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On the stabilization and controllability for a third order
linear equation
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Abstract. We analyze the stabilization and the exact controllability of a third order linear
equation in a bounded interval. That is, we consider the following equation:

iut þ igux þ auxx þ ibuxxx ¼ 0;

where u ¼ uðx; tÞ is a complex valued function defined in ð0;LÞ � ð0;þlÞ and a, b and g

are real constants. Using multiplier techniques, HUM method and a special uniform con-
tinuation theorem, we prove the exponential decay of the total energy and the boundary
exact controllability associated with the above equation. Moreover, we characterize a
set of lengths L, named X, in which it is possible to find non null solutions for the above
equation with constant (in time) energy and we show it depends strongly on the parameters
a, b and g.
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1. Introduction

We consider the third order linear system in a bounded interval

iut þ igux þ auxx þ ibuxxx ¼ 0 in ð0;LÞ � ð0;þlÞ
uð0; tÞ ¼ uðL; tÞ ¼ 0 for all tb 0

uxðL; tÞ ¼ 0 for all tb 0

uðx; 0Þ ¼ u0 in ð0;LÞ:

ð1:1Þ

Where u is a complex valued function, u0 belongs to L2ð0;LÞ, a and g are non null

real constants and b is a positive constant.



When g ¼ 0 in (1.1), the third order linear equation is related to a nonlinear

Schrödinger equation proposed by Kodama [7] to model a pulse propagation in

a long-distance and high-speed optical fiber transmission system. Kodama [7]

considered the following (perturbed) nonlinear Schrödinger equation with higher-

order terms (as the perturbation terms)

iut þ
1

2
uxx þ juj2u ¼ i�ðb1uxxx þ b2juj

2
ux þ b3u

2uxÞ � iGu; ð1:2Þ

where � is a small real parameter (j�jf 1) and b1, b2, b3 and G are real constants.

In [5], Chu used equation (1.2) with b2 ¼ b3 ¼ G ¼ 0 as a model for the soliton

propagation in an optical fiber. He showed that the third order term can be used

to reduce the mutual interaction between solitons when the fiber is operated

nonlinearly. In [14], Oikawa numerically investigated the same equation under

periodic boundary conditions. He found out the third order term can give rise to

chaotic behavior.

When a ¼ 0 in (1.1), we have the linear Korteweg-de Vries (KdV) equation. If

we add to the linear KdV equation the non-linear term uux, we obtain a model for

propagation of surface water waves along a channel. Rosier [16] established

boundary controllability results for the linear and non-linear KdV equation on

bounded domains with various boundary conditions. The stabilization of KdV

system on bounded domains was proved in Menzala et al. [13] for the linear

and non-linear cases. There, a localized damping in the non-linear case was

considered. Results on the global stabilization of the generalized KdV system

have been obtained by Rosier-Zhang [17]. Linares-Pazoto [10] studied the stabili-

zation of the generalized KdV system with critical exponents. Massarolo et al.

[12] analyzed the uniform decay for the KdV system with a very weak localized

dissipation.

Dispersive problems have been object of intensive research (see, for in-

stance, the classical paper of Benjamin-Bona-Mahoni [1], Biagioni-Linares [2],

Bona-Chen [3], and references therein).

For controllability problems involving dispersive systems, we can consider the

work of Russel-Zhang [18] about the KdV system and the paper by Linares-

Ortega [9], where the Benjamin-Ono equation has been analyzed. Vasconcellos-

Silva [21] studied the existence, regularity of the solutions and stabilization for

the Kawahara system. The stabilization and controllability for linear Kawahara

system is proved in Vasconcellos-Silva [19] and [20].

We consider the inner product in L2ð0;LÞ defined by:

ð f j gÞ ¼ Re

ðL

0

f ðxÞgðxÞ dx
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and the inner product in H 1
0 ð0;LÞ by:

ð f j gÞ1 ¼ Re

ðL

0

fxðxÞgxðxÞ dx:

This paper is devoted to study the rate of the decay of the energy, as t ! þl and

the exact boundary controllability associated to the system (1.1).

The energy is defined by:

EðtÞ ¼ 1

2

ðL

0

juðx; tÞj2 dx ¼ 1

2
kuðtÞk2:

Using the boundary conditions in (1.1) we prove that

dE

dt
¼ � b

2
juxð0; tÞj2; Et > 0:

Since b > 0, we observe that, according to the above energy dissipation law the

energy EðtÞ is a non increasing function of the time.

In Section 2, we study the global existence and uniqueness and some regularity

results for solutions of the system (1.1). There, we consider semigroups theory and

multipliers techniques.

In Section 3, using multipliers techniques and a special uniform continuation

theorem, we analyze the decay of the energy associated to the linear problem.

We prove the energy decays exponentially when the length of the interval L does

not belong to a critical enumerable real set X. We define this set precisely and we

show it depends on the parameters a, b and g. Moreover we obtain some observ-

ability results.

In Section 4, taking into account the observability results obtained in Section 3

and using the Hilbert Uniqueness Method (HUM) (see, Lions [11]), we prove a

boundary exact controllability for the system (1.1).

Finally in Section 5, we present some remarks about the system (1.1) and we

show explicitly the critical set X for the third order Schrödinger equation.

2. Existence, uniqueness and regularity

In this section we prove existence, uniqueness and regularity results of solutions

for the system (1.1). Here u0 belongs to L2ð0;LÞ, a and g are non null real con-

stants and b is a positive constant.

We shall use basically semigroups theory to prove the existence and uniqueness

and for regularity of solutions we shall consider the multipliers techniques.
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Theorem 2.1 (Existence, uniqueness and regularity). If u0 belongs to L2ð0;LÞ,
aA 0, gA 0 and b > 0, then the problem (1.1) has a unique solution u belonging to

C
�
½0;þlÞ;L2ð0;LÞ

�
, which satisfies:

(i) kukCð½0;þlÞ;L2ð0;LÞÞaCku0k.
(ii) uxð0; �Þ belongs to L2ð0;þlÞ and kuxð0; �ÞkL2ð0;þlÞaCku0k.
(iii) For each T > 0, u belongs to L2

�
0;T ;H 1

0 ð0;LÞ
�
and there exists C1ðL;T ; g; bÞ

> 0 such that kukL2ð0;T ;H 1
0
ð0;LÞÞaC1ku0k.

Moreover, the energy dissipation law,

dE

dt
¼ � b

2
juxð0; tÞj2a 0; Et > 0; ð2:1Þ

holds.

Proof. Let A denote the closed linear operator Av ¼ �gv 0 þ iav 00 � bv 000 defined on

the dense domain DðAÞHL2ð0;LÞ, where

DðAÞ ¼ fv a H 3ð0;LÞ : vð0Þ ¼ vðLÞ ¼ v 0ðLÞ ¼ 0g:

Let v a DðAÞ. Then, using integration by parts and definition of DðAÞ, we have:

ðAv j vÞ ¼ Re

ðL

0

ð�gv 0 þ iav 00 � bv 000Þv dx ¼ �bRe

ðL

0

v 000v dx ¼ � b

2
jv 0ð0Þj2a 0:

On the other hand, we see that the adjoint operator A�, is defined by A�w ¼
gw 0 � iaw 00 þ bw 000, where w belongs to

DðA�Þ ¼ fw a H 3ð0;LÞ : wð0Þ ¼ wðLÞ ¼ w 0ð0Þ ¼ 0g:

So, using integration by parts again, we obtain:

ðA�w jwÞ ¼ Re

ðL

0

ðgw 0 � iaw 00 þ bw 000Þwdx ¼ � b

2
jw 0ðLÞj2a 0:

Thus, we have that the operators A and A� are dissipative operators.
Therefore, from classical results in semigroup theory we prove that there

is a unique mild solution u of the problem (1.1). Furthermore, u belongs to

C
�
½0;þlÞ;L2ð0;LÞ

�
and is such that

kukCð½0;þlÞ;L2ð0;LÞÞaCku0k: ð2:2Þ
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To show item (ii) and the energy dissipation law, we first consider u0 a DðAÞ.
Taking the inner product of the equation in (1.1) with iu, we have

Re

ðL

0

ðiut þ igux þ auxx þ ibuxxxÞiu ¼ 0: ð2:3Þ

So, integrating by parts in ð0;LÞ and using the boundary conditions, we obtain

Re

ðL

0

iutiu dx ¼
ðL

0

1

2

d

dt
juðx; tÞj2 dx ¼ dE

dt
; ð2:4Þ

Re

ðL

0

iuxiu dx ¼ Re

ðL

0

uxxiu dx ¼ 0; ð2:5Þ

Re

ðL

0

iuxxxiu dx ¼ 1

2
juxð0; tÞj2: ð2:6Þ

Replacing (2.4), (2.5) and (2.6) in (2.3) and using the density of DðAÞ in L2ð0;LÞ
we obtain,

dE

dt
¼ � b

2
juxð0; tÞj2: ð2:7Þ

On the other hand, integrating (2.7) in ð0;TÞ, we have,

1

2
kuðTÞk2 � 1

2
ku0k2 ¼ � b

2

ðT

0

juxð0; tÞj2 dt: ð2:8Þ

By (2.7) and (2.8) we prove item (ii) and the energy dissipation law.

Now, to prove that u, the solution of the problem (1.1), belongs to

L2
�
0;T ;H 1

0 ð0;LÞ
�
, we consider again u0 a DðAÞ. Taking the inner product

of each element of the equation in (1.1) with ixu, integrating by parts in

ð0;LÞ � ð0;TÞ and using the boundary conditions, we have

Re

ðT

0

ðL

0

iutixu dx dt ¼
ðL

0

ðT

0

x
1

2

d

dt
juðx; tÞj2 dt dx

¼ 1

2

ðL

0

xjuðx;TÞj2 dx� 1

2

ðL

0

xjuðx; 0Þj2 dx; ð2:9Þ

Re g

ðT

0

ðL

0

iuxxiu dx dt ¼ � g

2

ðT

0

ðL

0

juðx; tÞj2 dx dt; ð2:10Þ
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Re a

ðT

0

ðL

0

uxxixu dx dt ¼ �a

ðT

0

ðL

0

ImðuxuÞ dx dt; ð2:11Þ

Re b

ðT

0

ðL

0

iuxxxixu dx dt ¼
3b

2

ðT

0

ðL

0

juxðx; tÞj2 dx dt: ð2:12Þ

Adding (2.9), (2.10), (2.11) and (2.12), by (1.1) we obtain:

1

2

ðL

0

xjuðx;TÞj2 dx� g

2

ðT

0

ðL

0

juðx; tÞj2 dx dtþ 3b

2

ðT

0

ðL

0

juxðx; tÞj2 dx dt

¼ 1

2

ðL

0

xjuðx; 0Þj2 dxþ a

ðT

0

ðL

0

ImðuxuÞ dx dt: ð2:13Þ

Hence, if g is a negative constant, we have:

� g

2

ðT

0

ðL

0

juðx; tÞj2 dx dtþ 3b

4

ðT

0

ðL

0

juxðx; tÞj2 dx dt

a
L

2
ku0k2 þ

a2

3b

ðT

0

ðL

0

juðx; tÞj2 dx dt:

Otherwise, if g is a positive constant, we have:

3b

4

ðT

0

ðL

0

juxðx; tÞj2 dx dta
L

2
ku0k2 þ

g

2
þ a2

3b

� �ðT

0

ðL

0

juðx; tÞj2 dx dt:

So, in both cases, by the density of DðAÞ in L2ð0;LÞ and using (2.2), we prove the

item (iii) and we conclude the theorem. r

3. Exponential decay of the energy

In this subsection we shall prove the decay of the energy associated to the system

(1.1). As in [13] and [21], we shall use multipliers techniques. The origin of this

method can be found in Zuazua [23], see also Komornik [8]. In view of the energy

dissipation law (see Theorem 2.1, (2.1)) and in order to analyze the rate of decay

of solutions, as t ! þl, it is natural to study the observability problem.

Proposition 3.1 (A first observability result). Under the assumptions of Theorem

2.1, for all L > 0, T > 0 and u0 a L2ð0;LÞ, we have:

1

2
ku0k2a

1

2T

ðT

0

kuðtÞk2 dtþ b

2

ðT

0

juxð0; tÞj2 dt: ð3:1Þ

284 P. N. Silva, C. F. Vasconcellos



Proof. We first consider u0 a DðAÞ and T > 0. We take the inner product of each

element of the equation in (1.1) with iðT � tÞu.
So, integrating by parts in ð0;LÞ � ð0;TÞ and using the boundary conditions,

we obtain

Re

ðT

0

ðL

0

iutðT � tÞiu dx dt ¼
ðT

0

ðT � tÞ 1
2

d

dt
kuðtÞk2 dt

¼ �T

2
ku0k2 þ

1

2

ðT

0

kuðtÞk2 dt; ð3:2Þ

Re g

ðT

0

ðL

0

iuxðT � tÞiu dx dt ¼ Re a

ðT

0

ðL

0

uxxðT � tÞiu dx dt ¼ 0 ð3:3Þ

and

Re b

ðT

0

ðL

0

iuxxxðT � tÞiu dx dt ¼ b

ðT

0

ðT � tÞ
�
Re

ðL

0

uxxxu dx
�
dt

¼ b

2

ðT

0

ðT � tÞjuxð0; tÞj2 dt: ð3:4Þ

By (1.1), (3.2), (3.3) and (3.4) we have:

T

2
ku0k2 ¼

1

2

ðT

0

kuðtÞk2 dtþ b

2

ðT

0

ðT � tÞjuxð0; tÞj2 dt:

Therefore, by density of DðAÞ in L2ð0;LÞ, we proved (3.1) and we conclude the

Proposition 3.1. r

Remark 3.2. Inequality (3.1) provides the boundary observability result we need

to prove the exponential decay of solutions of (1.1), up to a compact remov-

able term
Ð T

0 kuðtÞk2 dt. In order to get rid of this extra term we need to show

that the following unique continuation property is fulfilled: if uxð0; tÞ ¼ 0 for

0a taT , then uC 0.

The next theorem shows that this uniqueness property may fail for a countable

set of critical lengths L.

Inspired by the ideas developed in [16], [19] and [20], we have the following

result:

Theorem 3.3. Let X be the set of the values L of the length of interval which sat-

isfies the following conditions:
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There exist l a C and a non trivial u0 a H 2
0 ð0;LÞBH 3ð0;LÞ such that:

Au0 ¼ lu0: ð3:5Þ

If a2 þ 3gb > 0, then X is a countable set defined by:

X ¼ L > 0 : L ¼ 2bp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kl þ l2

a2 þ 3gb

s
; k; l a Z; k; l > 0

( )
:

Moreover, these conditions are necessary and su‰cient.

Proof. Let u0 be in H 2
0 ð0;LÞBH 3ð0;LÞ, satisfying (3.5) and define v by:

vðxÞ ¼ u0ðxÞ if x a ½0;L�
0 if x a Rn½0;L�

�

It is easy to see that v belongs to H 2ðRÞ and satisfies the following equation in

D 0ðRÞ:
lv� gv 0 þ iav 00 � bv 000 ¼ bu 00

0 ðLÞdL � bu 00
0 ð0Þd0;

where da is the Dirac measure at x ¼ a.

The above problem is equivalent to the existence of complex numbers l and

ða1; a2ÞA ð0; 0Þ and a function v a H 2ðRÞ with compact support in ½0;L� satisfying

lv� gv 0 þ iav 00 � bv 000 ¼ ba2dL � ba1d0: ð3:6Þ

Taking Fourier Transform in (3.6) and setting l ¼ ir, we have

v̂vðxÞ ¼ �ib
a2e

�ixL � a1

r� gx� ax2 þ bx3
:

Then, by Paley-Wiener Theorem (see, Yosida [22]) and the characterization of

H 2ðRÞ by means of the Fourier transforms, we see that (3.6) is equivalent to the

existence of complex numbers r and ða1; a2ÞA ð0; 0Þ such that the map

f ðxÞ ¼ a1 � a2e
�ixL

r� gx� ax2 þ bx3

satisfies

(i) f is an entire function in C;

(ii) there exist positive constants N, C such that j f ðxÞjaCð1þ jxjÞNeLjIm xj;

(iii)
Ð
R
j f ðxÞj2ð1þ jxj2Þ2 dx < þl.
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Since the roots of NðxÞ ¼ a1 � a2e
�iLx are simple (unless a1 ¼ a2 ¼ 0), item (i)

holds provided that the roots of pðxÞ ¼ r� gx� ax2 þ bx3 are simple and also

roots of NðxÞ. Notice that if (i) holds, then (ii) and (iii) are satisfied.

Thus, we shall prove that there exist complex numbers r, m0 and positive inte-

gers k, l such that, if we set

m1 ¼ m0 þ
2kp

L
and m2 ¼ m1 þ

2lp

L
; ð3:7Þ

we have

pðxÞ ¼ bx3 � ax2 � gxþ rC bðx� m0Þðx� m1Þðx� m2Þ: ð3:8Þ

Notice that by (3.7), we have

3m0 þ
2ðl þ kÞp

L
¼ m0 þ m1 þ m2 ¼

a

b
:

Therefore, m0 is a real number. Thus, by (3.7) and (3.8), it follows r ¼
�bm0m1m2 a R.

Thus by (3.7) and (3.8), to prove f is an entire function in C, we have to

analyze when there exist real numbers r, m0 and positive integers k, l such that

m0 þ m1 þ m2 ¼
a

b

m0m1 þ m0m2 þ m1m2 ¼ � g

b
r ¼ �bm0m1m2

8>>>><
>>>>:

From the first two equations it follows that

m0 ¼ � 2ð2k þ lÞp
3L

þ a

3b
and

4ðk2 þ kl þ l2Þp2

L2
¼ a2 þ 3gb

b2
:

Thus, for f to be an entire function in C, it is necessary and su‰cient that the

coe‰cients of the third order linear equation satisfy a2 þ 3gb > 0 and L is given

by

L ¼ 2bp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kl þ l2

a2 þ 3gb

s

where k and l are positive integers. r
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Remark 3.4. Let u0 a H 2
0 ð0;LÞBH 3ð0;LÞnf0g and l a C satisfying the equation

(3.5). Then uðx; tÞ ¼ eltu0ðxÞ solves the problem (1.1) with uxð0; tÞ ¼ u 0
0ð0Þelt ¼ 0.

In this case, by (2.7) it follows that

1

2

d

dt
kuðtÞk2 ¼ 0:

So, if L belongs to the enumerable set X we have non null solutions of the system

(1.1) with energy constant in time.

Remark 3.5. When the constant g is negative and a2 þ 3gba 0, the set X is

empty. So, in this case, we have decay of the energy associated to the system (1.1)

for every length L. For further considerations, see Section 5 (Final Remarks).

Now, we can prove the following unique continuation property.

Proposition 3.6 (unique continuation). For T > 0 and L > 0, let u be the solution

of (1.1) satisfying uxð0; tÞ ¼ 0, for all t in ð0;TÞ. Then, if L belongs to ð0;þlÞnX,

we have uC 0.

Proof. For T > 0 and L > 0, let UT ;L be the vector space of the initial data

u0 a L2ð0;LÞ such that the solution u of (1.1) satisfies uxð0; tÞ ¼ 0, Et a ð0;TÞ.
At first, we prove that for any T > 0 and for any L > 0 the space UT ;L is finite

dimensional.

In fact, if fwng is a sequence in the unit ball of UT ;L, we have a sequence fvng
of solutions of the system (1.1) with vnðx; 0Þ ¼ wnðxÞ, x a ð0;LÞ and satisfying

ðvnÞxð0; tÞ ¼ 0, for all t in ð0;TÞ and n in N. By Theorem (2.1), item (iii), there

exists a constant C1 such that kvnkL2ð0;T ;H 1
0
ð0;LÞÞaC1, n a N.

So, ðvnÞt ¼ �gðvnÞx þ iaðvnÞxx � bðvnÞxxx, n a N is bounded in

L2
�
0;T ;H�2ð0;LÞ

�
.

Since the embedding H 1
0 ð0;LÞ ,! L2ð0;LÞ is compact, it follows by using

classical compactness results, that vn is relatively compact in L2
�
0;T ;L2ð0;LÞ

�
.

Hence, by Proposition 3.1 (inequality (3.1)), the unit ball of UT ;L is compact

and therefore it follows by Riesz Theorem that UT ;L is a finite dimensional space.

Now, to prove that if L belongs to ð0;þlÞnX then the space UT ;L ¼ f0g,
we use a similar method to that developed in Rosier [16] (Lemma 3.4) and the

Theorem 3.3 above. r

Remark 3.7. It is important to observe that, as proved in the first part of

Proposition 3.6, for any T > 0 and for any L > 0, the space UT ;L is finite

dimensional. Therefore, if L a X, we obtain that the subspace of solutions of

(1.1) satisfying uxð0; �ÞC 0 is finite-dimensional. According to Theorem 3.3, this

finite-dimensional subspace has the same dimension of the vector space generated

by the eigenfunctions satisfying (3.5).
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The next result is an important observability property associated to the system

(1.1).

Proposition 3.8 (A second observability result). Under the assumptions of Theo-

rem 2.1 we have: for any L a ð0;þlÞnX and for any T > 0, there exists C2 ¼
C2ðL;TÞ > 0 such that for all u0 in L2ð0;LÞ,

ku0k2aC2bkuxð0; �Þk2L2ð0;TÞ: ð3:9Þ

Proof. By Proposition 3.1 (inequality (3.1)), it is su‰ces to prove that, for any

T > 0,

1

2

ðT

0

ðL

0

juðx; tÞj2 dx dta c1

n b

2

ðT

0

juxð0; tÞj2 dt
o

ð3:10Þ

for some constant c1 > 0, independent of the solution u.

Suppose that (3.10) is not valid. Then, there exists a sequence of solutions un
of (1.1) such that:

lim
n!l

Ð T

0

Ð L

0 junðx; tÞj2 dx dt
b
Ð T

0 jðunÞxð0; tÞj
2
dt

¼ þl: ð3:11Þ

Let ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ T

0

Ð L

0 junðx; tÞj2 dx dt
q

and vnðx; tÞ ¼
unðx; tÞ

ln
. Clearly, fvng solves the

system (1.1) with initial data vnðx; 0Þ ¼ unðx; 0Þ=ln. Furthermore

ðT

0

ðL

0

jvnðx; tÞj2 dx dt ¼ 1 ð3:12Þ

and by (3.11)

lim
n!l

n
b

ðT

0

jðvnÞxð0; tÞj
2
dt
o
¼ 0: ð3:13Þ

Using (3.12) and (3.13), it follows by (3.1) that fvnðx; 0Þg is a bounded sequence in

L2ð0;LÞ. According to Theorem 2.1 item (iii), there exists MðT ; g; bÞ ¼ M > 0

such that

kvnk2L1ð0;T ;H 1
0
ð0;LÞÞaM; En a N: ð3:14Þ

Estimate (3.14) shows that

ðvnÞt ¼ �gðvnÞx þ iaðvnÞxx � bðvnÞxxx; n a N
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is bounded in L2
�
0;T ;H�2ð0;LÞ

�
. Since the embedding H 1

0 ð0;LÞ ,! L2ð0;LÞ is
compact, it follows by using classical compactness results, that vn is relatively

compact in L2
�
0;T ;L2ð0;LÞ

�
. By extracting subsequences we obtain

vn * v weakly in L1
�
0;T ;H 1

0 ð0;LÞ
�

and

vn ! v strongly in L2
�
ð0;LÞ � ð0;TÞ

�
: ð3:15Þ

Here, to simplify the notation, we denote the subsequence by the same index n.

By (3.12), we have

kvkL2ðð0;LÞ�ð0;TÞÞ ¼ 1: ð3:16Þ

Then by (3.13) and (3.15) we deduce

0 ¼ lim inf
n!l

�
b

ðT

0

jðvnÞxð0; tÞj
2
dt
�
b

�
b

ðT

0

jvxð0; tÞj2 dt
�

which guarantees that vxð0; tÞ ¼ 0, for all t a ð0;TÞ. Then the limit v satisfies

vt þ gvx � iavxx þ bvxxx ¼ 0 in ð0;LÞ � ð0;TÞ
vð0; tÞ ¼ vðL; tÞ ¼ 0 for all t a ð0;TÞ
vxð0; tÞ ¼ vxðL; tÞ ¼ 0 for all t a ð0;TÞ

Using the Proposition 3.6 we have vC 0, which contradicts (3.16) and con-

sequently, (3.10) holds. r

Our main theorem in this section, is a consequence of the above results.

Theorem 3.9 (A stabilization result). If L does not belong to X, then there exist

c > 0 and m > 0 such that

EðtÞa cku0k2e�mt ð3:17Þ

for all tb 0 and all solution of (1.1) with u0 a L2ð0;LÞ.

Proof. By Proposition 3.8 (inequality (3.9)), we have:

Eð0Þ ¼ 1

2
ku0k2aC

� b

2

ðT

0

juxð0; tÞj2 dt
�
: ð3:18Þ
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The equation in (2.8) together with (3.18) produces the following inequalities:

ð1þ CÞEðTÞ ¼ ð1þ CÞ
h
Eð0Þ � b

2

ðT

0

juxð0; tÞj2 dt
i

aCEð0Þ � b

2

ðT

0

juxð0; tÞj2 dtaCEð0Þ:

Therefore,

EðTÞa C

1þ C
Eð0Þ:

So, by the semigroup property, the conclusion of Theorem 3.9 follows. r

4. Boundary exact controllability

In this section we study the boundary exact controllability problem associated to

the system (1.1).

We begin considering the following problem:

Given the initial and final states ðu0; uT Þ belonging to L2ð0;LÞ � L2ð0;LÞ, is it
possible to find a control function h a L2ð0;TÞ and a countable set X such that the

solution w of the below system satisfies wðx;TÞ ¼ uTðxÞ, Ex a ð0;LÞ, ET > 0 and

EL a ð0;þlÞnX?

iwt þ igwx þ awxx þ ibwxxx ¼ 0 in ð0;LÞ � ð0;þlÞ
wð0; tÞ ¼ wðL; tÞ ¼ 0 for all tb 0

wxðL; tÞ ¼ hðtÞ for all tb 0

wðx; 0Þ ¼ u0 in ð0;LÞ:

ð4:1Þ

At first, we need to show that the system (4.1) is well posed.

Theorem 4.1. Under assumptions of the Theorem 2.1 and if h belongs to L2ð0;LÞ,
then for any T > 0, the system (4.1) has a unique weak solution w belonging to

XT ¼ C
�
½0;T �;L2ð0;LÞ

�
BL2

�
0;T ;H 1

0 ð0;LÞ
�
.

For sake of completeness, we will give a sketch of the proof of the above

Theorem.

Proof. Step 1: We solve the following problem:
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ivt þ igvx þ avxx þ ibvxxx ¼ 0 in ð0;LÞ � ð0;TÞ
vð0; tÞ ¼ vðL; tÞ ¼ 0 for all t a ð0;TÞ
vxðL; tÞ ¼ hðtÞ for all t a ð0;TÞ
vðx; 0Þ ¼ 0 in ð0;LÞ:

ð4:2Þ

Now, we consider h in BT ¼ fh a C1ð½0;T �;RÞ : hð0Þ ¼ 0g and consider

j a Cl½0;L� such that jð0Þ ¼ jðLÞ ¼ 0 and j 0ðLÞ ¼ �1.

We can write vðx; tÞ ¼ yðx; tÞ � hðtÞjðxÞ, where y is a solution of the system

iyt þ igyx þ ayxx þ ibyxxx ¼ f ðx; tÞ in ð0;LÞ � ð0;TÞ
yð0; tÞ ¼ yðL; tÞ ¼ 0 for all t a ð0;TÞ
yxðL; tÞ ¼ 0 for all t a ð0;TÞ
yðx; 0Þ ¼ 0 in ð0;LÞ;

ð4:3Þ

where f ðx; tÞ ¼ ih 0ðtÞjðxÞ þ hðtÞ
�
igj 0ðxÞ þ aj 00ðxÞ þ ibj 000�.

Since f belongs to C
�
½0;T �;L2ð0;LÞ

�
, we have by Pazy [15] (Section 4.2),

that y belongs to C
�
½0;T �;DðAÞ

�
BC1

�
ð0;TÞ;L2ð0;LÞ

�
and it is the unique

solution of (4.3). Hence, as h belongs to BT , we have v a C
�
½0;T �;DðAÞ

�
B

C1
�
ð0;TÞ;L2ð0;LÞ

�
and moreover v is a unique classical solution of (4.2).

Using integration by parts and boundary conditions, we deduce some a priori

estimates for (4.2).

kvkCð½0;T �;L2ð0;LÞÞa
ffiffiffi
b

p
khkL2ð0;TÞ; ð4:4Þ

kvxð0; �ÞkL2ð0;TÞa khkL2ð0;TÞ ð4:5Þ

and

kvk2L2ð0;T ;H 1
0
ð0;LÞÞaC2khk2L2ð0;TÞ; ð4:6Þ

where C2 ¼ C2ðg; b;L;TÞ > 0.

Now, by (4.4) and (4.6), we see that the linear map h a BT ! v a XT is con-

tinuous with L2ð0;TÞ-norm in BT . So, by density of BT in L2ð0;TÞ, the linear

map may be extended in a unique way to obtain a linear and continuous map

G : L2ð0;TÞ ! XT .

Hence, for each h in L2ð0;TÞ, v ¼ GðhÞ is the weak solution of (4.2) in

D 0�0;T ;H�2ð0;LÞ
�
.

Step 2: We observe that the solution of the system (4.1) is defined in a unique

manner by w ¼ uþ v, where u is the solution of (1.1) and v ¼ GðhÞ is the solution
of (4.2). r
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Theorem 4.2 (The exact boundary controllability for linear system (4.1)). Let L

be in ð0;þlÞnX. Then, for any T > 0 and for any ðu0; uT Þ a L2ð0;LÞ � L2ð0;LÞ,
there exists h a L2ð0;TÞ such that the solution w of (4.1) satisfies wð�;TÞ ¼ uT .

Proof. We are going to apply the HUM. We can observe that the Theorem 4.1

guarantees that the solution of the system (4.1) can be written in a unique way as

sum of the solutions of systems (1.1) and (4.2). Then, without loss of generality we

can consider u0C 0.

Let fT a Dð0;LÞ and let f be the classical solution of the following problem:

ift þ igfx � afxx þ ibfxxx ¼ 0 in ð0;LÞ � ð0;TÞ
fð0; tÞ ¼ fðL; tÞ ¼ 0 for all t a ð0;TÞ
fxð0; tÞ ¼ 0 for all t a ð0;TÞ
fðx;TÞ ¼ fT in ð0;LÞ:

ð4:7Þ

We observe that fðx; tÞ ¼ uðL� x;T � tÞ, ðx; tÞ a ð0;LÞ � ð0;TÞ, where u is a

classical solution of (1.1) with uðx; 0Þ ¼ fTðL� xÞ.
Then, by Theorem 2.1 and Proposition 3.8, there exist C ¼ CðL; bÞ > 0 and

C3 ¼ C3ðL;T ; bÞ > 0 such that:

1

C3
kfTka kfxðL; �ÞkL2ð0;TÞaCkfTk: ð4:8Þ

So, we can consider v as the classical solution of (4.2) with vxðL; tÞ ¼ fxðL; tÞ,
t a ð0;TÞ.

Now, multiplying the equation in (4.2) by if, integrating in ð0;LÞ � ð0;TÞ,
using inner product, integration by parts, boundary conditions and the equation

in (4.7), we obtain:

Re

ðL

0

vðx;TÞfT ðxÞ dx� Re

ðT

0

vxðL; tÞfxðL; tÞ dt

¼ Re

ðL

0

vðx;TÞfT ðxÞ dx�
ðT

0

jfxðL; tÞj
2
dt ¼ 0: ð4:9Þ

By density of Dð0;LÞ in L2ð0;LÞ, we have that (4.9) holds for fT a L2ð0;LÞ,
which implies (see Theorem 2.1) that hð�Þ ¼ fxðL; �Þ belongs to L2ð0;TÞ.

Let us be consider the linear map L : L2ð0;LÞ ! L2ð0;LÞ defined by LðfTÞ ¼
vð�;TÞ. By (4.8) and (4.9) we deduce that the map L is an isomorphism.

Hence, given uT in L2ð0;LÞ there exists a unique fT belonging to L2ð0;LÞ such
that vð�;TÞ ¼ LðfTÞ ¼ uT , which concludes the proof of the Theorem. r
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5. Final remarks

As we have seen previously, in Section 3, when L a X the decay of solutions of

(1.1) failed only because of the existence of a finite-dimensional subspace of

undamped solutions. In the case L B X we show that solutions of the system

decay exponentially to zero. Under these circumstances it is natural to add an

extra damping term to the system (1.1) to prove the exponential decay of the

energy for any length L. For instance, we can consider a damping term aðxÞu
e¤ectively acting on an open subset of ð0;LÞ. More specifically, we can assume

that a ¼ aðxÞ is a non-negative function belonging to Llð0;LÞ and ab a0 > 0

a.e. in an open non-empty subset o of ð0;LÞ. The system with the damping term

aðxÞu is also well posed in L2ð0;LÞ. This can be easily proved considering it as a

perturbation of the system (1.1).

Now, we can prove that the energy associated to damped system has exponen-

tial decay, using similar methods developed in the Proposition 3.8 above and in

[13] and [19]. In this case the unique continuation principle is the Holmgren’s

Uniqueness Theorem.

We can also observe that, when a ¼ 0 and b ¼ g ¼ 1, the system (1.1) is the

linear KdV system and in this case the critical enumerable set is defined by:

X ¼ L > 0 : L ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kl þ l2

3

r
; k; l a Z; k; l > 0

( )
;

as has been proved by Rosier [16].

When, a ¼ 0, b ¼ 1 and g ¼ 0, we have again the KdV linear system without

the slope ux and in this case we can see, by Theorem 3.3, that the set X is empty

and therefore the energy decays for all lengths L.

So, for the linear KdV system, we conclude that the term ux has influence in

the existence or not of the critical set X, and therefore in decay of the energy and

in the exact controllability.

When we consider g ¼ 0, b > 0 and aA 0, we have the third order Schrödinger

equation and the enumerable set X is:

X ¼ L > 0 : L ¼ 2pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ kl þ l2

a2

r
; k; l a Z; k; l > 0

( )
:

According to Theorem 3.3 and Proposition 3.6, see also Remark 3.7, we can con-

clude that it is possible to obtain the exponential decay of the energy associated

to system (1.1), even when the length L belongs to critical set X, for instance, it

is su‰cient to consider the initial data u0 in a subspace orthogonal to the finite

dimensional subspace generated by the eigenfunctions satisfying (3.5).
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In the case of the exact boundary controllability, it is also necessary to consider

the final state uT in a subspace orthogonal to the finite dimensional subspace. For

further considerations see Cerpa-Crépeau [4] and Coron-Crépeau [6].
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