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Abstract. Let F be a finite field with even characteristic and qb 16 elements. We study
representations of polynomials P a F ½T � as sums P ¼ X 7

1 þ � � � þ X 7
s .
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1. Introduction

Let F be a finite field of characteristic p with q ¼ pm elements and let k > 1 be an

integer. Analogues of the Waring’s problem for the polynomial ring F ½T � have
been investigated, ([20], [11], [17], [5], [18], [7], [4], [13], [9], [8], [2], [3]). Roughly

speaking, Waring’s problem over F ½T � consists of representing a polynomial

M a F ½T � as a sum

M ¼ Mk
1 þ � � � þMk

s ð1:1Þ

with M1; . . . ;Ms a F ½T �. Some obstructions to that may occur ([16]), leading to

consider Waring’s problem over the subring SðF ½T �; kÞ formed by the poly-

nomials of F ½T � which are sums of k-th powers. Without degree conditions

in (1.1), the problem of representing M as sum (1.1) is close to the so called

easy Waring’s problem for Z: In order to have a problem close to the non-easy

Waring’s problem, the degree conditions

k degMi < degM þ k ð1:2Þ

are required. A representation (1.1) satisfying degree conditions (1.2) is called a

strict representation in opposition to representations without degree conditions.

For the strict Waring’s problem, the analogue of the classical Waring numbers



gNðkÞ and GNðkÞ have been defined as follows. Let gðpm; kÞ, respectively

Gðpm; kÞ, denote the least integer s, if it exists, such that every polynomial

M a SðF ½T �; kÞ, respectively every polynomial M a SðF ½T �; kÞ of su‰ciently

large degree, may be written as a sum (1.1) satisfying the degree conditions (1.2).

Otherwise, gðpm; kÞ, respectively Gðpm; kÞ is equal to l. This notation is possible

since these numbers only depend on pm and k. Gallardo’s method for cubes ([7]

and [4]) was generalized in [1] or in [10] where bounds for gðpm; kÞ and Gðpm; kÞ
were established when pm and k satisfy some conditions. One of the conditions

required in [1] is that every a a F may be written as a sum of k-th powers of

elements of F . For such a field, called a k-Waring field, lðpm; kÞ is defined to be

the least integer s such that every a a F may be written as a sum of s k-th powers

of elements of F .

When F is a k-Waring field satisfying one of the two conditions

(i) p > k,

(ii) pn > k ¼ hpn � 1, for some integers n > 0 and 0 < ha p, it is possible to

bound the Waring’s number gðpm; kÞ, ([1]). The smallest exponent k satisfying

this last condition is k ¼ 3, see [7], [4], [8], [9]. In the case of even characteris-

tic, the second smallest exponent k satisfying condition (ii) is k ¼ 7. The case

k ¼ 7, q ¼ 2m with m B f1; 2; 3g is covered by ([1], Theorems 1.2 and 1.3) or

by ([10], Theorem 1.4). Proposition 4.2 in [1] gives that SðF ½T �; kÞ ¼ F ½T �.
Theorem 1.4 in [10] gives that if m2 0 ðmod 3Þ, then Gð2m; 7Þa 28 and

that if mC 0 ðmod 3Þ and mb 12, then Gð2m; 7Þa 35. Theorem 1.2 in [1]

joint to ([1], Proposition 3.1) gives the following bounds: If m2 0 ðmod 3Þ,
then Gð2m; 7Þa 21. If mC 0 ðmod 3Þ and mb 12, then Gð2m; 7Þa 27;

Gð29; 7Þa 34, Gð64; 7Þa 41. For almost all q ¼ 2m, these bounds are com-

parable with the bound GNð7Þa 33, known for the corresponding Waring’s

number for the integers ([19]). The case of the numbers gð2m; 7Þ is di¤erent.
In the case when m B f1; 2; 3g ([1], Theorem 1.3) as well as ([10], Theorem 1.4)

gives gð2m; 7Þa 239lð2m; 7Þ, when, for the integers, it is known that

gNð7Þ ¼ 143, ([6]).

In this article we obtain better bounds for the numbers gð2m; 7Þ in the case

when m B f1; 2; 3g. The method gives also better bounds for some numbers

Gð2m; 7Þ. Results obtained in the cases m ¼ 2 or m ¼ 3 will appear in separate

papers. The main results proved in this article are summarized by the two fol-

lowing theorems.

Theorem 1.1. (i) If q2 1 ðmod 7Þ and qb 16, then Gðq; 7Þa 21.

(ii) If qC 1 ðmod 7Þ and q > 1416, then Gðq; 7Þa 22.

(iii) If qC 1 ðmod 7Þ and 512a q < 1416, then Gðq; 7Þa 27.

(iv) If q ¼ 64, then Gðq; 7Þa 31.
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This theorem is a consequence of Corollary 4.2 below. Corollary 4.2 also gives

that Gðq; 7Þa 21 when qbRð7Þ, a non-e¤ective constant expressed in [18] by

means of Ramsey numbers.

Theorem 1.2. (i) If q2 1 ðmod 7Þ and qC 1 ðmod 3Þ, then gðq; 7Þa 42.

(ii) If q2 1 ðmod 7Þ and q2 1 ðmod 3Þ, then gðq; 7Þa 46.

(iii) If qC 1 ðmod 21Þ and qA 64, then gðq; 7Þa 57.

(iv) If qC 1 ðmod 7Þ and q2 1 ðmod3Þ, then gðq; 7Þa 59.

(v) gð64; 7Þa 74.

This theorem is a consequence of Corollary 4.6 and Theorem 5.7 below.

Proving that polynomials of small degree are sums or strict sums of seventh

powers require some results on the solvability of systems of algebraic equations

over the finite field F . This is done at Section 2. In this section we also compute

the exact values of the numbers lðq; 7Þ. Representations of polynomials of small

degree is done in Section 3. In Section 4 we use a descent process described in [1]

and [10] and we obtain an upper bound for Gðq; 7Þ. In Section 5 we describe an

other descent process from which we deduce a bound for gðq; 7Þ. We use two

types of numbering. Pairs (X.Y) will be used to number formulae occuring in

definitions, propositions and theorems, single numbers (z) will be used for formu-

lae only used in the course of a proof.

We fix an algebraic closure E of the field F and we denote by F2 n the subfield

of E with 2n elements. We shall suppose that the field F has qb 16 elements.

2. Algebraic equations and identities

Proposition 2.1. We have

(i) lðq; 7Þ ¼ 1 if q2 1 ðmod 7Þ,
(ii) lðq; 7Þ ¼ 2 if qC 1 ðmod7Þ and qb 512,

(iii) lð64; 7Þ ¼ 3.

Proof. The first part is obvious. If qC 1 ðmod 7Þ, then lðq; 7Þ > 1. From [14],

lðq; 7Þa 2 if q > 512, so that lðq; 7Þ ¼ 2 if q > 512. It remains to prove that

lð512; 7Þ ¼ 2 and lð64; 7Þ ¼ 3. Let o be such that F64 ¼ F2ðoÞ with o6 ¼ oþ 1.

Then o is primitive. Since 7 and 9 are coprime, the multiplicative group of F64
is the direct product of the group formed by the 9-th powers and the group

formed by the 7-th powers. Let a a F64 be A 0. Then a may be written as a

product

a ¼ ðo iÞ9 � ðo jÞ7; with 0a ia 6; 0a ja 8:
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We have

o9 ¼ o4 þ o3;

ðo3Þ9 ¼ o3 þ o2 þ o;

ðo5Þ9 ¼ o4 þ o3 þ 1;

so that

ðo3Þ9 ¼ o14 þ o49;

ðo5Þ9 ¼ o7 þ o56;

and

o9 ¼ 1þ o7 þ o56:

Thus, for every i ¼ 0; . . . ; 6, ðo iÞ9 is a sum of at most 3 seventh powers, so that,

every a a F64 is a sum at most 3 seventh powers. We conclude after observing

that o9 is not a sum of 2 seventh powers.

Let g be such that F512 ¼ F2ðgÞ with g9 ¼ g4 þ 1. Then g is primitive. Since 7

and 73 are coprime, the multiplicative group of F512 is the direct product of the

group formed by the 73-th powers and the group formed by the seventh powers.

We have

g73 ¼ ðg2Þ7 þ ðg69Þ7;
ðg3Þ73 ¼ ðg66Þ7 þ ðg70Þ7;

so that

ðg5Þ73 ¼
�
ðg3Þ73

�4
:

Thus, for 1a ia 6, ðg iÞ73 is a sum of 2 seventh powers. Let a a F512 be A 0.

Then a may be written as a product

a ¼ ðg iÞ73 � ðg jÞ7; with 0a ia 6; 0a ja 72:

Thus, a is either a seventh power, or a sum of 2 seventh powers. r

Proposition 2.2. Let b a F8 be such that b3 ¼ b þ 1. Then

T ¼
X6
i¼0

b iðT þ b iÞ7: ð2:1Þ

Proof. A verification. r
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The parameter vðq; kÞ was defined in [1] as the least integer s such that T is a

strict sum of s k-th powers. From ([1], Proposition 4.2-(i)),

vðq; 7Þa 7=gcdðq� 1; 7Þ þ lðq; 7Þ
�
7� 7=gcdðq� 1; 7Þ

�
: ð2:2Þ

In some cases, (2.2) may be improved.

Proposition 2.3. (i) We have

vð64; 7Þa 16: ð2:3Þ

(ii) For r a positive integer, we have

vð221r; 7Þa 7: ð2:4Þ

(iii) There exists a constant Rð7Þ such that vðq; 7Þa 7 whenever qbRð7Þ.
(iv) If qb 716, then vðq; 7Þa 8.

Proof. Suppose F8 HF .

(i) Let o be such that F64 ¼ F2ðoÞ with o6 ¼ oþ 1. Let b ¼ o27, so that

b3 ¼ b þ 1. We have b ¼ o14 þ o49. Thus, b, b2 and b4 are sums of two

seventh powers. Moreover, b3 ¼ b þ 1 ¼ o14 þ o49 þ 1, so that b3, b6 and

b5 ¼ b12 are sums of 3 seventh powers. By (2.1), T is a strict sum of 16

seventh powers.

(ii) From ([12], Theorem 3.75, p. 117), the polynomial T 7 þ b is irreducible in

F8½T �; it splits in linear factors over the field F87 . Thus, each b i is a seventh

power in the field F221 . By (2.1), T is a strict sum of 7 seventh powers in each

polynomial ring F221r ½T �.
(iii) See ([18], Theorem 4).

(iv) See ([13], Theorem 1). r

Proposition 2.4. For every ða; bÞ a F 2, the system

a ¼ x1 þ x2 þ x3;

b ¼ x3
1 þ x3

2 þ x3
3 :

� �
Tða; bÞ

�

has a solution ðx1; x2; x3Þ a F 3 such that ðx1; x2; x3ÞA ð0; 0; 0Þ.

Proof. From [15],
�
Tða; bÞ

�
has a solution ðx1; . . . ; x3Þ a F 3. If ða; bÞA 0, such

a solution is A ð0; 0; 0Þ. If ða; bÞ ¼ ð0; 0Þ, then, ð1; 1; 0Þ is solution of
�
Tða; bÞ

�
.

r

301Sums of seventh powers in the polynomial ring F2m ½T �



3. Strict sums of small degree

From ([1], Proposition 4.2-(ii)), there exists a positive integer s such that for each

a ¼ ða1; . . . ; a7Þ a F 7, there exists ðx1; y1; . . . ; xs; ysÞ a F 2s such that

deg
�X7

i¼0

aiT
i �
Xs
r¼1

ðxrT þ yrÞ7
�
a 0: ð3:1Þ

Let s ¼ sðqÞ denote the least integer s with this property. From ([1], Proposition

4.2-(ii)),

sðqÞa 7lðq; 7Þ: ð3:2Þ

The same proposition gives that every polynomial P a F ½T � such that 7ðn� 1Þ <
degPa 7n is a strict sum of ð7nþ 1Þlðq; 7Þ seventh powers.

This last bound, obtained by induction, increases the e¤ect of the number

l ¼ lðq; 7Þ. In what follows, we try to reduce this e¤ect. For that, we prove two

propositions.

Proposition 3.1. Let P a F ½T � with degPa 21. Then there are polynomials

Q1; . . . ;Q4þl a F ½T � with degreea 3 such that

deg
�
Pþ

X4þl

i¼1

ðQiÞ7
�
a 14: ð3:3Þ

Proof. Let

P ¼
X21
i¼0

aiT
i: ð1Þ

We prove that we can solve (3.3) with Q1, Q2, Q3, Q4 of degree 3 and Q1 and Q2

monic polynomials. We note that for ðu; x; yÞ a F 2,

deg
�
ðuT 3 þ xT 2 þ yT þ zÞ7 þ u7T 21 þ u6xT 20 þ ðu6yþ u5x2ÞT 19

þ ðu6zþ u4x3ÞT 18 þ ðu5y2 þ u4x2yþ u4x4ÞT 17

þ
�
u4ðx2zþ xy2Þ þ u2x5

�
T 16 þ ðu5z2 þ u4y3 þ u2x4yÞT 15

�
a 14: ð2Þ

Let x1A 0 and let

x2 ¼ a20 þ x1: ð3Þ
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Let z1 be defined by

a16 ¼ x5
1 þ x5

2 þ x2
1z1 ð4Þ

and let z2 ¼ 0. Set

b19 ¼ a19 þ a220; ð5Þ
b18 ¼ a18 þ x3

1 þ x3
2 þ z1 þ z2; ð6Þ

b17 ¼ a17 þ a420; ð7Þ
b15 ¼ a15 þ x6

1 þ x6
2 þ z21 þ z22 : ð8Þ

Since F AF8, there exists ðu3; u4Þ a F 2 such that u3u4A 0 and u73 A u74 . Then the

matrix

u123 u124
u53 u54

 !

is invertible. Let ðh3; h4Þ a F 2 be defined by

b219 ¼ u123 h3 þ u124 h4;

b17 ¼ u53h3 þ u54h4

and let ðy3; y4Þ be defined by

h3 ¼ y23 ; h4 ¼ y24 :

Then, from (3) and (5),

a19 ¼ x2
1 þ x2

2 þ u63y3 þ u64y4; ð9Þ

and from (3) and (7),

a17 ¼ x4
1 þ x4

2 þ u53y
2
3 þ u54y

2
4 : ð10Þ

Let ðz3; z4Þ a F 2 be defined by

b218 ¼ u123 z3 þ u124 z4;

b15 þ u43y
3
3 þ u44y

3
4 ¼ u53z3 þ u54z4

and let ðz3; z4Þ be defined by

z3 ¼ z23 ; z4 ¼ z24 :
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Then, from (3) and (6),

a18 ¼ x3
1 þ x3

2 þ z1 þ z2 þ u63z3 þ u64z4; ð11Þ

and from (3) and (8),

a15 ¼ x6
1 þ x6

2 þ z21 þ z22 þ u43 y
3
3 þ u44 y

3
4 þ u53z

2
3 þ u54z

2
4 : ð12Þ

By ð1Þ; . . . ; ð11Þ and (12),

ðT 3 þ x1T
2 þ z1Þ7 þ ðT 3 þ x2T

2 þ z2Þ7

þ ðu3T 3 þ y3T þ z3Þ7 þ ðu4T 3 þ y4T þ z4Þ7

¼ Pþ ða21 þ u73 þ u74ÞT 21 þ R;

with degRa 14. In the field F , a21 þ u73 þ u74 is a sum of l ¼ lðq; 7Þ seventh

powers, say,

a21 þ u73 þ u74 ¼ u75 þ � � � þ u74þl;

so that

deg
�
Pþ ðT 3 þ x1T

2 þ z1Þ7 þ ðT 3 þ x2T
2 þ z2Þ7 þ ðu3T 3 þ y3T þ z3Þ7

þ ðu4T 3 þ y4T þ z4Þ7 þ
X4þl

i¼5

ðuiT 3Þ7
�
a 14: r

Proposition 3.2. Let P a F ½T � with degPa 14. Then there are polynomials

Q1; . . . ;Q3þ4l a F ½T � with degreea 2 such that

deg
�
Pþ

X3þ4l

i¼1

ðQiÞ7
�
a 7: ð3:4Þ

Proof. We note that for ðx; yÞ a F 2,

deg
�
ðT 2 þ yT þ zÞ7 þ T 14 þ yT 13 þ ðy2 þ zÞT 12 þ y3T 11 þ ðy4 þ y2zþ z2ÞT 10

þ ðy5 þ yz2ÞT 9 þ ðy6 þ y4zþ z3ÞT 8
�
a 7: ð1Þ

Let

P ¼
X14
i¼0

aiT
i: ð2Þ
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From Proposition 2.4, there exists ðy1; y2; y3Þ a F 3 such that

a13 ¼ y1 þ y2 þ y3;

a11 ¼ y31 þ y32 þ y33 ;

and such that y1A 0. Let z1 a F be defined by the condition

y1z
2
1 ¼ a9 þ y51 þ y52 þ y53

and let

z2 ¼ z3 ¼ 0:

From (1),

deg
�
Pþ

X3
i¼0

ðT 2 þ yiT þ ziÞ7 þ b14T
14 þ b12T

11 þ b10T
10 þ b8T

8
�
a 7; ð3Þ

with

b14 ¼ a14 þ 1;

b12 ¼ a12 þ
X3
i¼1

ðy2i þ ziÞ;

b10 ¼ a10 þ
X3
i¼1

ðy4i þ y2i zi þ z2i Þ;

b8 ¼ a8 þ
X3
i¼1

ðy6i þ y4i zi þ z3i Þ:

If ðb14; b12; b10; b8Þ ¼ ð0; 0; 0; 0Þ, then deg
�
Pþ

P3
i¼1ðT 2 þ yiT þ ziÞ7

�
a 7. We

suppose ðb14; b12; b10; b8ÞA ð0; 0; 0; 0Þ. Let z1, z2, z3, z4 be distinct elements in F .

Then the Van der Monde matrix

1 1 1 1

z1 z2 z3 z4

z21 z22 z23 z24

z31 z23 z33 z34

0
BBB@

1
CCCA
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is invertible. Let ðh1; h2; h3; h4Þ a F 4 be defined by:

b14 ¼ h1 þ h2 þ h3 þ h4;

b12 ¼ z1h1 þ z2h2 þ z3h3 þ z4h4;

b10 ¼ z21h1 þ z22h2 þ z23h3 þ z24h4;

b8 ¼ z31h1 þ z22h2 þ z33h3 þ z34h4:

Then, ðh1; h2; h3; h4ÞA ð0; 0; 0; 0Þ. Suppose that hi1 ; . . . ; hir are A 0 and that hi ¼ 0

if i B fi1; . . . ; irg. Each non-zero hij is a sum of l seventh powers. For j ¼ 1; . . . ; r,
there are non-zero elements xj;1; . . . ; xj; nj in F with nj a l such that,

hij ¼
Xnj
n¼1

ðxj;nÞ7;

so that

b14 ¼
Pr
j¼1

Pnj
n¼1

ðxj;nÞ7;

b12 ¼
Pr
j¼1

Pnj
n¼1

ðxj;nÞ6
�

zij
xj; n

�
;

b10 ¼
Pr
j¼1

Pnj
n¼1

ðxj;nÞ5
�

zij
xj; n

�2
;

b8 ¼
Pr
j¼1

Pnj
n¼1

ðxj;nÞ4
�

zij
xj; n

�3
:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4Þ

From (3) and (4),

deg

�
Pþ

X3
i¼1

ðT 2 þ yiT þ ziÞ7 þ
Xr
j¼1

Xnj
n¼1

xj;nT
2 þ

zij
xj;n

� �7�
a 7:

Let s ¼ 3þ n1 þ � � � þ nr. We have proved the existence of polynomials Q1; . . . ;Qs

with degQi a 2 such that

degðPþQ7
1 þ � � � þQ7

s Þa 7:

We conclude by observing that sa 3þ 4l. r

Proposition 3.3. (i) Every P a F ½T � with degreea 7 is a strict sum of 8lðq; 7Þ
seventh powers.

(ii) Every P a F ½T � with degreea 14 is a strict sum of 12lðq; 7Þ þ 3 seventh

powers.
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(iii) Every P a F ½T � with degreea 21 is a strict sum of 13lðq; 7Þ þ 7 seventh

powers.

Proof. (i) Let s ¼ sðqÞ. Let P a F ½T � with degreea 7. There exist polynomials

Q1; . . . ;Qs with degreea 1 such that Pþ
Ps
i¼1

ðQiÞ7 is a constant, thus, a sum of l

seventh powers in the field F . Therefore, P is a strict sum of sþ l seventh powers.

We conclude with (3.2). We obtain (ii), then (iii), using Proposition 3.2, then

Proposition 3.1. r

4. The old descent

A general process which works when T is sum of k-th powers has been discribed in

[1] as well as in [10]. Taking k ¼ 7 in ([10], Theorem 1.4-(ii), (iii)) gives that every

polynomial A a F ½T � of degreeb 2346 is a strict sum of 7lðq; 7Þ þ 15 seventh

powers and that every polynomial A a F ½T � of degreeb 239 is a strict sum of

7lðq; 7Þ þ 42 seventh powers. Using the process discribed in [1], we prove the

following theorem.

Theorem 4.1. Every polynomial A a F ½T � of degreeb 29411 is a strict sum of

13þmax
�
lðq; 7Þ � 1; 1

�
þ vðq; 7Þ seventh powers.

Proof. Let g ¼ gðq; 7Þ ¼ max
�
lðq; 7Þ � 1; 1

�
. Let A a F ½T � with 7ðn� 1Þ <

degAa 7n. From ([1], Lemma 5.1), there exist B1; . . . ;Bg, H a F ½T � such that

A ¼ B7
1 þ � � � þ B7

g þH; ð4:1Þ
degBi a n for i ¼ 1; . . . ; g; degH ¼ 7n; ð4:2Þ

the leading coe‰cient of H being a seventh power.

From ([1], Lemma 5.2-(ii)), there is a sequence H0;H1; . . . ;Hi; . . . , of polyno-

mials of F ½T � of degree 7n0; 7n1; . . . ; 7ni; . . . , and a sequence X0;X1; . . . ;Xi; . . . , of
polynomials of degree n0; n1; . . . ; ni; . . . , such that H ¼ H0 and such that for each

index i,

Hi ¼ X 7
i þHiþ1; ð4:3Þ

6ni a 7niþ1 < 6ni þ 7: ð4:4Þ

Moreover, for each index i there is a polynomial Yi a F ½T � of degree ni such that

degðHi þ Y 7
i Þ < 6ni: ð4:5Þ
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Let r, if it exists, be the smallest index such that 6nr � 1a n. Using identity (4.3)

for i ¼ 0; . . . ; r� 1, then, using identity (4.5) one time with i ¼ r, we get

H ¼ X 7
0 þ � � � þ X 7

r�1 þ Y 7
r þ R; ð4:6Þ

with degRa n. Now, with v ¼ vðq; 7Þ, there exist R1; . . .Rv a F ½T �, of degree

adegR such that

R ¼ R7
1 þ � � � þ R7

v ;

so that

H ¼ X 7
1 þ � � � þ X 7

r þ Y 7
r þ R7

1 þ � � � þ R7
v ; ð4:7Þ

with degXi ¼ ni a n0 ¼ n, degYr ¼ nra n0 ¼ n, degRj adegRa n. Thus, (4.7)

is a strict sum of rþ 1þ v seventh powers. From (4.2), we get that

7 ini a 6 inþ 6 i þ
Xi�1

j¼1

7 j6 i�j:

Thus, for each r,

6nr � 1a 6
6

7

� �r
nþ 35� 36

6

7

� �r
: ð4:8Þ

For rb 12, we have 6
7

� �r
< 1

6 . Suppose r ¼ 12. If nb 421, then

6
6

7

� �12
nþ 35� 36

6

7

� �12
a n: r

Corollary 4.2. (i) If q satisfies one of the conditions

(1) q2 1 ðmod 7Þ,
(2) q ¼ 221r with r a positive integer,

(3) qbRð7Þ,
then Gðq; 7Þa 21.

(ii) If qC 1 ðmod 7Þ and q > 1416, then Gðq; 7Þa 22.

(iii) If qC 1 ðmod 7Þ and 512a q < 1416, then Gðq; 7Þa 27.

(iv) If q ¼ 64, then Gðq; 7Þa 31.

Proof. We have

Gðq; 7Þa 13þmax
�
lðq; 7Þ � 1; 1

�
þ vðq; 7Þ:
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For lðq; 7Þa 2, we have

Gðq; 7Þa 14þ vðq; 7Þ:

From (2.2) and (2.4), if gcdðq� 1; 7Þ ¼ 1 or if q is a power of 221, then vðq; 7Þa 7;

from Proposition 2.3, if qbRð7Þ, then vðq; 7Þa 7 and if q > 1416, then vðq; 7Þa 7.

On the other hand, if q is a power of 221, or if qb 1416, then lðq; 7Þa 2. This

gives (i) and (ii). If qC 1 ðmod7Þ and qb 512, from Proposition 2.1 and (2.2),

vðq; 7Þa 13; lðq; 7Þ ¼ 2, so that Gðq; 7Þa 27. If q ¼ 64, from (2.3) and Proposi-

tion 2.1, Gð64; 7Þa 31. r

Remark. Adding polynomials in the descent process allows one to get strict rep-

resentations of polynomials of lower degree. For instance, see ([1], Proposition

5.3), it is possible to prove

Proposition 4.3. (i) Every polynomial P a F ½T � with degreeb 246 is a strict sum

of 21þmax
�
lðq; 7Þ � 1; 1

�
þ vðq; 7Þ seventh powers.

(ii) Every polynomial P a F ½T � with degreeb 239 is a strict sum of

38þmax
�
lðq; 7Þ � 1; 1

�
þ vðq; 7Þ seventh powers.

In order to get a bound for gðq; 7Þ we want to write every polynomial of

degreea 238 as a strict sum of seventh powers. For that we use

Proposition 4.4. Let P a F ½T � such that 7ðn� 1Þ < degPa 7n with nb 3. Then

P is a strict sum of
�
4þ lðq; 7Þ

�
nþ 10lðq; 7Þ � 5 seventh powers

Proof. Let P a F ½T � such that 7ðn� 1Þ < degPa 7n with nb 3. If n ¼ 3, there is

nothing to prove. Suppose n > 3. By euclidean division,

P ¼ T 7ðn�3ÞQþ R; with degQa 21; degR < 7ðn� 3Þ:

Proposition 3.1 gives the existence of polynomials Q1;1; . . . ;Q1;4þl of degreea 3

such that

deg
�
Qþ

X4þl

i¼1

ðQ1; iÞ7
�
a 14;

so that

P ¼
X4þl

i¼1

ðT n�3Q1; iÞ7 þ P1;
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with degP1a 7ðn� 1Þ. By induction, we get the existence of polynomials

Qr;1; . . . ;Qr;4þl of degreea 3, 1a ra n� 2, such that

P ¼
Xn�2

r¼1

X4þl

i¼1

ðT n�2�rQr; iÞ7 þ Pn�2

with degPn�2a 14. Propositions 3.1 and 3.3 give the existence of polynomials

Q1; . . . ;Qt of degreea 2 such that

Pn�2 ¼
Xt
i¼1

Q7
i ;

with t ¼ 3þ 12l. Thus P is a strict sum of ð4þ lÞðn� 2Þ þ t seventh powers.

r

Theorem 4.5. We have

gðq; 7Þa 44lðq; 7Þ þ 131:

Proof. From the above proposition, every polynomial of degreea 238 is a strict

sum of 44lþ 131 seventh powers. From Proposition 4.3, every polynomial

of degreeb 239 is a strict sum of 38þmaxðl� 1; 1Þ þ vðq; 7Þ seventh powers.

Thus, gðq; 7Þamax
�
44lþ 131; 38þmaxðl� 1; 1Þ þ vðq; 7Þ

�
¼ 44lþ 131. r

This theorem improves the bounds deduced from ([1], Theorem 7.1) or from

([10], Theorem 1.4-(iv)). In particular we have the

Corollary 4.6. (i) If q2 1 ðmod 7Þ and qb 16, then gðq; 7Þa 175.

(ii) If qC 1 ðmod 7Þ and qb 512, then gðq; 7Þa 219.

(iii) If q ¼ 64, then gðq; 7Þa 263.

5. The new descent

The process described in this section yields improvements in the treatment of the

numbers gðq; 7Þ. It is known from ([1], Proposition 4.2-(ii)), that every P a F ½T �
of degree 4 is a strict sum of 8lðq; 7Þ seventh powers. We prove the existence of

linear polynomials of degree 4 which are strict sum of 5 seventh powers.

Proposition 5.1. If F AF2, there exists ðx; y; zÞ a F 3 such that

ðT þ xÞ7 þ ðT þ yÞ7 þ ðT þ xþ yÞ7 þ T 7 þ z7 ¼ T 4 þ uðx; yÞT 2 þ T ; ð5:1Þ

with uðx; yÞ a F. Moreover, if a a F4 is such that a2 ¼ aþ 1, then

T 4 þ T ¼ ðT þ 1Þ7 þ ðT þ aÞ7 þ ðT þ aþ 1Þ7 þ T 7; ð5:2Þ
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and if b a F8 is such that b3 ¼ b þ 1, then

T 4 þ T 2 þ T ¼ ðT þ bÞ7 þ ðT þ b2Þ7 þ ðT þ b2 þ bÞ7 þ T 7 þ 1: ð5:3Þ

Proof. A simple verification gives (5.2) and (5.3). Therefore, if q is a power of 4,

then (5.1) is true with ðx; y; zÞ ¼ ð1; a; 0Þ and uðx; yÞ ¼ 0 and if q is a power of 8,

then (5.1) is true with ðx; y; zÞ ¼ ðb; b2; 1Þ and uðx; yÞ ¼ 1. We suppose that q is

neither a power of 4, nor a power of 8, so that every b a F is a third power and a

seventh power. Let x a F be A 0 and such that trðxÞ ¼ 0. Then there is l a F

such that l2 þ lþ x ¼ 0. Let x a F be such that 1=x ¼ x3 and let z a F be such

that x7
�
1þ l7 þ ð1þ lÞ7

�
¼ z7. We have

x3 þ ðlxÞ3 þ ðxþ lxÞ3 ¼ x3ðlþ l2Þ ¼ 1;

so that (5.1) is true with y ¼ lx and uðx; yÞ ¼ x5ðlþ l4Þ. r

In what follows, we fix ðx; y; zÞ a F 3 satisfying (5.1) and we set u ¼ uðx; yÞ.
Moreover, if q is a power of 4, we choose ðx; y; zÞ ¼ ð1; a; 0Þ and uðx; yÞ ¼ 0.

Proposition 5.2. For i a non-negative integer and X a F ½T �, let

LiðXÞ ¼ X 4T 3i þ uX 2T 5i þ XT 6i: ð5:4Þ

Then the map Li is F2-linear and we have

LiðXÞ ¼
XrðqÞ
r¼1

ðX þ brT
iÞ7; ð5:5Þ

with b1; . . . ; brðqÞ a F

rðqÞ ¼ 4 if q is a power of 4;

5 otherwise:

�
ð5:6Þ

Proof. Immediate. r

We shall make use of the following corollary.

Corollary 5.3. Let n be a non-negative integer and let a a F. Then we have

a4T 4n ¼ L0ðaT nÞ þ ua2T 2n þ aT n; ð5:7Þ
a4T 4nþ3 ¼ L1ðaT nÞ þ ua2T 2nþ5 þ aT nþ6: ð5:8Þ
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If n > 0, then

a4T 4nþ2 ¼ L2ðaT n�1Þ þ ua2T 2nþ8 þ aT nþ11: ð5:9Þ

If n > 1, then

a4T 4nþ1 ¼ L3ðaT n�2Þ þ ua2T 2nþ11 þ aT nþ16: ð5:10Þ

Proof. (5.7) and (5.8) are immediate. We get (5.9) and (5.10) noting that T 4nþ2 ¼
T 4ðn�1Þþ6 and that T 4nþ1 ¼ T 4ðn�2Þþ9. r

Roughly speaking, the new descent process uses the following idea. Let X ¼
xNT

N þ xN�1T
N�1 þ � � � þ x1T þ x0 be a polynomial of F ½T �. Making use of

ð5:7Þ; . . . ð5:10Þ, we replace a monomial xkT
k by the sum of an appropriate

LiðT jÞ and a monomial of lower degree. We begin with the monomial xNT
N ,

then, following decreasing degrees, we replace each monomial one after the other,

as long as the process gives monomials of lower degree.

Proposition 5.4. Let X ¼ xNT
N þ xN�1T

N�1 þ � � � þ x1T þ x0 be a polynomial

of F ½T �. Then there exist Y0; . . . ;Y3, Y a F ½T � such that

X ¼ L0ðY0Þ þ L1ðY1Þ þ L2ðY2Þ þ L3ðY3Þ þ Y ; ð5:11Þ

with

degY a 21:

degY0a n; degY1a n� 1; degY2a n� 2; degY3a n� 3; if N ¼ 4n;

degY0a n; degY1a n� 1; degY2a n� 2; degY3a n� 2; if N ¼ 4nþ 1;

degY0a n; degY1a n� 1; degY2a n� 1; degY3a n� 2; if N ¼ 4nþ 2;

degY0a n; degY1a n; degY2a n� 1; degY3a n� 2 if N ¼ 4nþ 3:

ð5:12Þ

Proof. If degX < 22, then (5.11) is true with Y0 ¼ Y1 ¼ Y2 ¼ Y3 ¼ 0 and Y ¼ X .

We suppose now that degX b 22. We use the descent process. We use (5.7) as

long as we meet monomials x4nT
4n with n > 0. Respectively, we use (5.8), (5.9),

(5.10) as long as we meet monomials x4nþ3T
4nþ3 with 4nþ 3 > maxð2nþ 5; nþ 6Þ,

that is n > 1, monomials x4nþ2T
4nþ3 with 4nþ 2 > maxð2nþ 8; nþ 11Þ, that is

n > 3, monomials x4nþ1T
4nþ1 with 4nþ 1 > maxð2nþ 11; nþ 16Þ, that is n > 5.

Doing this, we write X as a sum

X ¼ L0ðY0Þ þ L1ðY1Þ þ L2ðY2Þ þ L3ðY3Þ þ Y ;

with degY , degY0, degY1, degY2, degY3 satisfying (5.12). r
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Proposition 5.5. Let H a F ½T � with degree 7nb 56 and leading coe‰cient a sev-

enth power.

If degH B f91; 105g, then there exist X0, X1, X2, X3, Y0, Y1, Y2, Y3, Z a F ½T �
with degXi a n, degYj a n and degZa 21 such that

H ¼ X 7
0 þ X 7

1 þ X 7
2 þ X 7

3 þ L0ðY0Þ þ L1ðY1Þ þ L2ðY2Þ þ L3ðY3Þ þ Z: ð5:13Þ

If degH a f91; 105g, then there exist X0, X1, X2, X3, X4, Y0, Y1, Y2, Y3, Z a F ½T �
with degXi a n, degYj a n and degZa 21 such that

H ¼ X 7
0 þ X 7

1 þ X 7
2 þ X 7

3 þ X 7
4

þ L0ðY0Þ þ L1ðY1Þ þ L2ðY2Þ þ L3ðY3Þ þ Z: ð5:13 0Þ

Proof. We proceed as for the proof of Theorem 4.1 and we keep the same

notations. Let r, if it exists, be the least index such that 6nr � 1a 4nþ 3. From

identity (4.8), we have r ¼ 3 if nb 43. Using identity (4.3) for i ¼ 0; 1; 2, then

identity (4.5) for i ¼ 3, we get

H ¼ X 7
0 þ X 7

1 þ X 7
2 þ X 7

3 þ R; ð1Þ

with degRa 4nþ 3. For 8a na 42, the sequence ðn; 4nþ 3; n1; n2; n3; 6n3 � 1Þ is
given by:

n 4nþ 3 n1 n2 n3 6n3 � 1 n 4nþ 3 n1 n2 n3 6n3 � 1

42 171 36 31 27 161 41 167 36 31 27 161

40 163 35 30 26 155 39 159 34 30 26 155

38 155 33 29 25 149 37 151 32 28 24 143

36 147 31 27 24 143 35 143 30 26 23 137

34 139 30 26 23 137 33 135 29 25 22 131

32 131 28 24 21 125 31 127 27 24 21 125

30 123 26 23 20 119 29 119 25 22 19 113

28 115 24 21 18 107 27 111 24 21 18 107

26 107 23 20 18 107 25 103 22 19 17 101

24 99 21 18 16 95 23 95 20 18 16 95

22 91 19 17 15 89 21 87 18 16 14 83

20 83 18 16 14 83 19 79 17 15 13 77

18 75 16 14 12 71 17 71 15 13 12 71

16 67 14 12 11 65 15 63 13 12 11 65

14 59 12 11 10 59 13 55 12 11 10 59

12 51 11 10 9 53 11 47 10 9 8 47

10 43 9 8 7 41 9 39 8 7 6 35

8 35 7 6 6 35
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Observe that with the exceptions n ¼ 15; 13, we have 6n3 � 1a 4nþ 3. For

n ¼ 7, the sequence is ð7; 31; 6; 6; 6; 35Þ and for na 6 the sequence is

ðn; 4nþ 3; n; n; n; 6n� 1Þ. We suppose nb 8 and nA 13; 15. From the previous

proposition, there exist Y0; . . . ;Y3 a F ½T � such that

R ¼ L0ðY0Þ þ L1ðY1Þ þ L2ðY2Þ þ L3ðY3Þ þ Z; ð2Þ

with degZa 21 and degYi a n. For n ¼ 13 or n ¼ 15 we add a step in the

descent process. We have n4 ¼ 9 if n ¼ 13 and n4 ¼ 10 if n ¼ 15, so that

6n4 � 1a 4n. Instead of (1), we have

H ¼ X 7
0 þ X 7

1 þ X 7
2 þ X 7

3 þ X 7
4 þ R; ð1 0Þ

with degRa 4nþ 3. r

Theorem 5.6. (i) Every polynomial P a F ½T � with degreeb 105 is a strict sum of

13lðq; 7Þ þ 11þ 4rðqÞ þmax
�
lðq; 7Þ � 1; 1

�
seventh powers.

(ii) If P a F ½T � is such that 50adegPa 84 or such that 92adegPa 98, then

P is a strict sum of 13lðq; 7Þ þ 11þ 4rðqÞ þmax
�
lðq; 7Þ � 1; 1

�
seventh powers.

(iii) If P a F ½T � is such that 95adegPa 91 or such that 99adegPa 105,

then P is a strict sum of 13lðq; 7Þ þ 12þ 4rðqÞ þmax
�
lðq; 7Þ � 1; 1

�
seventh

powers.

Proof. Proceeding as for the proof of Theorem 4.1, it is su‰cient to prove that

every H a F ½T � with degH ¼ 7nb 56 and leading coe‰cient a seventh power, is

a strict sum of 13lþ 11þ 4rðqÞ seventh powers. Let H be such a polynomial.

We suppose nA 13; 15. From Proposition 5.5 and Corollary 5.3, there exists

Z a F ½T � with degZa 21 such that H þ Z is sum of 4þ 4rðqÞ seventh powers

of polynomials of degreea n. Let s ¼ 13lþ 7. From Proposition 3.3-(iii), there

exist Z1; . . . ;Zs with degZi a 3, such that

Z ¼
Xs
i¼1

Z7
i :

Thus, H is a strict sum of sþ 4þ 4rðqÞ seventh powers. If n ¼ 13; 15 we have to

add a seventh power. r

The following theorem improves the bounds deduced from ([1], Theorem 7.1).

Theorem 5.7. (i) If q2 1 ðmod 7Þ and qC 1 ðmod3Þ, then gðq; 7Þa 42.

(ii) If q2 1 ðmod 7Þ and q2 1 ðmod 3Þ, then gðq; 7Þa 46.

(iii) If qC 1 ðmod 21Þ and qA 64, then gðq; 7Þa 57.

(iv) If qC 1 ðmod 7Þ and q2 1 ðmod 3Þ, then gðq; 7Þa 59.

(v) gð64; 7Þa 74.
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Proof. From Proposition 4.4, every polynomial of degreea 49 is a strict sum

of less than 17lþ 23 seventh powers. From Theorem 5.6, every polynomial of

degreeb 50 is a strict sum of 13lþ 12þ 4rðqÞ þmaxðl� 1; 1Þ seventh powers.

Thus,

gðq; 7Þamax
�
17lþ 23; 13lþ 12þ 4rðqÞ þmaxðl� 1; 1Þ

�
with

rðqÞ ¼ 4 if q is a power of 4;

5 otherwise:

�

We conclude with Proposition 2.1. r
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Cézanne—Aix-Marseille III, Faculté des Sciences et Techniques, Avenue Escadrille
Normandie-Niemen, 13397 Marseille Cedex 20, France

E-mail: mireille.car@univ-cezanne.fr

316 M. Car

http://www.emis.de/MATH-item?05257399
http://www.ams.org/mathscinet-getitem?mr=2363827
http://www.emis.de/MATH-item?1161.11414
http://www.ams.org/mathscinet-getitem?mr=2182836
http://www.ams.org/mathscinet-getitem?mr=2045808
http://www.ams.org/mathscinet-getitem?mr=2241232
http://www.emis.de/MATH-item?59.0929.01
http://www.emis.de/MATH-item?0006.24703
http://www.emis.de/MATH-item?0624.10049
http://www.ams.org/mathscinet-getitem?mr=901241
http://www.emis.de/MATH-item?0817.12002
http://www.ams.org/mathscinet-getitem?mr=1196531
http://www.emis.de/MATH-item?1044.11090
http://www.ams.org/mathscinet-getitem?mr=1956283
http://www.emis.de/MATH-item?0258.12014
http://www.ams.org/mathscinet-getitem?mr=0313190

