ½0;T � ! Rn which satisfies

vð0Þ ¼ h1; vðTÞ ¼ h2; G f ð0;T ; vÞa e:

Proposition 3.3 ([21], Theorem 8.3). Let f a A and x a Rn. Then there exists an

ð f Þ-good function v : ½0;lÞ ! Rn such that

vð0Þ ¼ x and G f ð0;T ; vÞ ¼ 0 for all T > 0:

Proposition 3.4 ([22], Corollary 2.1). For each f a A, each pair of numbers

T1, T2 satisfying 0aT1 < T2 and each z1; z2 a Rn there exists an a.c. function

v : ½T1;T2� ! Rn such that vðTiÞ ¼ zi, i ¼ 1; 2, I f ðT1;T2; vÞ ¼ U f ðT1;T2; z1; z2Þ:
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Proposition 3.5 ([22], Corollary 2.2). For each f a A, each pair of numbers

T1, T2 satisfying 0aT1 < T2 and each z a Rn there exists an a.c. function

v : ½T1;T2� ! Rn such that vðT1Þ ¼ z, I f ðT1;T2; vÞ ¼ s f ðT1;T2; zÞ.

Proposition 3.6 ([23], Theorem 1.2). Assume that f a M and that there exists

a nonempty compact set Hð f ÞHRn such that WðvÞ ¼ Hð f Þ for each ð f Þ-good
function v.

Let e;K > 0. Then there exist a neighborhood U of f in A and positive

numbers l0, d such that the following assertion holds.

For each g a U, each T b 2l0 and each a.c. function v : ½0;T � ! Rn which

satisfies

jvð0Þj; jvðTÞjaK ; I gð0;T ; vÞaU g
�
0;T ; vð0Þ; vðTÞ

�
þ d

the following inequality holds:

d
�
vðtÞ;Hð f Þ

�
a e; t a ½l0;T � l0�:

Proposition 3.7 ([22], Proposition 2.9). Assume that f a A, 0 < c1 < c2 < l and

c3; e > 0. Then there exists a neighborhood V of f in A such that for each g a V,

each pair of numbers T1;T2b 0 satisfying T2 � T1 a ½c1; c2� and each y; z a Rn

satisfying jyj; jzja c3 the inequality

jU f ðT1;T2; y; zÞ �U gðT1;T2; y; zÞja e:

holds.

Proposition 3.8 ([22], Proposition 2.8). Let f a A, 0 < c1 < c2 < l, D; e > 0.

Then there exists a neighborhood V of f in A such that for each g a V, each

pair of numbers T1;T2b 0 satisfying T2 � T1 a ½c1; c2� and each an a.c. function

v : ½T1;T2� ! Rn satisfying

minfI f ðT1;T2; vÞ; I gðT1;T2; vÞgaD;

the inequality

jI f ðT1;T2; vÞ � I gðT1;T2; vÞja e

holds.

The following useful result was obtained in [23].

Proposition 3.9. Let f a A. Then p f ðxÞ ! l as jxj ! l.
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4. Proof of Theorem 2.1

Assume that for all T > 0

G f ð0;T ; vÞ ¼ 0: ð4:1Þ

By Proposition 1.3 there is c0 > 0 such that for all T > 0

I f ð0;T ; vÞ � Tmð f Þb�c0: ð4:2Þ

It follows from (4.1), (4.2) and (2.3) that

�c0aG f ð0;T ; vÞ þ p f
�
vð0Þ

�
� p f

�
vðTÞ

�
¼ p f

�
vð0Þ

�
� p f

�
vðTÞ

�
ð4:3Þ

and

p f
�
vðTÞ

�
a c0 þ p f

�
vð0Þ

�
: ð4:4Þ

Together with Proposition 3.9 this implies that

supfjvðtÞj j t a ½0;lÞg < l: ð4:5Þ

Let T > 0. By the representation formula (2.1), the nonnegativity of the function

y
f
T , (4.1) and (2.3)

U f
�
0;T ; vð0Þ; vðTÞ

�
¼ Tmð f Þ þ p f

�
vð0Þ

�
� p f

�
vðTÞ

�
þ y

f
T

�
vð0Þ; vðTÞ

�
bTmð f Þ þ p f

�
vð0Þ

�
� p f

�
vðTÞ

�
¼ Tmð f Þ þ p f

�
vð0Þ

�
� p f

�
vðTÞ

�
þ G f ð0;T ; vÞ ¼ I f ð0;T ; vÞ:

This implies that

U f
�
0;T ; vð0Þ; vðTÞ

�
¼ I f ð0;T ; vÞ

for all T > 0. Combined with (4.5) this implies that v is c-optimal with respect

to f .

Assume now that the function v is c-optimal with respect to f . By Proposition

3.3 there exists an ð f Þ-good function u : ½0;lÞ ! Rn such that

uð0Þ ¼ vð0Þ and G f ð0;T ; uÞ ¼ 0 for all T > 0: ð4:6Þ

Assume that there is T0 > 0 such that

D :¼ G f ð0;T0; vÞ > 0: ð4:7Þ
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There is a nonempty compact set Hð f ÞHRn such that WðwÞ ¼ Hð f Þ for each

ð f Þ-good function w.

By Proposition 3.2 there exist numbers q; d > 0 such that the following prop-

erty holds:

(P1) for each h1; h2 a Rn satisfying d
�
hi;Hð f Þ

�
a d, i ¼ 1; 2, and each Tb q

there exists an a.c. function w : ½0;T � ! Rn which satisfies

wð0Þ ¼ h1; wðTÞ ¼ h2; G f ð0;T ;wÞaD=4:

Since the functions v and u are ð f Þ-good we have

WðvÞ ¼ WðuÞ ¼ Hð f Þ ð4:8Þ

and there exists T1 > T0 such that

d
�
vðtÞ;Hð f Þ

�
a d=2; d

�
uðtÞ;Hð f Þ

�
a d=2 for all tbT1: ð4:9Þ

In view of (4.9)

d
�
uðT1Þ;Hð f Þ

�
a d=2; d

�
vðT1 þ qÞ;Hð f Þ

�
a d=2: ð4:10Þ

By (4.10) and (P1) there exists an a.c. function w : ½T1;T1 þ q� ! Rn such that

wðT1Þ ¼ uðT1Þ; wðT1 þ qÞ ¼ vðT1 þ qÞ; ð4:11Þ
G f ðT1;T1 þ q;wÞaD=4:

Put

v1ðtÞ ¼ uðtÞ; t a ½0;T1�; v1ðtÞ ¼ wðtÞ; t a ðT1;T1 þ q�;
v1ðtÞ ¼ vðtÞ; t a ðT1 þ q;lÞ: ð4:12Þ

Clearly, the a.c. function v1 is well defined. By (4.6), (4.11) and (4.12)

v1ð0Þ ¼ vð0Þ; v1ðT1 þ qÞ ¼ vðT1 þ qÞ: ð4:13Þ

It follows from (2.3), (4.7), the inequality T1 > T0, (2.4), (4.12), (4.6) and (4.11)

that

I f ð0;T1 þ q; vÞ � I f ð0;T1 þ q; v1Þ ¼ G f ð0;T1 þ q; vÞ � G f ð0;T1 þ q; v1Þ

bD� G f ð0;T1; v1Þ � G f ðT1;T1 þ q; v1Þ

¼ D� G f ð0;T1; uÞ � G f ðT1;T1 þ q;wÞ
bD� D=4:
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Combined with (4.13) this contradicts c-optimality of v. The contradiction we

have reached proves that G f ð0;T ; vÞ ¼ 0 for all T > 0. Theorem 2.1 is proved.

5. Proof of Theorem 1.4

Clearly, assertion 1 implies assertion 2. We show that assertion 2 implies assertion

3. Assume that the function v is ð f Þ-agreeable and show that it is c-optimal with

respect to f . First we show that

supfjvðtÞj j t a ½0;lÞg < l: ð5:1Þ

By Proposition 3.1 there exists a number S0 > 0 such that the following property

holds:

(P2) for each T b 1, each x a Rn satisfying jxja jvð0Þj þ 1 and each a.c. function

u : ½0;T � ! Rn satisfying

uð0Þ ¼ x; I f ð0;T ; uÞas f ð0;T ; xÞ þ 1

we have

juðtÞjaS0; t a ½0;T �:

Fix T0 > 1. Since v is ð f Þ-agreeable there exists T1 > T0 such that the follow-

ing property holds:

(P3) for each T > T1 there exists an a.c. function u : ½0;T � ! Rn such that

uðtÞ ¼ vðtÞ; t a ½0;T0� ð5:2Þ

and

I f ð0;T ; uÞas f
�
0;T ; vð0Þ

�
þ 4�1: ð5:3Þ

Let T > T1 and let an a.c. function u : ½0;T � ! Rn be as guaranteed by prop-

erty (P3). Thus (5.2) and (5.3) holds. It follows from (5.2), (5.3) and (P2) that for

all t a ½0;T0�

jvðtÞj ¼ juðtÞjaS0: ð5:4Þ

Since T0 is an arbitrary number larger than 1 we conclude that

jvðtÞjaS0; t a ½0;lÞ: ð5:5Þ
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Let T0 > 0. We show that

I f ð0;T0; vÞ ¼ U f
�
0;T0; vð0Þ; vðT0Þ

�
: ð5:6Þ

Assume the contrary and put

e ¼ 8�1
�
I f ð0;T0; vÞ �U f

�
0;T0; vð0Þ; vðT0Þ

��
: ð5:7Þ

Clearly, e > 0 and there exists an a.c. function v1 : ½0;T0� ! Rn such that

v1ð0Þ ¼ vð0Þ; v1ðT0Þ ¼ vðT0Þ; ð5:8Þ
I f ð0;T0; v1Þ < I f ð0;T0; vÞ � 7e: ð5:9Þ

Since the function v is ð f Þ-agreeable there exists T1 > T0 such that the following

property holds:

(P4) for each T > T1 there exists an a.c. function u : ½0;T � ! Rn such that

uðtÞ ¼ vðtÞ; t a ½0;T0� ð5:10Þ

and

I f ð0;T ; uÞas f
�
0;T ; vð0Þ

�
þ e: ð5:11Þ

Fix T > T1 and let an a.c. function u : ½0;T � ! Rn be as guaranteed by prop-

erty (P4). Thus (5.10) and (5.11) hold. Define a function u1 : ½0;T � ! Rn by

u1ðtÞ ¼ v1ðtÞ; t a ½0;T0�; u1ðtÞ ¼ uðtÞ; t a ðT0;T �: ð5:12Þ

In view of (5.8), (5.10) and (5.12) the a.c. function u1 is well-defined and

u1ð0Þ ¼ uð0Þ ¼ vð0Þ: ð5:13Þ

It follows from (5.12), (5.10) and (5.9) that

I f ð0;T ; uÞ � I f ð0;T ; u1Þ ¼ I f ð0;T0; uÞ � I f ð0;T0; u1Þ

¼ I f ð0;T0; vÞ � I f ð0;T0; v1Þ > 7e:

Combined with (5.13) this implies that

I f ð0;T ; uÞ > 7eþ s f
�
0;T ; vð0Þ

�
:

This contradicts (5.11). The contradiction we have reached proves that (5.6)

holds. Since T0 is any positive number (5.5) and (5.6) imply that the function v

is c-optimal with respect to f .
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We show that assertion 3 implies assertion 1. Assume that the function v is

c-optimal with respect to f . We show that the function v is strongly ð f Þ-agreeable.
There is a nonempty compact set Hð f ÞHRn such that WðuÞ ¼ Hð f Þ for each

ð f Þ-good function u.

Choose a number M0 > 0 such that

M0 > 4þ supfjzj j z a Hð f Þg þ supfjvðtÞj j t a ½0;lÞg: ð5:14Þ

By Proposition 3.1 there exist a neighborhood U1 of f in A and a number

M1 > M0 such that the following properties hold:

(P5) for each g a U1, each Tb 1, each x; y a Rn satisfying jxj; jyjaM0 and each

a.c. function w : ½0;T � ! Rn satisfying

wð0Þ ¼ x; wðTÞ ¼ y; I gð0;T ;wÞaU gð0;T ; x; yÞ þ 4

the following inequality holds:

jwðtÞjaM1; t a ½0;T �; ð5:15Þ

(P6) for each g a U1, each Tb 1, each x a Rn satisfying jxjaM0 and each

a.c. function w : ½0;T � ! Rn satisfying

wð0Þ ¼ x; I gð0;T ;wÞasgð0;T ; xÞ þ 4

the inequality (5.15) is valid.

Let

T0 > 1; e a ð0; 1Þ: ð5:16Þ

By Proposition 3.2 there exist numbers q > 0, d a ð0; eÞ such that the following

property holds:

(P7) for each h1; h2 a Rn satisfying d
�
hi;Hð f Þ

�
a d, i ¼ 1; 2, and each Tb q

there exists an a.c. function x : ½0;T � ! Rn which satisfies

xð0Þ ¼ h1; xðTÞ ¼ h2; G f ð0;T ; xÞa e=16:

By Proposition 3.6 there exist a neighborhood U2 of f in A and a positive

number S0 such that the following property holds:

(P8) for each g a U2, each Tb 2S0 and each a.c. function w : ½0;T � ! Rn which

satisfies

jwð0Þj; jwðTÞjaM1; I gð0;T ;wÞ ¼ U g
�
0;T ;wð0Þ;wðTÞ

�
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we have

d
�
wðtÞ;Hð f Þ

�
a d=2; t a ½S0;T � S0�:

Since v is an ð f Þ-good function there is

S1 > T0 þ S0

such that

d
�
vðtÞ;Hð f Þ

�
a d=2 for all tbS1: ð5:17Þ

By Proposition 3.7 there exists a neighborhood U3 of f in A such that the

following property holds:

(P9) for each g a U3 and each y; z a Rn satisfying jyj; jzjaM1 we have

jU f ð0;S1 þ q; y; zÞ �U gð0;S1 þ q; y; zÞja e=16:

By Proposition 3.8 there exists a neighborhood U4 of f in A such that the

following property holds:

(P10) for each g a U4 and each a.c. function w : ½0;S1 þ q� ! Rn satisfying

minfI f ð0;S1 þ q;wÞ; I gð0;S1 þ q;wÞg

a 1þ ðS1 þ qÞjmð f Þj þ 2 supfjp f ðzÞj j z a Rn and jzjaM1g

the inequality

jI f ð0;S1 þ q;wÞ � I gð0;S1 þ q;wÞja e=16

holds.

Put

U ¼ 7
4

i¼1

Ui; Te ¼ T0 þ S1 þ 2S0 þ q: ð5:18Þ

Assume that

TbTe; g a U: ð5:19Þ

By Proposition 3.5 there exists an a.c. function w : ½0;T � ! Rn such that

wð0Þ ¼ vð0Þ; I gð0;T ;wÞ ¼ sg
�
0;T ; vð0Þ

�
: ð5:20Þ
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In view of (5.14), (5.18), (5.19), (5.20) and (P6)

jwðtÞjaM1; t a ½0;T �: ð5:21Þ

Property (P8), (5.18), (5.19), (5.20) and (5.21) imply that

d
�
wðtÞ;Hð f Þ

�
a d=2 for all t a ½S0;T � S0�: ð5:22Þ

By (5.17)

d
�
vðS1Þ;Hð f Þ

�
a d=2: ð5:23Þ

It follows from (5.18), (5.22) and the inequality S1 > S0 that

d
�
wðS1 þ qÞ;Hð f Þ

�
a d=2: ð5:24Þ

By (5.23), (5.24) and (P7) there exists an a.c. function x : ½S1;S1 þ q� ! Rn which

satisfies

xðS1Þ ¼ vðS1Þ; xðS1 þ qÞ ¼ wðS1 þ qÞ; G f ðS1;S1 þ q; xÞa e=16: ð5:25Þ

Define

uðtÞ ¼ vðtÞ; t a ½0;S1�; uðtÞ ¼ xðtÞ; t a ðS1;S1 þ q�;
uðtÞ ¼ wðtÞ; t a ðS1 þ q;T �: ð5:26Þ

Clearly, the a.c. function u is well-defined. In view of (5.20) and (5.26)

uð0Þ ¼ wð0Þ; uðTÞ ¼ wðTÞ: ð5:27Þ

We will estimate

I gð0;T ;wÞ � I gð0;T ; uÞ ¼ sg
�
0;T ; vð0Þ

�
� I gð0;T ; uÞ: ð5:28Þ

It follows from (5.20) that

sg
�
0;T ; vð0Þ

�
¼ I gð0;T ;wÞ ¼ U g

�
0;T ;wð0Þ;wðTÞ

�
: ð5:29Þ

By (5.26) and (5.29)

I gð0;T ;wÞ � I gð0;T ; uÞ ¼ I gð0;S1 þ q;wÞ � I gð0;S1 þ q; uÞ
¼ Ug

�
0;S1 þ q;wð0Þ;wðS1 þ qÞ

�
� I gð0;S1 þ q; uÞ: ð5:30Þ
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By (2.3), (5.26), (5.27), (5.21) and Theorem 2.1,

I f ð0;S1 þ q; uÞ ¼ G f ð0;S1 þ q; uÞ þ ðS1 þ qÞmð f Þ þ p f
�
uð0Þ

�
� p f

�
uðS1 þ qÞ

�
aG f ð0;S1; vÞ þ G f ðS1;S1 þ q; xÞ þ ðS1 þ qÞjmð f Þj

þ 2 supfjp f ðzÞj j z a Rn and jzjaM1g
a 1þ ðS1 þ qÞjmð f Þj

þ 2 supfjp f ðzÞj j z a Rn and jzjaM1g: ð5:31Þ

By (5.31), (5.18), (5.19), (2.1) and (P10),

jI f ð0;S1 þ q; uÞ � I gð0;S1 þ q; uÞja e=16: ð5:32Þ

It follows from (5.30), (5.21), (5.19), (5.18), (P9), (5.25)–(5.27), (2.3), the repre-

sentation formula (2.1), the nonnegativity of y f
T and Theorem 2.1 that

I gð0;T ;wÞ � I gð0;T ; uÞbU f
�
0;S1 þ q;wð0Þ;wðS1 þ qÞ

�
� e=16

� I f ð0;S1 þ q; uÞ � e=16

¼ U f
�
0;S1 þ q; uð0Þ; uðS1 þ qÞ

�
� I f ð0;S1 þ q; uÞ � e=8

b ðS1 þ qÞmð f Þ þ p f
�
uð0Þ

�
� p f

�
uðS1 þ qÞ

�
� I f ð0;S1 þ q; uÞ � e=8

b�e=8� G f ð0;S1 þ q; uÞ

¼ �e=8� G f ð0;S1; vÞ � G f ðS1;S1 þ q; xÞ
b�e=8� e=16 > �e=4: ð5:33Þ

In view of (5.26) and the inequality S1 > T0

uðtÞ ¼ vðtÞ; t a ½0;T0�:

By (5.29) and (5.33)

I gð0;T ; uÞa I gð0;T ;wÞ þ e=4 ¼ sg
�
0;T ; vð0Þ

�
þ e=4:

Therefore the function v is strongly ð f Þ-agreeable, assertion 3 implies assertion 1

and Theorem 1.4 is proved.
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