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Global existence of small solutions to the Kerr—Debye
model for the three-dimensional Cauchy problem
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Abstract. We consider the Kerr—Debye model, describing the electromagnetic wave propa-
gation in a nonlinear medium exhibiting a finite response time. This model is quasilinear
hyperbolic and endowed with a dissipative entropy. We consider the Cauchy problem in
the three-dimensional case and show that, if the initial data are sufficiently small, the solu-
tions are global in time.
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1. Introduction

The domain of nonlinear optics involves activities of physical modelling, experi-
mentations, mathematical analysis, and numerical simulations (see [5] and [11]
for instance). Some interesting applications can be found in the domains of lasers,
propagation through optic fibers, design of optic devices, and interactions between
lasers and plasmas. A model for the nonlinear optical phenomena in isotropic
crystal is the following nonlinear Maxwell’s system.

0D —curlH=0, 0B+curlE=0, divD=divB=0,

where the electromagnetic field (E, H) is linked to the electric and magnetic
displacements D and B by the constitutive relations

B=uH, D=¢gkE+ P

*The author is grateful to Denise Aregba, Gilles Carbou and Bernard Hanouzet for encouragements
and many helpful discussions.
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The polarization P is nonlinear and g, & are the free space permeability and
permittivity.
If the medium exhibits an instantaneous response we have a Kerr model:

P = Py = g5, |E)°E.

If the medium exhibits a finite response time 7 we consider the Kerr—Debye model
in which P is given by

P= PK]_) = 60){E,

where
1 1
O +—x =—&lE|.
T T

See for example [22] or [26] for details.

In this paper we are interested in studying the existence of smooth solutions for
the Cauchy problem of the Kerr—Debye model. For the convenience of the reader
we study this problem with x4y =& =¢ =1 and T = 1. That is we deal with the
Cauchy problem

0,D —curl H = 0,
0H +curl E =0,
Oy = |E‘2 e
D=(1+y)E,

(1.1)

for (¢,x) € R* x R3 together with the initial data

(D, H,)(0,x) = (D°, H®, z°)(), (1.2)
with the divergence free relations

divD=divH=0 forz>0. (1.3)

We note that if the initial data are divergence free, then so are (D, H). More-
over, if y is initially positive, then y remains positive for all positive times.
The energy density given by

- 1 1
Sxp(D.H.z) =5 (1+2) 7 1D +5HI" + 3

N —

is a strictly convex entropy in the domain {y > 0} (with associated flux £ x H =
(147 'DxH). So (I.1) is a quasilinear hyperbolic symmetrizable system.
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Therefore the classical existence results in Sobolev spaces in [15] ensure that the
problem (1.1)—(1.2) has a unique local (in time) smooth solution for smooth
data, and we have the following result (see also [18]).

Proposition 1.1. Let V0 = (E°, H® y%) e W*2(R?),se N, s > %+ 1. We assume
that y° > 0. Then there exists a maximal smooth solution (E,H,y) to the Kerr—
Debye problem (1.1)—(1.2), whose lifespan is denoted by T*, and such that

V=(EHy)e (50([0, T"); W‘T’z) m(gl([o’ T*); I/Vs—l,z)7

where we denote by WP .= W™P(R®) the usual Sobolev space, me N, 1 <

p < oo, with norm || - [|,,, ,.

We are interested in the problem of globality of this solution, i.e., do we have
T = 400?

For some general hyperbolic symmetrisable n-dimensional systems, the local
smooth solutions may develop singularities in finite time, even when the initial
data are smooth and small (see [21], for example). Despite these general consider-
ations, sometimes dissipative mechanisms due to the source term can prevent the
formation of singularities, at least for some restricted classes of initial data.

We remark that the Kerr—Debye system is partially dissipative with the prop-
erty (see [12]):

d 1
—j a@KD(D,H,x)dxz——J (IEI* = x)* dx.
dl R3 2 R3

In the multidimensional case of partially dissipative hyperbolic systems, many
results are known about the global existence of solutions: see, for instance, [13] for
the one-dimensional case and [25] for the general case. The authors study the
interplay between the source term and the flux under the so-called Shizuta—
Kawashima ([SK]) condition introduced first by Shizuta and Kawashima in [23].
This condition concerns the linearized system around a constant equilibrium state.
If it is satisfied, the global existence is obtained in [13] and [25]. Also, it is possible
to obtain informations about the asymptotic behavior of solutions, see [4]. If the
linearized system is of the form

o, U+ A4/6;U = BU, (1.4)
=1

J=

where U = (u,v) € R™ x R™, n=n;+mn, and B= (8 g) with D e R™*™ is
negative-definite, the [SK]| condition writes: no vector (X,0) € R™ x R™ is eigen-

vector of (I -+, &A47).
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In the 3-D case of the Kerr—Debye model (1.1) the linearized system around
the null constant equilibrium writes:

E 0 —curl E
() (& ()0 e

i.e., the dissipative variable y and the variable (E, H) are completely uncoupled.
Therefore the Shizuta—Kawashima condition does not hold. In [3], K. Beauchard
and E. Zuazua prove the existence of global small solutions assuming the existence
of a family of constant equilibria fulfilling [SK] converging to zero. This assump-
tion is not satisfied in our case. Consequently, we can not apply neither the results
in [25] nor the results in [3] to our model (1.1).

Recently, in [24], a global existence result for smooth solutions to the Euler—
Maxwell system was obtained. This system verifies a stability condition which is
a modified version of the original one formulated in [23] (see [24] and references
therein for details). Nevertheless, this condition is not satisfied by our system.
For the same system, see also [10] for other global existence results and decay
estimates.

Finally, we point out that, in [19], C. Mascia and R. Natalini started a general
study in the one-dimensional case for relaxation hyperbolic systems that violate
the [SK] condition. This investigation is motivated by the fact that this condition
is not satisfied by various physical systems, still possessing dissipative entropies, as
the one-dimensional Kerr—Debye system (see [9]). In the present work, we deal
with the three-dimensional Kerr—Debye system so that the methods used in [19]
are not relevant.

For our model (1.1), we expect that we could consider the influence of other
factors, like the existence of linearly degenerate fields or, in several space dimen-
sions, the well-known faster time decay of the linear system, even for the nondissi-
pative case. In this framework we can mention the work of Reinhard Racke [20],
in which he proves an existence result of global small solutions for some nonlinear
wave equations. This result is mainly based on a decay estimates for the linear
wave equation. This general result yields the global existence of solutions for the
Kerr model in the three-dimensional case; see [20] §11.6.

Using both the partial dissipative character of the Kerr—Debye model (1.1) and
the dispersion of the Maxwell equations in the 3-D case, we obtain, in the present
paper, the following theorem of existence of global solutions.

Theorem 1.2 (Global existence). There exist an integer s > 7 and a & > 0 such that
the following holds:
if the initial data V° = (E°, H?, °) satisfies

IVOlgn + 11V 65 <6, withy® =0 and  divH® = div[(1 4 £°)E’] = 0,
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then there exists a unique solution V' for the Cauchy problem (1.1)—(1.3), with
V=(E,H,y) e%°([0,00), W"?) ng' ([0, 0), W"?).
Moreover, we have
V@)l + 1V (D)llg = 02P), V()2 =0(1)  ast— .

As in [16], [17] and [20], our proof consists in combining the local existence
theorem given in Proposition 1.1 with a priori estimate in appropriate L?-norm.
Therefore we proceed in two principal steps: the first is to get a high energy esti-
mate, by using variational methods on a symmetric form. The second step is to
obtain a weighted a priori estimate, based on L?” — L7 decay estimates for the
linear wave equation.

The main difficulty here, is that the degree of vanishing of the nonlinearity near
zero is not great enough for the Kerr—Debye model (1.1) in its three variables. To
overcome this difficulty we use the following new ideas. First, we treat the model
(1.1) by splitting it into two parts: the Maxwell equations and the ordinary differ-
ential equation (ODE) satisfied by y. The Maxwell part is estimated by classical
variational method while y is estimated by solving the ODE. Secondly, we remark
that in this step, the weighted norm appearing in the weighted a priori estimate is
used to control y. In previous related papers [16], [17] and [20], the introduction of
a weight in the high energy estimates was not necessary.

Third new idea: we use different variables for the high energy estimate and for
the weighted a priori estimate. On the one hand we use (E, H) to obtain a sym-
metric form for Maxwell equations, so we are able to perform an energy estimate.
On the other hand, with the variable (D, H) we transform the Maxwell equations
in a wave equation using the divergence free conditions. This transformation is
crucial to obtain a weighted a priori estimate. At this step again, the key point is
the choice of adapted weights for the variable y.

There are some mathematical studies on the Kerr—Debye Model. The Kerr—
Debye system is a quasilinear hyperbolic system with source term and it is totally
linearly degenerate, i.e., each characteristic field is linearly degenerate. So we can
expect that, if the lifespan 7™ is finite, the behavior of the smooth solution is anal-
ogous to the semilinear case. Indeed this result has been proved in the 1-D case in
[7]: if T* is finite then the solution and its gradient explode, so no shock wave can
appear. In fact, using more precise dissipative properties for the Kerr—Debye
model it is proved in [9], without smallness condition, that 7* = +oo for the one-
dimensional Cauchy problem.

For the initial-boundary value problem (IBVP), a result of global existence of
smooth solution, without smallness condition, in the 1-D and 2-D TE cases for the
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Kerr—Debye model is proved in [8]. By adapting the proof of this result on the
Cauchy problem in the 2-D TE case, a similar global existence result can be also
easily obtained.

However in the 2-D TM and the 3-D cases of both the Cauchy problem and
the IBVP, the situation is different: we are unable to obtain similar properties as in
the 1-D and the 2-D TE cases. Nevertheless, in the 3-D case of the Cauchy prob-
lem we obtain, in the present work, a result of global existence of smooth solution
with small initial data, while the global existence of solutions for the 2-D TM
Kerr—Debye model in all cases remains an open problem.

Concerning the study of the behavior of the smooth solutions when the re-
sponse time 7 tends to zero, the convergence of smooth solutions of Kerr—Debye
system towards a smooth solution of Kerr system is proved, in [12] for the Cauchy
problem and in [8] for the IBVP.

Besides, there are related results. Recently, in [2] Aregba and Hanouzet
studied the Kerr—Debye shock profiles for the 1-D and 3-D Kerr system. They
determine the plane discontinuities of the full vector 3-D Kerr system and their
admissibility in the sense of Liu and the sense of Lax. Then they characterize the
large amplitude Kerr shocks giving rise to the existence of Kerr—Debye relaxation
profiles.

In the domain of numerical methods, we can mention the work of P. Huynh
[14] around a finite element method in a nonlinear Kerr medium, and the recent
work of Aregba—Berthon [1], which presents a 1-D finite volume schemes for
Kerr—Debye model.

This paper is organized as follows. In Section 2 and Section 3 we prove
respectively a high energy estimate and a weighted a priori estimate for small
data. Section 4 is devoted to end the proof of Theorem 1.2.

Notations. We denote by x = (x],x2,x3) the cartesian variables in R3. The
partial derivative is denoted in the following way: 0; = d/0y,, 0, = d/0,, and for
o= (o, 00, 03) € N3, V¥ = 0 /(1) (82)™(83)™, |at| = o1 + otz + t3.

In this paper we use ¢ to denote various positive constants without confusion.

2. High energy estimate

In this section we prove an energy estimate for small solutions of (1.1)—(1.2). This
result will be proved by classical variational estimates. For that we use the vari-
able V' = (E,H,y). Indeed with E and H we transform the nonlinear Maxwell
equations in symmetric hyperbolic form. We estimate y by solving the third
equation in (1.1). Therefore we have to define for u € W™ 7 the norm: |ul,, ,(1) =

”u”L’“(OJ; Wmp)-
We begin this section with two preliminary results.
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Lemma 2.1. Let m € N and p > 2. Then there exists a constant ¢ = c¢(m,n) >0
such that for all f,g € WP nL* and o € N{, |o| = m, the following inequalities
hold:

IV, < el IV gll, + VS 1,191l ), (2.1)
IV*(f9) = 1V7gll, < VLIV gll, + 1V F 1 gl )- (2.2)
Proof. See [18], Section 2.1, Proposition 2.1. dJ

This lemma will be used repeatedly in the sequel.

Lemma 2.2. Let a >0, f,g € €°([0,d]) such that f,g >0 and let v: [0,a] — R,
v>0 If

t

v (f) < vd + Jo(f(r)v2(r) +g(r)v(r)) dr  forall t € [0,d],

then

t t

v(t) < %[uo exp(JO f(r dr) + J;g(r) exp(J f() dr)] dr.

r

This result is classical, so we omit the proof.
In the rest of this paper, we use the notation

M, (1) == max (1 + 1) (E, H)(D)],, 6.

0<7<t
where s; € N will be defined below.

Proposition 2.3. Let V = (U,y) = (E,H,y) be the local solution of the initial
value problem (1.1)—(1.2) with the initial data V° = (E°, H°, °). We denote by
T the lifespan of this solution. Let s,s; € N such that 2 < sy <s— 1. Then there
exist a constant ¢ independent of T* and a é <inf{l,1/c} sufficiently small such
that if

1VOll,2<6/2 and  ° >0, (2.3)
then
V@)l < el VOl o[(1+ MG (1) exp{eMg ()} forall 1e[0,T], (24)
where T > 0 is defined by

T =max{T < T* such that [V],.2(T) <0}
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Proof. Using the variable V' = (U, y) = (E, H, ), the system (1.1) becomes

(1 +x)0E+ (0)E —curlH =0, (i)
0H +curl E =0, (i) (2.5)

d =E” - 1. (iii)
with the initial data
(E,H,7)(0,x) = (E°, H, °)(x) forxeR’.

We apply V% |o| =m < s to system (2.5) and then take the inner product of
(2.5.1) with E and (2.5.ii) with H. Thus, summing up the two terms, we obtain

J 3(1 +2)0,V*E - V*E dx + J . 0,V*H - V*H dx
R R

= —J V*(0,1E) - V*E dx

- J 3{V“((1 +x)0E) — (1 + x)0,V*E} - V*E dx. (2.6)

We have

o o _ld o2 1 o2
LQHWMVEVEM2mkﬂ+mvﬂdx2hﬁmvﬂdx

So replacing it in (2.6) we obtain:

3| A D ER + v s
= %JW 0| V*E|? dx — JW V*(0ixE) - V*E dx

- sz{vd((l +2)0E) — (1 + x)0,V*E}V*E dx
=NL+5L+5 (2.7)

Let us now estimate the right-hand side terms in (2.7) for all ¢ € [0, T7:
first we have

1 w12
] < 510l - IVEEIL3-
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Solving (2.5.iii) we get
t
2(1) = 10! —l—J B I|E(s)|* ds (2.8)
0

and
t
d(t) = |EP*(1) = 2% = J “IIE(s)|* ds. (2.9)
0
This implies
2 0 ! 2
0l () < NE@I Nl + [l IIwe"JrLe("’)II IE(D)|"Il,, dr.

Observing that for 2 < 51 < s — 1, by Sobolev’s inequalities, we have
WS Wit e whe, (2.10)
From this we get for all 7 € [0, T},

NUDy o < U@y, < c(1+ 072 My (1), (2.11)
and

10l < max [Vl < eVl < 1. (2.12)

From that we get

t

loll.. (1) < (1 + 07 MG (1) + e + L (1 +0) MY (x) de
t

< (L+07*PM2(1) + e '+ M2 (1) Joe(”)(l Loy P,
and from the fact that, for r <0,

t
Je<f—’>(1+r)’dfgc(1+z)’, (2.13)
0

we arrive at

L) <cle+ (1+ 0P M2(1).

10:x
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This estimate yields

1)(1) < c(e™ + (1+ 1) P M2 (1)) |}, 5 (0). (2.14)
In the same way we have
L] < [[V¥(0uxE)|,||V*Ell,.-
By (2.1) we have
IV @ Ely < c(IV*0urlly - 1EN. + [IVZEIly - 10:x]]..)-

From (2.9) and (2.1) we get
t
IV*0uxlla(5) < IVHE@ Pl + V7% e + Joe(“)IIV“E(f)IZIIz dt
and
IVIEP|l, < el EIl.. [ V*E],.
Thus,
1
IV*0uxll (1) < ellEll IVAElly + IV ™" + CJ()e(T_’)IE(T)IIwIVaE(f)IIz dt
< (1 +1) P My, (1)|V*E Ve
<c(l+1) s (DIVIEL() + V7% e
t
eV EL(D) [ (14 M, () do
0
< c(IV7 lhe™ + (1+)7 7 My, (1) IV EL ().
Thus

IV0uzlly- | Ello (1) < IV lae™ IEN o (1) + (14 1) 2P My, (0) [V EL (0| E@)]]..
<[V lle™ + (1407 M (1) VELy (0).
Here we have applied inequalities (2.11) and (2.12) on || E|| . (?).

The second term in the right-hand side is the same as in the estimate of I, so
we obtain

IBI(1) < e[(e™ + (1+ 07 M) IEL, 2(0) + 12l ¢ |EL, (0] (215)
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In the same way we have
L] < [[V*((1+ 00E) — (1 + )V E||,|V*El,.
By (2.2) we obtain

V(1 + 0)2.E) = (1 + 2.V "E|
< IV + D)V 3 EN + IV (1 + 2)III6E]L,)-

From (2.8), (2.12) and (2.1) we get
IV 40 < VLl e + (40P Mo (1) <e '+ (1407 M7 (o).
Equation (2.5.1) yields
0,E =curl H— 0,yE — y0,E
and
IV 1ENly < IV HIly + V" @ E)ly + IV (x0E) ).
Using (2.12) in the same way as above, we prove

V" 0 E)ly < (V" A LIIENL, + IV Ell,)
< (V"2 A+ NEy,2)

< C‘ U|m,2(t)

and
IV E)ly < e (V" 20y + IV EID NG ElL. + V" 0 Ell 1 xl.)
< (V"0 + IVEN + IV E )
< (U2 (0) + V"0 EIx. )-
Now taking

0 <inf{1,1/2c},
by (2.12) we get

lxll, <0 <1/2c



400 M. Kanso
Then the last inequalities yield

IV oElly < c|Ul, 5(1)- (2.16)

So we obtain

IBI(0) < e[(e” + (1 + 07 M (0) U5, 5(0)

m,2
+ (e + (140 M 0) 12,21 Ul 2 (0] (2.17)
Combining (2.7), (2.14), (2.15) and (2.17), we obtain the estimate

> 1 "E "H
2le@}{( +0)IV'E|” + |V*H|"} dx

m‘2| Ulm,2(t))'

We sum up these inequalities for |¢| =m < s and we integrate in time. Since
x =0, we obtain

<cle"+ (L+ 0P M) (|U], (1) + |Ix°

UL (1) < e U°)I5, + CJO (9OIUL () + 9@ 21Ul 2(2)) dz, - (2.18)

where g(¢) = (e7" + (1 + t)_4/3M521(Z)).
We apply Lemma 2.2 to (2.18) (replacing v with |U| ,). Next we use (2.1) to
estimate |y|; ,. So we obtain (2.4). O

3. Weighted a priori estimate

In this section we prove a weighted a priori estimate which will be combined with
the energy estimate (2.4) to obtain an a priori bound in the W*2-norm of the
solution of (1.1)—(1.3) for small data. The proof is based on a decay estimate for
the linear wave equation. For that we will use the variable (D, H,y). In fact with
the divergence free conditions (1.3) we can transform the Maxwell equations into
nonlinear wave equation.

Proposition 3.1. Let V = (U,y) = (E,H,y) be the local solution of the initial
value problem (1.1)—(1.3) and let so,s1 € N satisfy

3<s <s0— 4.

We assume that

VO c WS(),Z A WS1+376/5.
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Then for all My > 0 there exists 0 < 6,(Mo) <6/2, independent of T (5 and T
defined in Proposition 2.3), such that the following holds:

If
IV 2 + 1V Nl 5.6 <01 and  [Ix°]5,52 <1,
with y° > 0 and div H* = div[(1 + y°)E®] = 0, then

M, (1) = max (1 + )| U)|l, ¢ < Mo forall t € [0,T].

0<t<t

Proof. Using the variable v = (D, H, ), the first two equations of the system (1.1)
become

(i) 0,D—curlH=0,

. (3.1
(i) 0,H + curl D = curl(xE).

We recall that, by these equations we get div D = div H = 0 for all 1 > 0.
We denote by /(1) = (0,curl (xE)). Let u= (D, H) be the solution of (3.1).
Using the representation of Duhamel, we can write u as

u(t) = e™u® + J’ e(’_T>Af'(r) dr:=wu(t) +uw(t), 0<t<T, (3.2)
0

where A is the operator defined by

A_< 0 C“ﬂ>. (3.3)

—curl O

In order to obtain [|U||, ¢, we must first estimate u in the norm || || ;. We need to
use the following two lemmas.

Lemma 3.2 (emigroup estimate). Let U = (D, H) the solution of the linear
problem

atU - A(_],
O(r—0)= 0", (3.4)
div D’ = divH® = 0,

where A is the operator defined in (3.3), and let 1 < p <2 <qg< w0, 1/p+1/qg=1,

N, >3(1—2/q). Then there is a constant ¢ = c(p) such that for all U° € WNoP,
and for all t > 0:

_ i
1T, < c(1+0 T,
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Proof. L* — L? estimate: From a classical result on Maxwell equations we have
q
(D, H)|l, = [|(D°, H)|l,, 1>0. (3.5)

L* — W3! estimate: Using the divergence free condition we transform easily
(3.4) in the linear wave equation

U[[ - AU - 0,
U’ = (D" H), (3.6)
0,U(t=0)=U"' = (curl H’, —curl D?).

So each component U; (fori=1,...,6) of U can be written in the form

where the operator w(7) is defined by (see [20], p. 15)

(W([)g) (x) :==u(t,x),

with @ the solution of

Thus, by the Kirchoff representation formula of w(z) (see for instance [20],
Theorem 2.1), we get fori =1,...,6,

1T < e+ 07 (1T M15,1 + [1T]1],) - forall 20,
and using (3.6), we obtain
1T(@)]],, <e(l+6)" Ty, foralls>0. (3.7)

So by interpolation (see for example [20], Theorem A.10) we obtain from (3.5) and
(3.7)

1T, <1+ Ty, ,  forallt=0. O

Now we have to estimate the nonlinear term, /() = (0, curl(xE)).
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Lemma 3.3. There exists ¢ > 0 such that

1/ (O)l,53,6/5 < c[||)(0||3‘0’3/2e_’MS1(t) + e+ + t)74/3Ms‘21([))|U‘so,2(t)]'

Proof. Using the special form of f we obtain

1/ (Dlls,43,6/5 = llcurl (XE) 5, 43,65
< c|lxElly 14,675

<c Y IVGE)s

0< || <s51+4

<c Y IVAVEE|s.

0< |o|+[B] <51 +4

We have the three following cases to consider:

e First let |a| > 51 + 1. Then |f]| < s1.
This implies that

IV %VPEllgs < V232 VPElls.

By (2.8), we have
t
IVll32 < IV I3 067" + JO IVAEL) I3 pe"™ " dv, (3:8)

with

IVUNEDsp<e Y IVVEVIE|y,
0< B+ <ol
< ¢l 6l > < 1+ 1) 770y, (]| ELy, o (0):
Then, plugging this in (3.8) and using (2.13), we obtain in this case

I/ (Ols,43.6/5
< Iy, 306" (140 M (1) + (1 + 0P ME(WE| L0 (3.9)

e Secondly let |f| > s; + 1. Then |«| < s; and

IV*%VPEllgs < Vx5 I VPEL.



404 M. Kanso

In the same way as in the first case we have

IV

t
3 < IV llze™ +J IVl ds
0

and
IV 5 < e(1+ 07 M (1),
We remark that, by (2.10), we have

|| VO”sl,oc + || VOHSI‘G/S << 17
so, by interpolating
HVO(X()”?; < 13
we then get

1 (Dlya3.65 < cle™ + (L0 M D] E],, 5(0). (3.10)

e Finally let x| <s; and |f] <s;. Here we can proceed exactly as in two
previous cases.

From (3.9) and (3.10) we end the proof of Lemma 5. O

End of the proof of Proposition 3.1. According to Lemma 3.2, let ¢ =6
(p =6/5). Then by (3.2) u; satisfies
1-2/6 0”

e (1)],,6 < (140~ Ju

< c(1+ 0" NUO, 5.5 < 1+, (3.11)

$143,6/5

and, using Lemma 3.3, u, satisfies

t
lx(®)l, ¢ < cjoa b= ) PO s dr

s0.32€ My (r)|UJg »(r)

XO

t
< cj (14t—r) "2
0

+ CJ(;(I Fe—r) e+ (14 )P M2 (MU, (). (3.12)
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According to Proposition 2.3, we get

lu2(D)1ls,.6

t
< cjou ) RO M ()

t
+ cjoa 0= 1) e a0, o (1 + M2 (r)) exp{eM? (r)} dr

t
+ cJ (L+t—r)2PA+r) M (M)[°ll5,.2 (1 + M2 (r)) exp{e M2 (r)} dr
0
t

<el+ t>*2/"’51Mﬁ<r>J (=) e (14 0% ar
0

+e(1+ 07270, (1 4+ M2 (1)) exp{eM? (1)}

: Jt(l =) P+ 0P (e + (L4 1) P ME(r) dr.
0

Now we remark that there exists & < oo such that
t t
J (1+t—r)Pe(1+ 0 dr + J A+t—rPA+0?P0+)*Par <k
0 0
Thus
_ 2

la(0)l, 6 < (1402201 (My, (1) + (1+ M2 (1)) exp{eM2(1)}).
Combining (3.11) and (3.12) we get the following estimate for u:
(D), ¢ < c(1+ 1) + e(1+0) 26 (M, (1) + (1 + M2 (1)) exp{eM? (1)}).
This implies that

max (1 +r)2/3

0<t<t

<6 (14 M, (6)+ (1+ M2(1)) expfeM2(1)}), 0<i<T. (3.13)

[u(®)ly,,6

Writing
E=D—yE,
and using the same technique as in the estimate (2.16), we obtain

2/3 2/3
max (1+ 0| E(D)]|, ¢ < ¢ max (1+2)*[D(D)ll, o-

0<t<t
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This leads to

2/3 2/3
max (142 | U@l ¢ = My, (1) < e max (1+ 0 Ju(D)]], 6,

0<t<t
and by (3.13) we get
M, (1) < 01 (1+ My (6) + (1 + M2(0)) exp{eM2(1)}), O0<t<T. (3.14)
We intoduce x = M, () and the real-valued function ¢ defined for x > 0 by
p(x) :=co(1+x+(1+ xz)ze"xz) — X
We have
p(0) =cd, >0, ¢'(0)=co — 1.

So ¢ has a first positive zero at xy, with ¢’(xp) < 0 if J; is sufficiently small
(01 =01(c)) and

0= p(x0) = 01 (14 x0 + (1 + x3)%e%) — xqp.
This implies that

P) 0 <X
1= —
(14 x0+ (1 +x3)%e%) ¢

)

whence (without loss of generality we can take k < ¢)
M, (0) = [Juolly, ¢ < Klluolly, » < kb1 < xo. (3.15)
The relation (3.14) implies that
o(M, (1) =0, 0<:<T,
which together with (3.15) and a continuous dependence argument leads to
M, (t)<x, 0<t<T. (3.16)
Then we conclude the proof with

My :=xo = x0(61). O
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4. Proof of Theorem 1.2

The results in Proposition 2.3 and Proposition 3.1 easily lead to the following a
priori bound:

Proposition 4.1. Let V = (E,H,y) be the maximal small solution of the initial
value problem (1.1)—(1.3) on [0,T*). Then there exist a constant ¢ > 1, an
integer s =1 and § > O sufficiently small such that if | V||, + VO]l ¢/5 <0/2,
20l 32 <6/2, with ° = 0 and div H® = div[(1 + z°)E°] = 0, then

IVOll,2 < el VOl S0+ M) exp{cM}]  forall t < 0,7,
where T is defined by
T = max{T < T* such that [V1],.2(T) <0}
Remark 4.2. We can write, without loss of generality,
[V (D)l < Mol VOH&2 for all 7 € [0, T7. (4.1)
Remark 4.3. The condition

||X0||s,3/2 <9/2

is automatically satisfied by interpolation between W*2 and W*%/5 spaces.
Therefore we have an a priori estimate in the W*2-norm of the solution of

(1.1)-(1.3).
We suppose that 7% < +oo. Then from the definition of 7" we get
V]2 (T) = 6. (4.2)
Choosing
M() = 1/C,

and using (4.1) we obtain
V(D52 < eMod < %5 for all 7 € [0, T7,

which is contradictory with (4.2). So 7% = +o0.
In particular, we obtain

V(D)5 < M  forall0<t< oo,



408 M. Kanso

and with (2.11) and Proposition 3.1,
U@, <c(1+ 0P M (1) < eMo(1+ 0727 forall0 <1< oo.

We prove that y satisfies this last estimate using (2.8) and the fact that ¢™" <
(1+ 1)~ for £ > 0. This concludes the proof of Theorem 1.2.

Remark 4.4. In the one and two dimensional cases of the Kerr and Kerr—Debye
models, this method of proof is not applicable. Indeed, we do not have enough
decay in the linear wave equation to ensure the convergence of integrals.
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