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Abstract. In this paper we study solutions of infinite horizon variational problems associ-
ated with a certain class of integrands. We consider c-optimal solutions, which were intro-
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dynamics. We show that if an integrand possesses an asymptotic turnpike property, then
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1. Introduction

In this paper we analyze solutions of infinite horizon variational problems associ-
ated with the functional

where 7| >0, T, > Ty, v: [T}, T»] — R" is an absolutely continuous (a.c.) func-
tion and f : R” x R” — R! belongs to a space of integrands described below. It
should be mentioned that the study of properties of solutions of optimal control
problems and variational problems defined on infinite domains and on sufficiently
large domains has recently been a rapidly growing area of research. See, for ex-
ample, [2], [3], [5], [10], [15], [17], [24], [26] and the references mentioned therein.
In this paper we study solutions of infinite horizon variational problems asso-
ciated with a certain class of integrands. We consider c-optimal solutions which
were introduced and used for models of solid-state physics [1], [20] and in the
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theory of thermodynamical equilibrium for materials [4], [11]-[14] and agreeable
solutions which were introduced for models of economic dynamics [7]-[9]. We
show that if an integrand possesses an asymptotic turnpike property, then these
two optimality notions are equivalent.

Denote by | - | the Euclidean norm in R”. Let a be a positive constant and
let  : [0,00) — [0, 00) be an increasing function such that y(z) — oo as t — co.
Denote by .o/ the set of all continuous functions f : R” x R” — R' which satisfy
the following assumptions:

A(i) for each x € R” the function f(x,-) : R" — R! is convex;

Ali) f(x, ») = max{y(|x[), y(|y))|y[} — a for each (x, y) € R" x R";
A(iil) for each M, e > 0 there exist I',d > 0 such that

|f (1, p1) = f (2, y2)| < emax{f(x1, y1), f(x2, ¥2) }

for each yq, y»,x1,x2 € R” which satisfy
|X,“SM, |yi|2ra i=1,2, ‘X]-X2|,|y1—y2|§5.
The set ./ contains many integrands. Examples of functions f € o/ can be
found in [21]-[24].
It is easy to show that an integrand f = f(x,y) € C'(R*") belongs to .o/

if f satisfies assumptions A(i), A(ii) and if there exists an increasing function
Yo 1 [0,00) — [0, 00) such that

max{|df /0x(x, y)I,|0f /oy (x, »)[} < Wo(Ix[) (1 + ¥ (I¥])]¥])
for each x, y € R".

Example 1.1. Tt is not difficult to see that if y(¢) = ¢ for all £ > 0, n = 1, if func-
tions /1, hy € C'(R') satisfy

h(x)>x|+1, xeR!
and if the function 4, : R' — R! is convex and
VAL <h(y) <co(y?+1), ()| <co(y?+1)
for all y € R', where ¢ is a positive constant, then the function
[ y)=h()h(y),  (x,r) e xR xR,

belongs to ..
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For the set .« we consider the uniformity which is determined by the following
base:

E(N.e,2) ={(f,9) € & x o :|[(x,9) =g(x,y)| <&
for all x, y € R” satisfying |x|, |y| < N}

A A{(fr9) e x| (1F(x 2]+ D) (Jgte, )+ 1) e 2712
for all x, y € R” satisfying |x| < N},

where N,e > 0 and 4 > 1. In this paper we consider the space .o/ equipped with
the topology induced by this uniformity. It was shown in [21], [24] that the uni-
form space .7 is metrizable and complete.

We consider functionals of the form

T
(T, T, 0) :J £ (u(0),0' (1)) dr, (1.1)

T

where f'e o/,0< T, < T, < coand v : [T}, T>] — R" is an absolutely continuous
(a.c.) function.
For f € o/, y,z € R" and real numbers T}, 75 satisfying 0 < T} < T» we set

U/(Ty,Ts, y,2) = inf{I/ (T}, T»,v) | v: [T}, T] — R"
is an a.c. function satisfying v(7) = y,v(T>) =z}  (1.2)
and

o/ (T, Ty, y) = inf{U/ (T}, T», y,2) | z € R"}. (1.3)

It is easy to see that —oo < U/ (Ty, T», y,z) < oo for each f € o7, each y,z € R"
and all numbers T, T satisfying 0 < 7 < T5.
Let f € /. For any a.c. function v : [0, «0) — R”" we set

J(v) =liminf T7'17(0, T v). (1.4)
Of special interest is the minimal long-run average cost growth rate
u(f) =inf{J(v)|v:[0,0) — R"is an a.c. function}. (1.5)
Clearly —oo < u(f) < oo.

Here we follow [5], [10], [24] in defining good functions for variational prob-
lems.
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Let f € /. An a.c. function v: [0, c0) — R" is called an (f)-good function if
the function

T—>If(()7 T7U)_:u(f)T7 Te (0700)7

is bounded.

In [21] we showed that for each f € .o/ and each z € R" there exists an
(f)-good function v : [0, c0) — R” satisfying v(0) = z.

We follow [12] in defining c-optimal functions.

An a.c. function v : [0, 00) — R" is called c-optimal with respect to f (or just
c-optimal if the function f" is understood) if sup{|v(¢)||# € [0, c0)} < oo and if for
each T > 0 the equality

1(0,T,0) = U/ (0, T,v(0),v(T))

holds.

Note that any c-optimal with respect to f function is (f)-good (see Proposition
5.2 of [21]).

For the proof of the following result see Theorem 1.1 of [21] and Theorem 1.1
of [22].

Proposition 1.2. For each f € o/ and any z € R" there exists a c-optimal with
respect to f function v : [0, c0) — R" such that v(0) = z.

The notion of c-optimality is a slight modification of the notion of minimality
introduced in [6] and discussed in [16], [18], [19]. The difference is that in our
paper c-optimal solutions are bounded and defined on the interval [0, o0) while
n [16], [18], [19] minimal solutions are defined on the whole space R" and the
boundedness is not assumed. Note that an analogous notion of minimality was
used in infinite discrete models of solid-state physics related to dislocations in
one-dimensional crystals [1], [20].

In the sequel we use the following result (see Proposition 1.1 of [23]).

Proposition 1.3. Let f € o/. Then for any a.c. function v:[0,00) — R" either
(0, T,v) — Tu(f) — o as T — o or

sup{|1/(0, T, v) = Tu(/)|| T € (0,0)} < 0.
Moreover any (f')-good function v : [0, 00) — R" is bounded.

An a.c. function v : [0, 00) — R”" is called (f)-agreeable if for each T > 0 and
each ¢ > 0 there exists 7, > Ty such that for each 7' > T, there exists an a.c. func-
tion w : [0, 7] — R" such that

w(t) =v(t), te]l0,To,
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and
(0, T,w) <o/ (0,T,0(0)) +e.

The notion of agreeable functions (programs) is well-known in the eco-
nomic literature [7]-[9]. In the present paper we introduce its following strong
version.

An a.c. function v : [0,00) — R” is called strongly (f)-agreeable if for each
To > 0 and each ¢ > 0 there exist 7, > Ty and a neighborhood % of f in .o/ such
that for each g € % and each T > T, there exists an a.c. function w : [0, 7| — R"
such that

w(t) =v(t), te]0,To)
and
1900, T,w) < a?(0, T,v(0)) +e.

Results known in the literature which establish existence of agreeable functions
(solutions) were obtained under strong assumptions on an objective function
which determines an optimality criterion [7]-[9]. In particular, it was assumed
that the objective function is convex (concave) as a function of all its variables.
In the present paper we show that for many integrands c-optimality and agree-
ability are equivalent.

In the definition of c-optimal functions we assume that they are bounded while
in the definition of agreeable functions there is no boundedness requirement. On
the other hand in view of Proposition 3.1 any agreeable function is bounded.

We denote d(x, B) = inf{|x — y|| y € B} for x e R", B < R”" and denote by
dist(4, B) the Hausdorff metric for two sets 4, B < R". For every bounded
a.c. function v : [0, 00) — R” define

Q(v) = {y € R" | there exists a sequence {7;},°, < (0, 0)

for which #; — o0, 0(t;) — yasi— o} (1.6)

which is called a limiting set of v.

We say that an integrand f € .o/ has the asymptotic turnpike property, or
briefly ATP, if Q(v2) = Q(v;) for all (f)-good functions v; : [0,00) — R", i =1,2
(see [12], [21], [24]). In other words Q(v) is the same for all (f)-good func-
tions v.

In [21] we established the existence of a set # < .o/ which is a countable inter-
section of open everywhere dense subsets of .7 such that each integrand f € &
possesses ATP. Thus a typical integrand possesses ATP.
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Denote by ./ the set of all functions /' = f(x, y) € C'(R*") which satisfy the
following assumptions:

of Joy; e CH(R™)  fori=1,....n;
the matrix (0f/0y:0y;)(x, y), i, j = 1,...,n is positive definite for all (x, y) € R*";

S (x, ) = max{y(|x]), ¥ (|y))|y[} —a  forall (x, y) e R" x R™;

there exist a number ¢p > 1 and monotone increasing functions ¢, : [0, 0) —
[0,c0), i =0,1,2 such that

po(t)/t — o0 ast— oo,
Fx,p) = dolcoly]) — ¢1(Ix]),  x,yeR",
max{|0f/0xi(x, y)I,10f /ayi(x, )|}
<o (x)(T+do(|¥), x,yeR"i=1,...,n

It is easy to see that .# < o/.
The following theorem is our main result.

Theorem 1.4. Let f € .4 possess ATP and v : [0,0) — R" be an a.c. function.
Then the following assertions are equivalent:

1. v is strongly (f)-agreeable;
2. vis (f)-agreeable;

3. v is c-optimal with respect f.

It is clear that assertion 1 of Theorem 1.4 implies assertion 2. In the proof
of Theorem 1.4 we show that assertion 2 implies assertion 3 and that assertion 3
implies assertion 1. Note that assertion 2 implies assertion 3 for any f € .«Z. In
order to show that assertion 3 implies assertion 1 we need to assume that f € .#
and that f possesses ATP.

Note that in the literature there are no examples of agreeable functions which
are not strongly agreeable. It is interesting to construct such an example but this
problem is not simple because most integrands possess ATP and in this case by
Theorem 1.4 our two notions are equivalent.

The paper is organized as follows. In Section 2 we consider perfect solutions
and state a result (Theorem 2.1) which shows that if f € .# possesses ATP, then
a function v is c-optimal if and only if it is perfect. Section 3 contains auxiliary
results. Theorem 2.1 is proved in Section 4 while Theorem 1.4 is proved in
Section 5.
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2. Perfect functions

Let f € «/. By a simple modification of the proof of Proposition 4.4 of [11]
(see also Theorems 8.1 and 8.2 of [21]) we obtain the following representation
formula

U (0,T,x,y) = Tu(f) + 7' (x) — 2/ (») +0§(x, y), x,yeR"T>0 (2.1)
where 7/ : R" — R! is a continuous function defined by
n/ (x) = inf{ li;n_igf[lf (0, T,v) — u(f)T]|v:[0,0) — R"
is an a.c. function satisfying v(0) = x}, xeR", (22)

and (T,x,y) — 0§(x, y) e R (T,x,y) € (0,0) x R" x R", is a continuous non-
negative function which satisfies the following condition: for every 7 > 0 and
every x € R” there is y € R” for which H;(x, y) =0.

For each 7 > 0, 75 > 11, each rj,r; € [11,12] satisfying r; < r, and each a.c.
function v : [71, 2] — R" set

T (r1,r2,0) = 1 (r1,r2,0) = 27 (0(r1)) + 27 (0(r2)) = (r2 = r)p( ). (2.3)
In view of (2.1), (2.3) and nonnegativity of 9';,
I/ (ry,ry,v) =0  foreach 7y > 0,7, > 1y, each ry,r; € [11, 73]
satisfying r; < r, and each a.c. function v : [71,7;] — R". (2.4)

We follow [14] in defining perfect functions.
An a.c. function v : [0, 00) — R" is called (f)-perfect if for all T > 0,

r/(0,T,v) =0.
We will prove the following result.

Theorem 2.1. Let f € .# possess ATP and v : [0, 0) — R" be an a.c. function.
Then the following assertions are equivalent:

1. v is c-optimal with respect f;
2. vis f-perfect.

A prototype of Theorem 2.1 was obtained in [14] for one-dimensional second
order variational problems with real valued functions arising in continuum

mechanics. Here the result of [14] is extended for the variational problems with
vector valued functions considered in this paper.
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Note that in [26] we constructed examples of c-optimal functions which are not
perfect.

3. Auxiliary results
In order to prove Theorem 1.1 we need the following results.

Proposition 3.1 ([22], Theorem 1.3). Let f € .o/ and My, M, ¢ be positive
numbers. Then there exist a neighborhood % of f in </ and a number S > 0 such
that for each g € U, each T\ € [0,00) and each T, € [T} + ¢, 0) the following
properties hold:
(i) if x, y € R" satisfy |x|,|y| < M,y and if an a.c. function v : [Ty, T2] — R" sat-
isfies
o(Ty) = x, v(Th) =y, (T, Th,v) < UNT, Tr,x,y) + M,

then
WOl <S,  te [T T; )
(i) if x € R" satisfies |x| < My and if an a.c. function v : [T}, T»] — R" satisfies
o(Ty) =x, I9T,Tr,v) <c¥(T\,Tr,x) + M,

then the inequality (3.1) is valid.

Proposition 3.2 ([25], Lemma 4.2). Let f € # possess ATP and let H(f) = R" be
such that Q(v) = H(f) for each (f)-good function v.

Assume that ¢ € (0,1). Then there exist numbers q,0 > 0 such that for each
hy, hy € R" satisfying a’(h[7 H(f)) <0,i=1,2, and each T > q there exists an a.c.
Sfunction v : [0, T| — R" which satisfies

o(0)=hi, o(T)=hy, T/(0,T,v)<e

Proposition 3.3 ([21], Theorem 8.3). Let f € o/ and x € R". Then there exists an
(f)-good function v : [0, c0) — R” such that

v(0)=x and T/(0,T,v)=0 forall T >0.
Proposition 3.4 ([22], Corollary 2.1). For each f € o/, each pair of numbers

T\, Ty satisfying 0 < Ty < Ty and each z),zy € R" there exists an a.c. function
v: [Ty, Ta] — R" such that v(T;) = z;, i = 1,2, I/ (Ty, T»,v) = U/ (T}, T, 21, 22).
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Proposition 3.5 ([22], Corollary 2.2). For each f € ./, each pair of numbers
T\, T, satisfying 0 < Ty, < T, and each z € R" there exists an a.c. function
v: [Ty, Ta] — R" such that v(T) = z, I/ (T, Tx,v) = ¢/ (Ty, Ts, 2).

Proposition 3.6 ([23], Theorem 1.2). Assume that f € .4 and that there exists
a nonempty compact set H(f) < R" such that Q(v) = H(f) for each (f)-good
Sfunction v.

Let 6, K > 0. Then there exist a neighborhood 9 of f in </ and positive
numbers ly, 0 such that the following assertion holds.

For each g € U, each T >2ly and each a.c. function v:[0,T] — R" which
satisfies

()], [o(T)| <K, 1900, T,0) < U’(0,T,v(0),v(T)) +9
the following inequality holds:
d(v(t),H(f))Se, tell, T — ).

Proposition 3.7 ([22], Proposition 2.9). Assume that f € o/, 0 < ¢; < ¢; < o0 and
c3,& > 0. Then there exists a neighborhood V of f in </ such that for each g € V,
each pair of numbers Ty, T, >0 satisfying T, — T\ € [c1,¢2] and each y,z € R"
satisfying |y|, |z| < c3 the inequality

|Uf(T17 T27y7z) - Ug(T17 T27y72)| <e
holds.

Proposition 3.8 ([22], Proposition 2.8). Let f € .9/, 0 < ¢ < ¢ < o0, D, e > 0.
Then there exists a neighborhood V of f in o/ such that for each g € V, each
pair of numbers Ty, T, > 0 satisfying T>» — T\ € [c1, c2] and each an a.c. function
v: [Ty, Th) — R" satisfying

min{I/(Ty, T»,v),I19(Ty, T>,v)} < D,
the inequality
[/ (T, Tr,v) — I9(Ty, To,v)| < &
holds.
The following useful result was obtained in [23].

Proposition 3.9. Let f € .o/. Then n/ (x) — oo as |x| — co.
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4. Proof of Theorem 2.1
Assume that for all 7 > 0
r/(0,T,v) = 0. (4.1)
By Proposition 1.3 there is ¢y > 0 such that for all 7 > 0
17(0, T, v) — Tu(f) = —co. (4.2)
It follows from (4.1), (4.2) and (2.3) that
—co <T/(0,T,0) + nf(v(O)) -/ (v(T)) = n/ (v(0)) — n/ (v(T)) (43)
and
7/ (v(T)) < o + 7/ (v(0)). (4.4)
Together with Proposition 3.9 this implies that
sup{|v(?)| |1 € [0,00)} < c0. (4.5)

Let 7> 0. By the representation formula (2.1), the nonnegativity of the function
0}, (4.1) and (2.3)

U7 (0,7,0(0),0(T)) = Tu(f) + 7' (v(0)) =2/ (o(T)) + 07 (v(0), v(T))
A

= Tu(f) + =’ (v(0)) — =/ (v(T)) + T/(0, T,v) = 1/(0, T, v).
This implies that
U’ (0, T,v(0),0(T)) = I/(0, T, v)
for all 7 > 0. Combined with (4.5) this implies that v is c-optimal with respect
to f.

Assume now that the function v is c-optimal with respect to /. By Proposition
3.3 there exists an (f)-good function u : [0, c0) — R” such that

u(0)=v(0) and T/(0,7,u)=0 forall T > 0. (4.6)
Assume that there is 7 > 0 such that

A :=T7(0, Ty,v) > 0. (4.7)
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There is a nonempty compact set H(f) = R"” such that Q(w) = H(f) for each
(f)-good function w.

By Proposition 3.2 there exist numbers ¢,0 > 0 such that the following prop-
erty holds:

(P1) for each hy,h, € R" satisfying d(h,-,H(f)) <o, i=1,2, and each T > ¢
there exists an a.c. function w : [0, 7] — R” which satisfies

w(0)=h, w(T)=h, T/(0,T,w)<A/4
Since the functions v and u are (f)-good we have
Qv) = Q(u) = H(f) (4.8)
and there exists 77 > T; such that
d(v(t),H(f)) <6/2, d(u(t),H(f)) <6/2 forallz>T. (4.9)
In view of (4.9)
du(T),H(f)) <6/2, d(o(Ti+q),H(f)) <6/2. (4.10)
By (4.10) and (P1) there exists an a.c. function w : [T}, T} + ¢] — R” such that

w(Th) = u(Th),  w(Ti+q) =v(Ti +q), (4.11)
I“f(Tl,Tl +q,w) <A/4.
Put
vi(t) =u(t), tel0,Ty], wvi(t)=w(r), te(T,Ti+q,
v1(t) =v(t), te(T)+q,0). (4.12)
Clearly, the a.c. function v; is well defined. By (4.6), (4.11) and (4.12)
v1(0) =v(0), vi(T1 +q) = v(T1 + q). (4.13)

It follows from (2.3), (4.7), the inequality T} > Ty, (2.4), (4.12), (4.6) and (4.11)
that
(0, Ty + q,v) — 17(0, Ty + q,01) = T7(0, T\ + ¢,v) — T/(0, Ty + q,v1)
>A—T7(0,Ty,v1) — T/ (T, Ty + q,v1)
=A-T70,T,u) —T/ (T, Ty + q,w)
>A—-A/4
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Combined with (4.13) this contradicts c-optimality of v. The contradiction we
have reached proves that I'/ (0, 7, v) = 0 for all 7 > 0. Theorem 2.1 is proved.

5. Proof of Theorem 1.4

Clearly, assertion 1 implies assertion 2. We show that assertion 2 implies assertion
3. Assume that the function v is (f)-agreeable and show that it is c-optimal with
respect to f. First we show that

sup{|v(?)| |t € [0, 0)} < 0. (5.1)

By Proposition 3.1 there exists a number Sy > 0 such that the following property
holds:

(P2) foreach T > 1, each x € R” satisfying |x| < |v(0)| + 1 and each a.c. function
u: [0, T] — R" satisfying

u0) =x, 17(0,T,u) <o’ (0,T,x)+1
we have
lu(r)] < So, t€]0,T).

Fix Ty > 1. Since v is (f)-agreeable there exists 7 > T} such that the follow-
ing property holds:

(P3) for each T' > T there exists an a.c. function u : [0, T] — R” such that
u(t)=vo(t), tel0,Ty (5.2)
and
I(0,T,u) <o/ (0,T,v(0)) +4°". (5.3)
Let 7 > T; and let an a.c. function u : [0, 7] — R" be as guaranteed by prop-
erty (P3). Thus (5.2) and (5.3) holds. It follows from (5.2), (5.3) and (P2) that for
all ¢ € [0, To)

lo(2)] = [u(2)] < So. (5.4)
Since 7} is an arbitrary number larger than 1 we conclude that

lo(2)] < So, te]0,0). (5.5)
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Let Ty > 0. We show that
170, Ty, v) = U’ (0, Ty, v(0), (Ty)). (5.6)
Assume the contrary and put
e =871[I7(0, Ty, v) — U/ (0, Ty, v(0), v(Tp))]. (5.7)
Clearly, ¢ > 0 and there exists an a.c. function v; : [0, 7y] — R” such that

1)1(0) = U(O), Ul(T()) = U(To), (58)
17(0, Ty, v1) < I7(0, Ty, v) — 7e. (5.9)

Since the function v is (f)-agreeable there exists 7 > Ty such that the following
property holds:

(P4) for each T > T there exists an a.c. function u : [0, T| — R" such that

u(t) =v(t), tel0,Ty] (5.10)
and

1/(0,T,u) <o/ (0, T,0(0)) +e. (5.11)

Fix T > T; and let an a.c. function u : [0, 7] — R" be as guaranteed by prop-
erty (P4). Thus (5.10) and (5.11) hold. Define a function u; : [0, 7] — R" by

ui(t) =vi(t), tel0,To], w(t)=u(r), te(To,T). (5.12)
In view of (5.8), (5.10) and (5.12) the a.c. function u; is well-defined and
u1(0) = u(0) = v(0). (5.13)
It follows from (5.12), (5.10) and (5.9) that

If(()v T7 Ll) - If(07 T>u1) = If(oﬂ TO; u) - If(()a T07 Ll])
=17(0, Ty,v) — I (0, Ty, v1) > 7e.

Combined with (5.13) this implies that
17(0,T,u) > 7e + ¢/ (0, T, v(0)).

This contradicts (5.11). The contradiction we have reached proves that (5.6)
holds. Since T) is any positive number (5.5) and (5.6) imply that the function v
is c-optimal with respect to f.
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We show that assertion 3 implies assertion 1. Assume that the function v is
c-optimal with respect to /. We show that the function v is strongly (f)-agreeable.

There is a nonempty compact set H(f) < R" such that Q(u) = H(f) for each
(f)-good function u.

Choose a number M, > 0 such that

Moy >4 +sup{|z||z € H(f)} + sup{|v(?)| |t € [0, 0)}. (5.14)

By Proposition 3.1 there exist a neighborhood %, of f in ./ and a number
M, > M, such that the following properties hold:

(P5) for each g € %, each T > 1, each x, y € R" satisfying |x|,|y| < M, and each
a.c. function w : [0, T] — R” satisfying

W(O) =X W(T) = Ig(oa T, W) < Uq(oa T, x, y)+4
the following inequality holds:
w(t)| <M, te][0,T]; (5.15)

(P6) for each g € %, each T > 1, each x € R" satisfying |x| < M, and each
a.c. function w : [0, T] — R” satisfying

w(0)=x, TI0,T,w)<d’(0,T,x)+4
the inequality (5.15) is valid.
Let
To>1, ¢€(0,1). (5.16)

By Proposition 3.2 there exist numbers ¢ > 0, J € (0,¢) such that the following
property holds:

(P7) for each hy, h, e R" satisfying d(h;, H(f)) <J, i=1,2, and each T >¢
there exists an a.c. function & : [0, 7] — R”" which satisfies
By Proposition 3.6 there exist a neighborhood %, of f in .o/ and a positive
number Sy such that the following property holds:
(P8) for each g € %, each T > 2S5, and each a.c. function w : [0, 7] — R" which

satisfies

w(O)|, w(T)| < My, 1900, T,w) = U’(0,T,w(0),w(T))



Agreeable solutions 253
we have
d(w(t),H(f)) <6/2, 1€ S, T — So).
Since v is an (f)-good function there is
S1 > To+ So
such that
d(v(1),H(f)) <6/2 forallt>S). (5.17)

By Proposition 3.7 there exists a neighborhood %; of f in .o/ such that the
following property holds:

(P9) for each g € %; and each y,z € R” satisfying |y|, |z| < M we have
|Uf(07S1 + ¢, y,Z) - Ug(OaSI +Qayvz)‘ < 8/16

By Proposition 3.8 there exists a neighborhood %4 of f in o/ such that the
following property holds:

(P10) for each g € %4 and each a.c. function w : [0, S] + ¢g] — R” satisfying

min{7/ (0, S, + g, w), 190, Sy + ¢, w)}
< 1+ (St +q)lu(f)| + 2sup{|n’ (2)| |z € R" and |z| < My}

the inequality

|If(07S1 +4q, W) _Ig(O)SI +(I7W)| < 8/16

holds.
Put
4
%:Q%, T,=Ty+ S;+2S0+g¢. (5.18)
Assume that
T>T,, geUu. (5.19)

By Proposition 3.5 there exists an a.c. function w : [0, 7] — R”" such that

w(0) =v(0), 100, T,w) =a?(0,T,v(0)). (5.20)



254 A. J. Zaslavski
In view of (5.14), (5.18), (5.19), (5.20) and (P6)
w(t)| <M, tel0,T]. (5.21)
Property (P8), (5.18), (5.19), (5.20) and (5.21) imply that
d(w(t),H(f)) <6/2 forallte [Sy, T — Sol. (5.22)
By (5.17)
d(v(S), H(f)) <6/2. (5.23)
It follows from (5.18), (5.22) and the inequality S; > Sy that
d(w(S1 +q),H(f)) <6/2. (5.24)

By (5.23), (5.24) and (P7) there exists an a.c. function ¢ : [S}, S| + ¢] — R” which
satisfies

ES1) =0(S1), ESi+q)=w(Si+q), T/(S1,8 +4¢,& <e/l6. (5.25)
Define

u(t) =v(r), tel0,81], u(t)=<&0), te(S1,S+4q],
u(t)=w(t), te(S1+gq,T). (5.26)

Clearly, the a.c. function u is well-defined. In view of (5.20) and (5.26)
u(0) =w(0), u(T)=w(T). (5.27)
We will estimate
1900, T,w) — 1900, T, u) = ¢?(0, T, v(0)) — I9(0, T, u). (5.28)
It follows from (5.20) that
a?(0,T,v(0)) = 19(0, T, w) = UI(0, T,w(0), w(T)). (5.29)
By (5.26) and (5.29)

]g(o? T? W) - 19(07 T7 M) = 10(07 Sl +4q, W) - 19(0, Sl + Q?u)
= U?(0,81 +¢,w(0),w(S1 +q))
—19(0, 8] + q,u). (5.30)
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By (2.3), (5.26), (5.27), (5.21) and Theorem 2.1,

10,81+ q.u) = T7(0, 81 + q,u) + (S + @u(f) + 7/ (u(0)) — 2/ (u(S) + q))
< T/(0,81,0) + T/ (S1, 81 +¢.6) + (S + 9)|u(f)]
+ 2sup{|n/ (z)||z € R" and |z| < M}
< 1+ (S +q)|u(f)|
+2sup{|n/ (2)| |z € R" and |z| < M, }. (5.31)
By (5.31), (5.18), (5.19), (2.1) and (P10),
|17(0, S, + q,u) — 100, 8, + q,u)| <&/16. (5.32)

It follows from (5.30), (5.21), (5.19), (5.18), (P9), (5.25)—(5.27), (2.3), the repre-
sentation formula (2.1), the nonnegativity of ¢ and Theorem 2.1 that

1900, T, w) — 1900, T,u) > U’ (0, Sy + ¢, w(0),w(S1 + q)) — /16
—17(0,81 + q,u) — /16
= U'(0,81 + q,u(0),u(S1 + q)) — I (0,81 + q.u) — &/8
> (S1 + Qu(f) + 7/ (u(0)) — =/ (u(S) + q))
—17(0,S) + q,u) —¢/8
> —¢/8 — Ff(O,Sl +q,u)
= —¢/8 = T/(0,81,0) = T7(S1,81 +¢,9)
> —¢/8—¢/16 > —¢/4. (5.33)
In view of (5.26) and the inequality S} > Ty
u(t)=vo(t), tel0,Ty.
By (5.29) and (5.33)
1900, T,u) < I9(0, T, w) +¢/4 = 69 (0, T,v(0)) + /4.

Therefore the function v is strongly (f)-agreeable, assertion 3 implies assertion 1
and Theorem 1.4 is proved.

References

[1] S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its exten-
sions: I. Exact results for the ground-states. Phys. D 8 (1983), 381-422. MR 719634


http://www.ams.org/mathscinet-getitem?mr=719634

256 A. J. Zaslavski

[2] J. Blot and P. Cartigny, Optimality in infinite-horizon variational problems under
sign conditions. J. Optim. Theory Appl. 106 (2000), 411-419. Zbl 1004.49014
MR 1788932

[3] J. Blot and P. Michel, The value-function of an infinite-horizon linear-quadratic prob-
lem. Appl. Math. Lett. 16 (2003), 71-78. Zbl 1035.49023 MR 1938193

[4] B. D. Coleman, M. Marcus, and V. J. Mizel, On the thermodynamics of periodic
phases. Arch. Rational Mech. Anal. 117 (1992), 321-347. Zbl 0788.73015 MR 1148212

[5] D. Gale, On optimal development in a multi-sector economy. Rev. Econ. Stud. 34
(1967), 1-18.

[6] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals.
Acta Math. 148 (1982), 31-46. Zbl 0494.49031 MR 666107

[7] P. J. Hammond, Consistent planning and intertemporal welfare economics. Ph.D.
dissertation, University of Cambridge, Cambridge, 1974.

[8] P.J. Hammond, Agreeable plans with many capital goods. Rev. Econ. Stud. 42 (1975),
1-14. Zbl 0297.90005

[9] P. J. Hammond and J. A. Mirrlees, Agreeable plans. In Models of Economic Growth
(eds. J. Mirrlees and N. H. Stern), Wiley, New York 1973, 283-299.

[10] A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost. Appl
Math. Optim. 13 (1985), 19-43. Zbl 0591.93039 MR 778419

[11] A. Leizarowitz and V. J. Mizel, One-dimensional infinite-horizon variational problems
arising in continuum mechanics. Arch. Rational Mech. Anal. 106 (1989), 161-194.
Zbl 0672.73010 MR 980757

[12] M. Marcus and A. J. Zaslavski, The structure of extremals of a class of second order
variational problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 593—629.
Zbl 0989.49003 MR 1712568

[13] M. Marcus and A. J. Zaslavski, On a class of second order variational problems with
constraints. Israel J. Math. 111 (1999), 1-28. Zbl 0935.49001 MR 1710729

[14] M. Marcus and A. J. Zaslavski, The structure and limiting behavior of locally
optimal minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002), 343-370.
Zbl 1035.49001 MR 1956954

[15] B. S. Mordukhovich and I. Shvartsman, Optimization and feedback control of con-
strained parabolic systems under uncertain perturbations. In Optimal control, stabiliza-
tion and nonsmooth analysis, Lecture Notes in Control and Inform. Sci. 301, Springer,
Berlin 2004, 121-132. Zbl 1100.49029 MR 2079680

[16] J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré
Anal. Non Linéaire 3 (1986), 229-272. Zbl 0609.49029 MR 847308

[17] S. Pickenhain, V. Lykina, and M. Wagner, On the lower semicontinuity of functionals
involving Lebesgue or improper Riemann integrals in infinite horizon optimal control
problems. Control Cybernet. 37 (2008), 451-468. MR 2472885

[18] P. H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert.
Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 673—688. Zbl 1149.35341
MR 2086754


http://www.emis.de/MATH-item?1004.49014
http://www.ams.org/mathscinet-getitem?mr=1788932
http://www.emis.de/MATH-item?1035.49023
http://www.ams.org/mathscinet-getitem?mr=1938193
http://www.emis.de/MATH-item?0788.73015
http://www.ams.org/mathscinet-getitem?mr=1148212
http://www.emis.de/MATH-item?0494.49031
http://www.ams.org/mathscinet-getitem?mr=666107
http://www.emis.de/MATH-item?0297.90005
http://www.emis.de/MATH-item?0591.93039
http://www.ams.org/mathscinet-getitem?mr=778419
http://www.emis.de/MATH-item?0672.73010
http://www.ams.org/mathscinet-getitem?mr=980757
http://www.emis.de/MATH-item?0989.49003
http://www.ams.org/mathscinet-getitem?mr=1712568
http://www.emis.de/MATH-item?0935.49001
http://www.ams.org/mathscinet-getitem?mr=1710729
http://www.emis.de/MATH-item?1035.49001
http://www.ams.org/mathscinet-getitem?mr=1956954
http://www.emis.de/MATH-item?1100.49029
http://www.ams.org/mathscinet-getitem?mr=2079680
http://www.emis.de/MATH-item?0609.49029
http://www.ams.org/mathscinet-getitem?mr=847308
http://www.ams.org/mathscinet-getitem?mr=2472885
http://www.emis.de/MATH-item?1149.35341
http://www.ams.org/mathscinet-getitem?mr=2086754

Agreeable solutions 257

[19] P. H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II.
Adv. Nonlinear Stud. 4 (2004), 377-396. Zbl 02149270 MR 2100904

[20] A. J. Zaslavski, Ground states in a model of Frenkel-Kontorova type. Izv.
Akad. Nauk SSSR, Ser. Mat. 50, No. 5, 969-999 (1986). Izv. Akad. Nauk SSSR
Ser. Mat. 50 (1986), 969-999; English transl. Math. USSR-Izv. 50 (1986), 323-354.
Zbl 0646.58040 MR 0873657

[21] A. J. Zaslavski, Dynamic properties of optimal solutions of variational problems.
Nonlinear Anal. 27 (1996), 895-931. Zbl 0860.49003 MR 1404591

[22] A. J. Zaslavski, Existence and uniform boundedness of optimal solutions of varia-
tional problems. Abstr. Appl. Anal. 3 (1998), 265-292. Zbl 0963.49002 MR 1749412

[23] A. J. Zaslavski, Turnpike property for extremals of variational problems with vector-
valued functions. Trans. Amer. Math. Soc. 351 (1999), 211-231. Zbl 0913.49002
MR 1458340

[24] A. J. Zaslavski, Turnpike properties in the calculus of variations and optimal control.
Nonconvex Optim. Appl. 80, Springer, New York 2006. Zbl 1100.49003 MR 2164615

[25] A. J. Zaslavski, A nonintersection property for extremals of variational problems
with vector-valued functions. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006),
929-948. Zbl 1208.49023 MR 2271702

[26] A.J. Zaslavski, Examples of optimal solutions of infinite horizon variational problems
arising in continuum mechanics. Port. Math. (N.S.) 66 (2009), 159-174.
Zbl 1160.49035 MR 2522767

Received July 22, 2010; revised January 23, 2011

A. J. Zaslavski, Mathematics Department, Technion—Israel Institute of Technology,
Haifa, 32000, Israel

E-mail: ajzasl@tx.technion.ac.il


http://www.emis.de/MATH-item?02149270
http://www.ams.org/mathscinet-getitem?mr=2100904
http://www.emis.de/MATH-item?0646.58040
http://www.ams.org/mathscinet-getitem?mr=0873657
http://www.emis.de/MATH-item?0860.49003
http://www.ams.org/mathscinet-getitem?mr=1404591
http://www.emis.de/MATH-item?0963.49002
http://www.ams.org/mathscinet-getitem?mr=1749412
http://www.emis.de/MATH-item?0913.49002
http://www.ams.org/mathscinet-getitem?mr=1458340
http://www.emis.de/MATH-item?1100.49003
http://www.ams.org/mathscinet-getitem?mr=2164615
http://www.emis.de/MATH-item?1208.49023
http://www.ams.org/mathscinet-getitem?mr=2271702
http://www.emis.de/MATH-item?1160.49035
http://www.ams.org/mathscinet-getitem?mr=2522767

