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Abstract. In this paper an enveloping superalgebra is presented for Malcev superalgebra.
An extension of the Poincaré—Birkhoff—-Witt Theorem to this class of superalgebras is
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1. Introduction

Given a superalgebra 4 = 4; ® A4, let us denote by 4~ the superalgebra obtained
from A replacing the product xy by the super-commutator [x, y| = xy — (—1)"yx,
for homogeneous elements x € As, y € A;. It is known that if 4 is an associative
superalgebra one obtains a Lie superalgebra 4, and conversely, superizing the
arguments used in the Lie algebra case, the Poincaré—Birkhoff-Witt Theorem
establishes that any Lie superalgebra is isomorphically embedded into an algebra
A~ for a suitable associative superalgebra 4 [4].

If we start with an alternative superalgebra 4 (alternativity is a weaker form
of associativity) then 4~ is a Malcev superalgebra. It remains an open problem
whether any Malcev superalgebra is isomorphic to a subalgebra of 4~ for some
alternative superalgebra 4. In [3], Pérez-Izquierdo and Shestakov presented
an enveloping algebra of Malcev algebras (constructed in a more general way),
showing that this generalizes the classical notion of enveloping algebra for the
particular case of Lie algebras. They prove that for every Malcev algebra M
there exist an algebra U(M) and an injective Malcev algebra homomorphism
1: M — U(M)™ such that the image is contained in the generalized alternative
nucleus N, (U(M)), being U(M) a universal object with respect to such
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homomorphisms. The algebra U(M) is in general not alternative, but it has a
basis of Poincaré—Birkhoff-Witt Theorem type over M and it inherits the good
properties of the universal enveloping algebra of Lie algebras.

It is worth noting that enveloping superalgebras for Akivis superalgebras have
been recently studied in [1] by Albuquerque and Santana, superizing the work of
Shestakov in the Akivis algebra case [5]. It is our goal to present a universal
enveloping superalgebra of Malcev superalgebras, superizing the theory exposed
by Pérez-Izquierdo and Shestakov in [3]. Our approach is similar to the one
employed in [3], but the superization of the results implies more elaborated calcu-
lations and arguments.

2. Preliminaries

A superalgebra A is a Z,-graded algebra (meaning that we consider an underlying
Zy-graded vector space A = Ay ® A7 and A,Ap = A,yp, for all o,f € 7,). We
write x € A; to mean that x is a homogeneous element of the superalgebra 4 of
degree X, with x € Z,. We recall that a superalgebra M = My @ M; endowed
with the multiplication [,] is called a Malcev superalgebra if it satisfies the follow-
ing two conditions: Vx € My, y € M,z € M:, t € M;

(i) super-anticommutativity: [x, y] = —(—=1)"[y, x]

(ii) super-Malcev identity:

(_l)yz[[x’ Z]’ [ya t” = mx7 y],Z], t] + (_l)ﬂﬂﬂt_)[[[y?Z]a l]ax]
+ (=)EIED 1z, 4, 5], ]+ (=) T [[g, 5], ), 2].

Let V7 be a vector space of countable dimension. The Grassmann (or exterior)
algebra over V', usually denoted by A(7), is the quotient of the tensor algebra over
the ideal generated by the symmetric tensors {x ® x : x € V'}. If {e}, ez, e3,...} 18
a basis of V then the elements 1, ¢; - ... -¢;, with i} < --- < i,, constitute a basis
for A(V) satisfying ¢? = 0 and e;e; = —eje;. The algebra A(V) is associative with
identity, and it is a Z,-graded algebra A(V) = A(V); ® A(V);, where its even
part A(V); is the linear span of all tensors of even length and the odd part
A(V); is the linear span of all tensors of odd length.

Let A = A; ® A; be a superalgebra. The Grassmann enveloping algebra of A
is the algebra G(4) = (45 ® A(V);) @ (4; @ A(V);), with the multiplication
defined by

(X@e)(y®ep) =xy@esep, V(xQe,) € Az @ A(V)g,
(Y ®ep) € Az @ A(V);.
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If 7" is a type of algebras defined by homogeneous identities, a superalgebra
A= Ay ® Ay is a ¥V -superalgebra if its Grassmann enveloping algebra G(A4) is
in 7.

The associator (x, y,z) of elements x, y, z in the superalgebra A is defined in
terms of the associator defined in its Grassmann enveloping algebra G(A4) in the
following way:

(%, 7,2) ® (esepe,) = (X ® €1,y ® €,z ® €)).
Making some simple computations we see that

(,3,2) @ (exepey) = (* @ )y @ ep)) @ &) — (x @ €a) (¥ B ep)(z B ¢y))
= (()z = x(y2)) ® (exepey).

In this way the associator will be (x, y,z) = (xy)z — x(yz) for elements x, y, z in 4.
The superjacobian of homogeneous elements x € Az, y € Ay, z € A is given
by

SI(x, y,2) =[x, v], 2] + (=) [y, 2], 5] + (= 1)z, 40, y).

It is easy to see that the superjacobian is super-skewsymmetric. The super-Malcev
identity is equivalent to the condition

SJ(x,y,z) =6(x,y,2), Vxeds yed;zed: (2.1)

3. Generalized alternative nucleus

The notion of generalized alternative nucleus of an arbitrary algebra presented
in [2] and used in [3] can be straightforward extended to the super case.

Definition 3.1. Let 4 = A5 ® A5 be a superalgebra. The generalized alternative
nucleus of A, which we denote by N, (A4), is the set of 4 generated by the elements

{Cl € Aﬁ : (a7 X, )/) - _(_l)ﬁ’%(xvaa y) = (_1)‘7(«‘_C+J7)(x7 Vs a),Vx € AJ_cv S A)_/}

Next we shall prove that the generalized alternative nucleus Ny (4)™ is a
Malcev superalgebra endowed with the super-commutator [a,b] = ab — (—1)“bba,
for homogeneous elements a € Nu(4);, b € Na(A);.

We recall that a ternary superderivation of a superalgebra 4 = A; ® 45 is a
triple (D1, D, D3) in (End(4)), x (End(4)) PR (End(A))y such that

Di(xy) = Da(x)y + (=1)"xD3(y), Vxe Az, ye Aj.
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The Lie superalgebra of ternary superderivations is denoted by Tsder(4). If
D = D = D, = D3 then we have that D is a homogeneous superderivation of 4
of degree o.

For a € A;, we define as usual the linear maps L, : 4 — A and R, : A — A by
L,(x) =ax and R,(x) = (—1)"xa, for all x € Az, respectively. The maps L,
and R, are homogeneous of degree a. Let 7, =L, + R,. We can show that
a € Nyi(A) if and only if

(Lyy Ty, —L,) and (Ry, —R,, T,) € Tsder(A). (3.1)

Lemma 3.2. Let a € (Nui(A)),. b € (Na(A4)); and x € Az. Then
(i) Lax = LaLyx + [Ry, Ly] and Ly, = LyLy + [Ly, Ro);

(i) (=1)™Rax = RiRq + [Ry, La) and (=1)" Ryg = RyRy + [La, R);

(iii) [La, Ro] = [Ra, Ly}

(iV) [La L) = Lig — 2[Ra, Ls) and [Ra, Ry = —Rig.py — 2[La, Ry).

Proof. The proof is a superization of that of 2], Lemma 4.2. We easily see that
(i), (i) and (iii) follows from the identities: (a,x, y) = (—1)"“*(x, y,a), (x,a, y)

= _( 1) (X ry,a ) (a VX )_ _(_l)ay(y’a X) (a VX )7 (_1)a<x+y)(yax’a)r and
(a,x,b) = (—1) a(b+3) +}“(b x,a), Ya € A, b € A4;, x € Az, y € Ay. As [L,, L) =
L,L,— (—1)“ LyL, and [R,,Ry) = R Rb - (—1) PRyR,, for all ae Az, be Aj,
then (iv) is a consequence of (i), (i) and (iii), finishing the proof. O

Proposition 3.3. Ifa e ( Na(A4 )) and b e ( Na(A4 ) then |a,b] € ( dlt(A)>ﬁ+g~

)
Proof. Consider a € (Nyi(A4)), and b e (Ny(4));. From Lemma 3.2(iv) we
know that Ly, 5 = [La, Ls] + 2[Ry, L] and Ry, 5) = —[R4, Rp] — 2[L4, Ry]. More-
over, by (3.1) we have that (L,, T,,—L,), (Lb,T;,, —Ly), (Ry,—R,, T,), and
(R, =Ry, Tpy) € Tsder(A). Consequently (L), [Tu, Tp] + 2[~Ra, Tp), [La, L] +
2[Ty, —Ly]) and (R, —[Ra, Ry] +2[T4, Rp], —[Ta, Tp] + 2[La, Tp]) are ternary
superderivation of 4. As

_L[aﬁb] = _[Lme] - Z[RaaLb] = [LaaLh] + 2[Ta7 _Lb]’
—R{4 5 = [Ra Rp) 4 2[La, Ry] = —[Ru, Rp] + 2[T4, Ry),

and
T[a,b] = [LthLb] - [RmRb] = [Tav Tb] + 2[*Ra7 Tb] = 7[Ta) Tb] + 2[La7 TbL

we conclude that (L 4, Tia,5), —Lia,p) and (Rjs, 5, — R4, Tja,p)) € Tsder(A4), and
so [a,b] € (Nalt(A))5+,; as desired. 0



A universal enveloping algebra of Malcev superalgebras 263

Using the relation between a superalgebra A4 and its Grassmann enveloping
algebra G(A), the next result shows that Ny (4) ™ is a Malcev superalgebra.

Proposition 3.4. If A is a superalgebra then G(Nqai(A)) = Nai(G(A)). Further-
more, N (A) ™ is a Malcev superalgebra.

Proof. Let x ® e, € Nai(G(4)). Let us assume that x @ ¢, € A; ® A(V);. For
y®epe Ay Q@ A(V); and z® e, € A: @ A(V): we have

(a®en,x®ep,yRe) =—(xRep,a®e,yRe) =(xRepyRe,a®e,)
= (@x) ® (eee) = —(6,a,9) ® (gese,) = (%, 1.0) @ (epe,es)
= (a,x,9) ® (exepe;) = —(—1)"(x,a, ) ® (enepe;)

= ()" (x,y,0) @ (esepey).

50 4 ® e, € G(Nay(A4)), because (a,x,y) = —(~1)"(x,a, y) = (=) (x, y, a),
for x € Az and y € Aj, which means that a € Ny (4), showing the equality of
the sets. It is proved that the generalized alternative nucleus Ny (A4), of an arbi-
trary algebra A, is a Malcev algebra when endowed with the commutator product
[x, ] = xy — yx, for elements x,y € A, where the initial multiplication in A is de-
fined by juxtaposition (see [2], [3]). As G(Nq(A)) = Na(G(A)) and Ny (G(A4))
is a Malcev superalgebra endowed with the commutator product

X ® ey, y®egl =xy®e,ep — yx @ epe, = {xy — (—I)Wyx} ® eyep,

we infer that G(Nalt(A)) - is a Malcev algebra, consequently N,(4) is a Malcev
superalgebra when endowed with the super-commutator [x, y] = xy — (—1)"yx,

for homogeneous elements x € Az, y € A5, as desired. O

4. Enveloping superalgebra of a Malcev superalgebra

In this section an enveloping superalgebra of a Malcev superalgebra is presented
and some of its properties are studied.

Definition 4.1. Let M be a Malcev superalgebra. A universal enveloping super-
algebra of M is a pair (U, 1), where U is a unital superalgebra and:: M — U~ is
a Malcev homomorphism, with the image of M inside the generalized alternative
nucleus N, (U), satisfying the following condition: for any unital superalgebra A4
and any Malcev homomorphism ¢ : M — A~, with the image of M inside the
alternative nucleus N, (4), there exists a unique superalgebra homomorphism
@ : U — A of degree 0 such that (1) =1l and p =@ o 1.
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Next we will construct the universal enveloping superalgebra of a Malcev
superalgebra (M = My ® Mj,[,]) over a commutative and associative ring [<
with %,% € K, which is a free module over K. We consider the nonassociative
Z-graded tensor algebra of M,

T(M) =@ T"(M),

neZ

where T"(M)={0} if n<0, T'M)=K, T'(M)=M and T"(M)=
@ T/(M) ® T" (M) if n>2, with the multiplication xy := x ® y, when-
ever x,y e T(M). For example, T°(M) = [T'(M)® (T'(M)®T'(M))| ®
[(T'(M)® T'(M)) ® T'(M)], where the two summands are different, meaning
that, in general x(yz) # (xy)z, for x,y,z € M. We also have that T(M) is a
superalgebra where the Z,-gradation of it is induced by the Z,-gradation of M
and is defined by

where T”(M)y = @?;I@WJF/}:},(T"(M)Q ® T"*[(M)ﬁ), for y € Z,. Consider the
7Z,-graded ideal [ in T(M ) generated by the set of all homogeneous elements

ab — (=1)ba — [a,b], (a,x, y) + (~1)™(x,a, ), (a,x, y) — (=1)" ) (x, y, a),

)

T(M)/I is a superalgebra with the natural Z,-gradation induced by the
graded ideal 7, with the usual multiplication (x+ I)(y+ 1) = xy + I, for every
x,y € T(M). Consider the map 1: M — T(M) — U(M) given by 1(a) = a+ 1,
for all @« € M, composition of the canonical injection with the quotient map.

with a € M, b e M;, x € T(M)X,, yE T(M)}-. The quotient algebra U(M) =

Proposition 4.2. The pair (U(M),1) is a universal enveloping superalgebra of M.
Moreover, M is isomorphic to a subalgebra of Na(A)~, for some superalgebra A,
if and only if the map 1 is injective.

Proof. Letae M;. Asforallxe T(M);, ye T(M))-,, (a,x,y) + (—=1)"(x,a, y)
and (a,x,y) — (=)™ (x, y, ) belong to I(M) then 1(a) is contained in general-
ized alternative nucleus of U(M). The assertion ab — (—1)%ba — [a,b] € (M),
for every a € Mz, b € Mj, ensures that1: M — Nah(U(M)y is a Malcev homo-
morphism.

Now we take care about the universal property. Let 4 be an unital super-
algebra and ¢ : M — A~ a Malcev homomorphism, with the image of M inside
the generalized alternative nucleus Ny (A4). We have to prove that there exists
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a unique superalgebra homomorphism ¢ : U(M) — A4 such that ¢(1) =1 and
¢ = ¢ o1. Taking in account the universal property of the tensor algebra, there
exists a unique superalgebra homomorphism @ : T(M) — A of degree 0 verify-
ing @(x) = ¢(x), whenever x € M. Since ¢ is a Malcev homomorphism and
p(a) € Na(A), for all a € M;, we infer that 7 < Kerp. Consequently, there
exists a superalgebra homomorphism ¢: U(M) — A of degree 0, such that
9(1(x)) = @(x), with x e M. Since U(M) is generated by K and 1(M), then we
guarantee that ¢ is unique, as desired. O

It is our goal to find a basis of the vector space U(M) for a Malcev super-
algebra M. Let {a;:i € A} be a basis of M = My ® M; indexed by the totally
ordered set A = Ay U A; verifying the conditions: {a; : i€ A,} is a basis of M,
(¢ =0,1) and i, < i, if i, € A, iy € A;. Take

QZ{(il,...,i,1)ZnZO,il,...7in€AWithi1 s~--£i,,andi,,<i,,+1 ifa[p EMT}.

To simplify, if 1= (if,...,i,) €Q we will abbreviate 1(a;) = (a;)(1(az)-
(... (ula;, )i(a;,))...)). If n=0 then I =0 and we use the convention that
1(aj) = 1. We will denote by |I| the size n of I and I' = (i, ..., i,) if |I| = 1.

Theorem 4.3. The set {i(a;) : I € Q} is a basis of the vector space U(M).

The proof of Theorem 4.3 is very laborious, so we will do it in a staged manner
and it will take the rest of the paper. First we are going to prove that U(M) is
spanned by the set {:(a;) : I € Q} and in next section we will take care about the
linear independence.

Proposition 4.4. U(M) is spanned by the monomials {1(a;) : I € Q}.

Proof. Denote by U the vector space spanned by {i(a;) : I € Q} and U, an auxil-
iary vector space spanned by {i(a;) : I € Q and |I| <n}. As U(M) is generated
by (M) and (M) = U, it remains to show that U is a subalgebra of U(M). We
shall prove the proposition by induction on n. Let us assume that 1(a)U,_; < U,
and [U,_1,1(a)] € U,—1. Forae M and I € Q such that |I| = n, we have

[1(ar), 1(a)] = [t(ay)i(ar), (a)] = (=1)"“"“(iay),(a)l(ar) +1(a;)[i(ar), 1(a)]

+ (iay), (ar), (@) — (=1 (), 1(a), 1(ar))

() (1) () o(a))

= ()" [i(ay), o(@)]i(ar) + 1(ay,)[1(ar), (a)] + 3 (1(ay ), 1(ar), 1(a))
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because 1(a), 1(a;,) € Na(U(M)) and we use the two following assertions:

[Xy,Z] - (_l)ff[x’ Z]y - x[y, Z] - (X, Vs Z) - <_1)ff(x7z, y) + (_1)5(i+f)(z7 X, y)
and
[, 1 2] = (=1)"[x, 2, »] = [x, [, 2]]

= (x,2,2) = (=1 (x,2.0) + (=17 (2 x, )
— (DYx ) + (D20 - (D) ) (@)
holding in any superalgebra, where x, y and z are homogeneous elements. In con-

clusion, we obtain [U,,1(a)] = U,. Now we take care about the other condition.
For a;, € M we have

= (=1 Vaaq) (i u(ar)
43 O @), ap )] o)
Uy
= (=1 [y ) ()] ar)] = [aw), [ar) 1(aq)]] } mod U,

1l
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where we take in account that i(a;),1(a;) € Nat(U(M)) and (4.1). Hence
1(a)U, < Uy,41. By induction we proved that [U,,1(a)] < U, and 1(a)U, < U,41,
for all n. From U,i(a) < 1(a)U, + [1(a), U,] < Uyy1 + U, < U,y we also have
Usi(a) € Uyyy. Therefore 1(a)U + Ui(a) = U. We shall proceed by induction
again. Let us now suppose that 1(a;)U = U, for I € Q with |I| < n. Take I € Q
with |I| = n and x € U, we have

|
—
|
—_
~—
=
2
=
N
=
+

%) ap)(xi(ay)) €U
———

U

which guarantees that 1(a)U < U for |I| = n. Hence U is a subalgebra and con-
sequently U(M) = U. U

Now we show that the universal enveloping superalgebra of a Malcev super-
algebra generalizes the classical notion of the universal enveloping of a Lie super-
algebra (see [4]).

Corollary 4.5. If M is a Lie superalgebra then U(M) and the universal enveloping
superalgebra of M as Lie superalgebra are isomorphic.

Proof. Consider (U,#) the universal enveloping superalgebra of M as Lie
superalgebra. Since U is associative, by universal property of (U (M ),1) there
exists an epimorphism of superalgebras  : U(M) — U such that y(i(a)) = 0(a),
for a e M. Since U(M) is spanned by the monomials {i(a;) : I € Q}, and this
generator set is mapped into a basis of U, the epimorphism y : U(M) — U is an
isomorphism. O

5. Linear independence of {i(a;) : I € Q}

This section is devoted to ensure the linear independence of the monomials
{1(ay) : T € Q}. To obtain our goal we use the relation between Malcev super-
algebras and Lie super-triple system.

We recall that a Lie super-triple system is a Z,-graded vector space V' equipped
with a trilinear product [,,]: V' x V' x V — V satisfying the following conditions:
VYa e V,;,be V};,CG VE,MG V,;,UE V,j
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(i) [a,b,c] = (a+b+ ¢) mod 2;

(ii) [a,b,c] = —(=1)"[b,ac]; )

(iii) (—=1)%[a,b,c] 4+ (=1)*[b,c,a] + (=1)"[c,a,b] = 0;

(iv) [u,v ,m; ﬂ]b ([, v,a), b, c] + (=1)" P [a, [u, v, b], ] +
(=1 [a b, [u, v, c]].

Given a Malcev superalgebra (M = Mz ® Mj,[,]) we can construct the Lie
super-triple system with underlying Z,-graded vector space M endowed with the
trilinear product M @ M ® M — M defined by: Va € M;, b € Mj, c € M;

0.6, = 3 2l B, — (<1 b, ] — (<17 [e, ], ).

From the Lie super-triple system defined just above we construct a Lie super-
algebra L(M,[,,]) = L(M) ® M, where L(M) is the Lie superalgebra generated
by the adjoint operators ad,(x) = [a, x], for a € M, x € M3, with the multiplica-
tion defined in the following way: we consider in L(M) its own multiplication and

[W? Cl] = (0(0)7 Va e M&a ¢y € L(M)@7

la,b] € L(M), Vae Mgz be M;, defined by [a,b](x) = [a,b,x], Vx € M.
We can easily see that the Lie superalgebra L(M,[,,]) possesses a Z,-gradation
with even and odd parts L(M) and M respectively. This superalgebra is not large
enough for our purposes, but it will help us to find the structure that we need.

We denote by #(M) the Lie superalgebra generated by {Za,p,:a € Mz}
where the degree of the generators is given by A, = p, = a, a € M, satisfying the
relations

ioca+ﬁb = Oda + ﬁibv Paa+pp = %Pa + ﬁpb7

[)“lla ;”b} = i[a b — 2M£¢7Pb]7 [pmpb] = “Plab) — z[iﬂapb]a (51)

[“aapb} [pm}"b] Va € Mﬁa be Mgv aaﬁ e K.
Proposition 5.1. The even linear map ¢ : (M) — L(M,|,,]) defined by ¢p(1,) =
1(ad, +a) and ¢(p,) =% (—ad, + a), whenever a € My, is an epimorphism of Lie
superalgebras.

To abbreviate we define in ¥ (M) the elements

ada = }La — Pa> T, = /la + Pas
Da,b - Ma’;“b] + [pmpb} + [)“mpb} (52)
=ady ) — 3[4, pp], Vae Mg, be M.
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Proposition 5.2. The Lie superalgebra ¥ (M) is provided with a Z,-gradation
L(M)=2L, ®L., where &L, =spanad,,Dyp:ae Mz be Myy and £ =
span{T, : a € Mz). In particular, M is identified with & _.

Proof. Letae Mz, b e M;. From (5.1) we obtain
(T, To) = (s 2] + [par 5] + 20 p) = adiy 5y — 2[2a, p3)- (5.3)
Inserting (5.2) in (5.3) leads to
3[Ta, T = adjg p) + 2Dy . (5.4)
Using again (5.1), we get
[ada, Ts] = [Za; 26) = [Pas Pb) = 2a.t) + Plas) = Tia by (5.5)
Adding (5.1) to (5.2), it follows that

[ada’ adb] - [;“07;“17] + [pa’pb] - 2[/151,%]
= ad[a,b] - 6[/1a,pb] = —ad[a_,b] + ZDaﬂ},, (56)

$0 2D, = ad|, s + [ad,, ady]. Using this last relation, (5.5), super-Jacobi identity,
and linearity condition T, 5, = Ty + Ty, Va € Mg, b € My, o, ff € IK, we get
2[Da,b7 Tc] = [ad[a,b] + [adm adb], TL]

= [ady 5, 7o) — (=)™ [[ady, T.),ad,] — (1) [T, ad,], ads]

bc
= Tiiap),) + Tia o) + (=1)" T, c,0)

-7 . 5.7
lla. b 1+ (~1)¥[[a, ] 5]+ [a, b, ] (5.7)

For a e M;, b € M}, we define the linear map D, : M — M by

Dyp(c) = %{Havb]w] +(=1)"[la,c],b] + [a, [b,c]]},  Vee Mz (58)

So (5.7) may be written as

[Da,ba Tc] == T]/2

—Tp (0. 59
(1/2){{[a,B], cl+(~1)"[[a,c], b+ la, [b, e}y Peel©) (39)

Combine (5.4), (5.5), (5.6), super-Jacobi identity, and linearity condition
adyqpp = 2ad, + fady, Va € Mz, b e M, o, f € K, we get
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2[Dyp,ad.] = [3[T,, Tp] — ad, ), ad,]
30" [Ty, ad,), o — 3(~ 1) ad,, T.), Th)] — [adjg.p), ad,]
=3(- I)EE[T[u & Tol 4 3[Tu, Tip, ] + adjja 4], — 2Dya ),
[la,b], ] +(= 1) [[a, ] b]+[a [b, ]
+2{Dy,p, + (~1)"*9p, el T (~1)@Pp, a.b]

and so

2[Da,b> ad ] = ZadDu,h(C)

+ Z{Da,[b,c] + (_1)&(b+z)Db, le,d] + (_1)E<ﬁ+b)Dc, [aﬁb]}' (510)

We shall prove that in a Malcev superalgebra M (with a € Mz, b e M;) the

linear map D, : M — M is a homogeneous superderivation of degree a + b.
Now, we show that

2D, p(c) = 2][a,b],c] — SJ(a,b,c), (5.11)

where SJ(a,b,c) is the superjacobian of the homogeneous elements «, b, and c.
Indeed,

2[a,b], ¢ — ST (a,b,¢) = [[a,b], ] — (=1)™ (b, ], a] — (=1)"P)[[¢,a], b]
= [[(l, b]» C] + (_1)55[[‘17 C]’ b] =+ [a’ [b’ CH = ZDa,b(c)'

By (5.11) and the super-skewsymmetry of the superjacobian

2{Das(0) + (~1)" "Dy (@) + (~1) @D, 4(b)}
= 2{[la, 8], + (=1 [lb,d], @] + (-1 e, ] ]}
— SJ(a,b,c) — (=1 ISI (b, ¢,a) — (~1)°D) ST (¢, a,b)
= —SJ(a,b,c). (5.12)
We are going to prove that D, 5 | + (—1)‘7(5+E>Db7 le,q T (—l)E(‘”E) D jyp =0. As

Z(M) is a Lie superalgebra then SJ(ad,,ads,ad,.) = 0. On the other hand, from

(5.6), (5.10), (5.12), as Dy, = —(—1)" D, and ad,, g = v ad, + fady, Va € Mj,
be M};, oc,ﬂ € K,
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SJ(ad,,ady,ad.) = [—adjg s + 2Dy 5, ad]
+ (1) [—ady, 4 + 2Dy ., ad,]

+ (=1 P [ad,, , + 2D, 4, ady]

= adssabo F2H8d, D, (00,0

+8{Dy p. + (=)D (g + (1) D -
Thus D, . + (—1)‘7<5+E)Db’ le.a + (—l)z(‘”};)Du 0,5 = 0 which simplifies expres-
sion (5.10) as

[Da,ha adc] = adDa_b(c)~ (513)

By (5.6), (5.13), super-Jacobi identity, ad,, g = «ad, + fad,, Va € Mgz, b € M,
o, f e K,

2[Du,p, De,a) = [Da,p, [ade, adg]] + [Dy,p, adc ]

= (_ 1 )E(a+b) [adcﬂ adDa [,(d)] - <_ 1 )d(d+b+5) [add’ adDa.h("‘)] + adDa [,([C, d])

adD,,,hqc, d))=[Da5(€), d)—(=1)" D[, D, 4 (d)]

+2{Dp, ,00.a + (=)D, p )}

As D, is a homogeneous superderivation of degree @ + b, then

[Dasy De.d) = Do, (0.0 + (=)D - (.

Now let T(M) be the classical Z-graded associative tensor algebra of the
Malcev superalgebra M,

T(M) =@ T"(M),

neZ

where T"(M)={0} if n<0, T°(M)=K and T"(M)=MOIM® - QM
(n times) if n > 0. The Z,-gradation of M induces a Z,-gradation of T(M) in
a way that the canonical injection M — T'(M) is an even linear map and 7'(M)
is a superalgebra with gradation

M), =@ @ My®0M,),

neZ ot toup=u
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for o € Z,. Let J be the Z,-graded ideal of T (M) generated by the homogeneous
elements

ab — (—1)&5ba, Va e Mz, b e Mj.

The quotient algebra S(M) = T(M)/J which is a superalgebra with the natural
Z,-gradation induced by the graded ideal J, is called the supersymmetric super-
algebra of M. As M can be identified with % (by Proposition 5.2) we also
identify the supersymmetric tensor superalgebra S(M) on M with S(#_). Using
the Z,-gradation on ¥ (M) we define an ¥ (M)-module structure on S(M).
Let us consider a Lie superalgebra ¥ = % ® %; endowed with a Z,-gradation
=% ®FL being & the even part and ¥ the odd part, its universal
enveloping superalgebra U(%), the left ideal K of U(¥) generated by %,
K=U(¥%)%;, and the ¥-module U(¥)/K. Consider a basis {x;:ie A_}
of Z_ such that A_ = (A_); ® (A_); and let < be an order in A_ verifying
{xi:ie(A),} is a basis of (£),, for «=0,1, and i, <i, if i, € (A_); and
i, € (A-);. Applying Poincaré—Birkhoff-Witt Theorem we have a basis of

I
U(Z)/K defined by:

{xi...x, +K:n>0,i1,...,i,e A_with iy < -+ <i,and i, < iy if x;, € (£ )7}

If n =0 we have x; ...x;, =1 by convention. Taking in account the basis of
S(#-) defined by

{xiy..x;, n>00,...,0, € AL with iy <--- <y and i, < ipy ifx,-pe(o?,)i}

we have an even linear isomorphism 6 : S(Z_) — U(¥)/K defined by

Xiy oo X, XX, + K

We can construct an #-module of S(#_) by pull backing the #-module structure
of U(¥)/K by means of 0 in the following way: for 1 € % and x € S(&_) we de-
fine 2o x = 0" (10(x)), where /10( ) is the action of Zin U(Z)/K. Let us take
the natural gradation on S (—DI 0 S(&. Associated to this gradation we
have the filtration S(.% U S(& where S(Z.), =P, S(Z.)". Next
lemma shows us how ,f acts in the Components of the ﬁltratlon of S( )

Lemma 5.3. We have the following assertions:
(i) ZroS(Z),c8(Z),and L_0S(Z), = S(ZL),.1
W) Ifiy < < <+ <y and x;, € (f,)xik therefore

Xj, 0 (xil X .Xl‘”H) = (—1))_Cik(xil+m+)}i”“)xil ce e X mod S( )n 1

where “X;, " means that we omit this factor.
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Proof: We use induction in n to show (i). Taking x;, € (%) with

i1 <+ < <--- <y, we have

.%,'k 2

G(X,'k o (X,‘l . ..)AC,',( ...X,‘n“)) = X,‘k<)€,‘l .. .fcik ...X,‘”H —|—K)
= X, Xi, ....)AC,-,{...X,‘H] + K
:([xik,x,-l]...xik...xin+l +K)

=+ ((—1)}""&"1 Xiy X, Xiy - - .X'l'k e X =+ K)

Since [x;,x;] € &, we can apply the hypothesis to conclude that the first term
of the sum is in 0(S(Z.),_,). Repeating the process we obtain £ o S(Z.), =
S(Z-),,1- Now, we show the former inclusion in (i). For arbitrary 1, € &£,
and x;, ...x; € S(_), we infer that

O(2s 0 (xiy .. x;,)) = A (xiy o ooxi) + K = [, X ... x;] + K

n 5 - -
_ Z(_1)2+(Xil+...+xi/-,1)xil L [/l-‘ra xi,-} . xf,l + K,
J=1

because (x;, ...x;)A+ is in the left ideal K generated by .. The Z,-gradation
L =% @ L vyields [Ay,x;] € £, hence any term of the sum is in 0(S(<Z.),),
as required. O

We note that the pair A, = T,, p, = —p,, as well the pair A = —A,, p! = T,
satisfies relations (5.1) defining #(M). We can define two endomorphisms
& L(M) — L(M) by C(Aa) = Ta, E(pa) = —py and 7(2a) = —2a, 1(py) = T,
for a € M, respectively, which are automorphisms because & = 5% = id o(ar).-
Consider an #(M)-module S(M) and an automorphism ¢ of S(M). We define
the twisted £ (M)-module S(M), in the following way: for all 1 € £ (M) and
x € S(M) we have Ax := ¢(4) o x. In particular, using the automorphism ¢ and %
referred before, we define the #’(M)-modules S(M), and S(M),, respectively.

Proposition 5.4. If there exists an (M )-module homomorphism x: S(M): ®
S(M), — S(M) verifying

() axx =22, 0xand xxa=2(—1)"p,ox, witha e Mz, x € S(M)s,

(i) lxx=xx1=x, forxe S(M),

then Theorem 4.3 is true.

Proof. Let us assume that S(M) is an algebra with multiplication . From (i) and
since * is an % (M )-module homomorphism, we infer that for a € M;, x € S(M)s,
y € S(M);
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ax(xxy) =220 (x*y)=2(E(A) o x) % y+2(=1)"x % (n(2a) 0 )
=2(T,0x) %y —2(=1)xx (A4 0).
We also have,
(axx)xy+ (=)™ (x*xa)xy — (=1)"xx (a* y)
= (20 x) %y + (2p 0 x) ¥y — (=1)"x % (2240 y)
=2(T,0x) %y —2(=1)x % (L 0 y),

thus (x,a, y) = —(—1)*(a, x, y). Similar, we observe that

(xx ) xa=2(=1)""p, o (xx y)
21" (E(p,) 0 x) v+ 2(=1)x % (n(p,) 0 ¥)
= —2(—1)‘1(’%”7)(;)“ ox) % y+2(=1)%x* (T, 0 p).

We also get,

xx(yxa)— (—1)&)7()(*51) * Y+ (—l)cﬁx* (axy)
= (=1)7x % (2p,09) = (=)™ (2p, 0 x) ¥y + (= 1)Tx % (244 0 y)
= 21" (p, 0 x) x y + 2(=1)Tx % (T, 0 p),
hence (x, p,a) = —(—1)”(x,a, y), we conclude that M = Ny ((S(M),*)). Con-
sider the basis {a; : i € A} of M. Since T, + ad, = 24,, Ya € M;, we obtain that
ay * (@, - .. aj,) = 204, 0 (ay ... a;) = Ty o(ay...q;,)+adg o(a;...a,)
=d; ... 4q;, mod S(M)nfh
because ad,, o (a;...a;,) € £ 0 S(M), | = S(M), | (from Lemma 5.3). Re-

peating this argument we get that

aj * (a,‘2 * ( .. (a,‘H * Cl,'“))) =aj .- - 4a;, modS(M)

n—1»

consequently,
{ai  (ai, = (. (@i, *a;,))) = (i1, ..., i) € Q} (5.14)

is a basis of S(M). From the universal property of the enveloping algebra
(U(M),1), there exists a superalgebra homomorphism U(M) — (S(M),x) of
degree 0 which send a linear generator set {1(a;) : I € Q} of U(M) onto a basis
(5.14) of S(M), therefore it is indeed an isomorphism. O
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Now, it is our task to define a product * in S(M) satisfying the conditions of
Proposition 5.4. Using an argument similar to the one used in proof just above,
we show that given a; =a;, ...a; in S(M) we get that r; =a; — 2)%.1 oayp €

n

S(M);_, and 7 = a;. We define recursively the product * in S(A/) in the follow-
ing way: set that 1 x x = x, for x € S(M). Assuming by hypothesis that a; * x is
given for |J| < |I| we define, by induction, that

apx x = 2Ty, o (ap * x) — 2(=1)"" ap x (p, , ©X) +rrxx. (5.15)

Proposition 5.5. Given 1 e ¥ (M);, x € S(M); and y € S(M); it is verified that

Ao (xxy) = (&(A) ox) +y+ (=1)"x* (n(d) 0 y).

Proof. We shall prove that 2o (a *x) = (£(2) o ar) * x + (=1)"“az % (5(2) o x)
by induction on the size |I| of I. If |I| =0, this is a; = 1, we have to ensure
that Aox = ({(4)o1) xx+n(A)ox. For A=D+ s+ p,, with D =3Z;0;Dq,
(o € K), we get

A=n(A) =D+ 2o +p, —n(D)+ iy — Ty =244 — 4y = Z24—p-

Since D, » is a derivation then D, , 01 =0. Asl, 0l =p, 01 = %a and T,o01l =a
then &(A) o1 =E(D+ 2, +py) ol = (D+ T, —py) ol =a—1b. Therefore

(E(A) o) xx=244_(1/2p0 X = Aaapox = (A—n(2)) o x,

the required formula.

Relatively to the induction step, first we will show that we can reduce our study
just to the case that 1 = T, , for a suitable g;,. Indeed, using definitions, applying
the hypothesis and doing some calculations we have that

Jo(ar+x) — (E(2) oar)  x — (=1)"Tay % (5(2) o x)
o {21y, o (ap +X) = 2(=1) T ap x (p,, 0x)+ry*x}
—{&(2) 0 (20, 0 ap + 1)} *x — 2(—1)/" T, o (ap * (n(2) o x))
+ 2= ) T g, (p, n(2) 0 x) = (—1) Ty 5 (n(2) 0 )
AT, o (ap *x) = 2= 1T 1o (ap * (p,, ©x)) — 2(£(2)a, 0 ar) *x
—2(=1)" T, o (ap * (n(2) 0 X)) + 2= 1T T ay 5 (p,, (2) o x)

— 2[4, T ] 0 (ap: # X) +2(=1) ™ T, 20 (ap: * x)
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= 2(=1)" T Jo (ag # (p,, © X)) = 2(E(A) g, 0 ar) % x
— 21T, o (ap * (n(2) 0 X)) + 2= 1T ay 5 (p,, 7(2) 0 x)
P20, Ty ] o (ar * x) + 2(=1)" 0 T,, 4o (ar # x)
—2(= )T (E(2) 0 ap) * (p,, ©x) = 2= 1T gy (5(2)p,, ©x)
— 2(E(R) 0 ar) ¥ x = 2(=1) T, o (ap % (n(2) 0 x))
+2(=1) T T 4y x (p,, 1(2) 0 x)
P 2 ([E(2), Ay ] 0 @) % X+ 2(=1)" T, Zo (ap * x)
—2(=1)"T (&(2) 0 ap) * (py, ©X) = 2(E(A)a, 0 arr) * X
—2(=1)"T, o (ar  (n(2) o x))
— 2(=1)" (4, 0 E(A) o ap) * x4+ 2(=1)" N T, o (ap % x)
—2(=1) T (E(A) 0 ap) * (pg, 0 %) = 2= 1) T, o (ap * (n(2) o x))
WP (1) (3, 0 E(2) 0 ap) ¥ x4+ 2~ T, o ((£(2) 0 ap) * x)

= 2(=1)TT(&(2) 0 apr) * (pg, ©X),

On the other hand, using hypothesis with 7, we obtain

2(_1)1‘1_:'[ Tllil o ((f(/L) o a[/) * x)
= 2(=1)"" (&(Ty, ) 0 E(2) o ap) * x
+ 2= T () 0 ap) x (1T, ) © )
= 2(= 1) (24, 0 &(A) 0 ap) * x + 21 (£(2) 0 ap) * (p,, ©x),
so we may assume 4 = Ty, , for some a;,. Using hypothesis of induction we can

show that we may assume that iy <i;. So, denoting a;, ;) = 4,4, - .. a;,, with
iy <ij <--- <1, we have that

2()%110 o a]) * X = a(,»o’l) * X — V(l‘07]> * X
= 2Ty, o (ar * x) — 2(—1)" gy % (p% 0 X) + T(ip, 1) * X — iy, 1) * X

=2T,, o (ar*x) — 2(—1)" gy % (pal_o o X),
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thus
Ty, o (ar * x) = (Aay 0 ar) * x + (—1)%%ay % (Pay © %),
completing the proof. O

Proposition 5.6. For the product defined by (5.15) the following statements hold:
lxx=x*xl=x, axx=24,0x and x+xa=2(—1)"p,ox, for any ae M;,
xeS(M);.

Proof. If we fix §, = n(ad,) then &£(,) =d,. In fact, o, = n(ad,) =n(l, — p,) =
—Ja — T,. On the other hand, &(d,) = &(n(ad,)) = E(—As — Tu) = E(=244 — p,)
=2T,+p,=-2k—p,=—* — T, as required. As #(o,) =ad, and
ad, o1 =0, we have that

00 (xx 1 —x) = (E(@,) ox) * 1+ (=1)"xx (n(ds) 0 1) —d,0x
sox)x 1+ (=1)"xx(ad,01) —d,0x

More general, we infer that d,, ..., 0 (x* 1 —x) = (04 ...04 0X) %1 =3y, ...
0a, 0 X, for a; € Mz (1 <i<n). Denote by S the vector space spanned by
Oy - - -0q, © 1, with a; € Mz (1 <i <n). Using this last condition we show that
xx1—x=0, forall xe S. In fact

(O -+ 00 0 1) %1 =0y ... 0y 01 =04 ...0q 0 (151 —1)=0.

We will show that S(M) =S by induction in n. Since d,01 = (=24, —p,)o0
l=-2la—ta=—-3a, then S(M),(=M)<S. Let us now assume that
S(M),_, =S. Let aj e S(M), with I = (iy,...,i,). Since 6, = —4, — T, we
have 20, = —37, — ad,, hence

3 1 3 1
5(11 ody = (—ETal —Eadm) odjy = —ETal oday —Eadal oday

3 1
:——aI——adalo ar
2 2\,./ ~~
e eSM),

By hypothesis of induction we infer that d,, o a;r € S, by Lemma 5.3 we get that
ad,, oay isin S(M),_,, consequently S(M), = S. Finally, we ensure the last con-
dition of the proposition (the other is similar). Since
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ax

xx (1(pg) o 1)

x* (Tyol)=—p,ox+(—1)"xxa,

paOX:paO(X*l):(épa)OX)*l—i-(—l)

:—paOX—l-(—l)

therefore x « a = 2(—1)“p, o x, as desired. ]

We summarize as follows: Proposition 5.6 shows that the product * in S(M)
defined recursively by (5.15) satisfies the conditions of Proposition 5.4. Which
guarantees that Theorem 4.3 holds, providing the vector space U(M) with a
basis {1(a;) : I € Q}. So, the universal enveloping algebra U(M) has a basis of
Poincaré—Birkhoff-Witt Theorem type over the Malcev superalgebra M.
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