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Scarf lattice ideals

Hossein Sabzrou*

(Communicated by Bernd Sturmfels)

Abstract. This paper deals with the Scarf property of lattice ideals initiated by Peeva and
Sturmfels [10], [11]. We will present a Scarf lattice ideal that is neither generic nor of codi-
mension 2 and show that this property gives rise to several algebraic and combinatorial
properties. In particular, we prove that for monomial curves, this property coincides with
the notion of genericity, and that certain Scarf lattice ideals can have certain Scarf initial
ideals.
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1. Introduction

Let B ¼ ðbijÞ be an integer n�m-matrix of rank m. Let L be the lattice spanned

in Zn by the columns of B. Let IL be the lattice ideal in S ¼ k½x� :¼ k½x1; . . . ; xn�,
k a field, generated by all pure binomials xuþ � xu� where u ¼ uþ � u� runs over

L. If L is saturated, that is, the Abelian group Zn=L is torsion-free, then IL is

prime and there exists an integer d � n-matrix A ¼ ðaijÞ of rank dð¼ n�mÞ such
that L ¼ kerZ A. In this case, IL is called the toric ideal of A and is denoted by IA.

Throughout this paper, we assume that the matrix B is homogeneous with

respect to a strictly positive integer vector w ¼ ðw1; . . . ;wnÞ, that is, the following

equivalent conditions are satisfied (cf. [12], Proposition 2.1):

• wB ¼ 0.

• LBNn ¼ f0g, i.e., L contains no non-negative vectors.

• For each u a Rn, the body Pu :¼ fv a Rm : Bva ug is a polytope.

• Both rings S and S=IL are Z-graded by degðxiÞ ¼ wi.
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Here we recall some definitions and results from [11]. The rings S and S=IL are

graded by the abelian group G :¼ Zn=L via degðxuÞ :¼ uþ L. When L is satu-

rated, then GUZd , and we can equivalently define degðxuÞ :¼ Au. Notice that

our assumption on the matrix B allows us to choose the matrix A non-negative

integer. The set of all monomials of a fixed degree in G is called a fiber, and

Nn=L is the set of all fibers. The fiber containing a particular monomial xu can

be identified with the lattice points in the polytope Pu via the map v 7! u� Bv.

Two polytopes Pu and Pu 0 are lattice translates of each other if u� u 0 a L. Dis-

regarding lattice equivalence, we set PC :¼ Pu for all monomials xu in a fibre C.

This polytope is called the polytope of the fiber C a Nn=L. A fiber C is called

basic if gcdðCÞ ¼ 1 and gcdðCnfxugÞA 1 for all xu a C where gcdðCÞ denotes

the greatest common divisor of all monomials in C. If C is a basic fiber and xu

a monomial in C, then the monomials in Cnfxug divided by their greatest com-

mon divisor form a basic fiber. For any finite subset JHL, let maxðJÞ be the

vector which is coordinatewise maximum of J. Let

DL :¼ fJHL : maxðJÞAmaxðJ 0Þ for all finite subsets J 0 HL other than Jg�

DL is an infinite simplicial complex of dimension at most n� 1 which has L as its

vertex set. Since the lattice L acts naturally on DL via ðu; JÞ 7! uþ J, we can form

the finite simplicial complex

D0
L :¼ fJHLnf0g j J :¼ JA f0g a DLg;

modulo the action by L. The simplicial complex D0
L is called the linked Scarf

complex. We have the one to one correspondence J 7! CJ :¼ fxmaxðJÞ�u : u a Jg
between the faces of D0

L and the set of all basic fibers, and that aJ ¼aCJ � 1.

The G-graded module FL :¼ 0
J AD0

L
Sð�eCJ

Þ equipped with the di¤erential given

in [11] is the algebraic Scarf complex where each basis element eCJ
is in homolog-

ical degreeaJ and G-degree CJ , i.e., G-degree of a monomial in CJ . In general

the complex FL is contained in the minimal free resolution of S=IL over S, and if

the equality occurs we say that IL is a Scarf lattice ideal.

It follows from the definition that the minimal free resolution of a Scarf lattice

ideal IL is a monomial resolution which does not depend on the characteristic of

the field k, and the quotient
P

J AD0
L
ð�1ÞaJ � xmaxðJÞ=

Qn
i¼1ð1� xiÞ is the G-graded

Hilbert series of S=IL, where we identify all monomials in a fiber.

All codimension 1, non-complete intersection codimension 2 and generic lat-

tice ideals, i.e., lattice ideals generated by binomials with full supports, are the

well-known examples of Scarf lattice ideals [10], [11]. However, as we will see in

Section 5, we can have other types of Scarf lattice ideals.

This paper is organized as follows. In Section 2, we will describe minimal gen-

erators of a Scarf lattice ideal (cf. Theorem 2.2). We will see that a Scarf lattice
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ideal defining a monomial curve must be generic (cf. Theorem 2.4). In Section 3,

we will see that the initial ideals of a Scarf lattice ideal may also be minimally

resolved by a certain kind of Scarf complexes (cf. Theorem 3.1). We will also

present a proof of an unpublished result due to Yanagawa which states that all

initial monomial ideals of a non-complete intersection codimension 2 lattice ideal

are Scarf (cf. Corollary 3.2). In Section 4, we will see that for a Scarf lattice ideal

being Cohen–Macaulay (resp. being Gorenstein) is equivalent to satisfying S2

condition (resp. being principal) (cf. Theorem 4.2 and Theorem 4.3). Moreover,

if a Scarf lattice ideal is k-Buchsbaum (k > 0), then the length of its minimal free

resolution is maximal (cf. Theorem 4.4). We will also see that like the generic lat-

tice ideals, Cohen–Macaulay codimension 2 lattice ideals have always a Cohen–

Macaulay initial ideal (cf. Corollary 4.10). In Section 5, we will provide some

examples of Scarf lattice ideals. In particular, we will present a Scarf lattice ideal

that is neither generic nor of codimension 2.

The author would like to thank Professor Kohji Yanagawa for his contri-

bution, guidance and encouragement at the starting point of this work. He also

thanks the referees for their valuable comments.

2. Minimal generators

For the homogeneous matrix B, the set of neighbors of the origin (cf. [2]) and its

Hilbert basis (cf. [10]) are defined by

NðBÞ :¼ fu a Zm j uA 0; intPðBuÞþ BZm ¼ jg;

and

HðBÞ :¼ fu a Zm j uA 0;aðPðBuÞþ BZmÞ ¼ 2g;

respectively. Clearly HðBÞJNðBÞ and both of them are 0-symmetric. Therefore

we can identify antipodal pairs in them. Since B is homogeneous, NðBÞA j
(cf. [2]). However, HðBÞ may or may not be empty.

Lemma 2.1. If for each u a NðBÞ we haveasuppðBuÞ ¼ n, then HðBÞ ¼ NðBÞ.

Proof. Let u a NðBÞ. By definition of PðBuÞþ , each facet of PðBuÞþ goes either from

the origin or from u. Suppose the contrary that PðBuÞþ has a lattice point v0 other

than 0 and u. We consider two following cases:

Case 1: v0 is on the facet passing from the origin. This case is not possible

because there exists a Gale vector bi, i.e., a row vector of the matrix B, such that

bi � v0 ¼ 0 which is a contradiction by asuppðBv0Þ ¼ n (notice that if u a NðBÞ
and v a PðBuÞþ BZm, then v a NðBÞ).
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Case 2: v0 is on the facet passing from u. In this case, we consider the polytope

PðBuÞþ � u ¼ PðBuÞ� ¼ PðBð�uÞÞþ . Then v0 � u is on the facet of PðBð�uÞÞþ passing

from the origin. Thus, there exists a Gale vector bi such that bi � ðv0 � uÞ ¼ 0.

Since v0 � u a NðBÞ, this contradictsasupp
�
Bðv0 � uÞ

�
¼ n. r

Theorem 2.2. Let B be an integer n�m-matrix of rank m which is homogeneous

with respect to a strictly positive integer vector w ¼ ðw1; . . . ;wnÞ. Consider the fol-

lowing statements:

(1) u a HðBÞ.
(2) fxðBuÞþ ; xðBuÞ�g is a 2-element fiber.

(3) f0;Bug a DL.

(4) fBug a D0
L.

(5) xðBuÞþ � xðBuÞ� is an indispensable binomial.

(6) u a NðBÞ.

Then the first five statements are equivalent and they imply ð6Þ. Moreover, if B is

generic, then all of them are equivalent. Consequently, if IL is a Scarf lattice ideal,

then it has a unique minimal set of G-homogeneous binomial generators which corre-

spond to the elements of HðBÞ.

Proof. (1) , (2) , (3): The implications follow from correspondences v 7! u� Bv

and J 7! CJ mentioned in Section 1, respectively.

(3) , (4): Follows from the definition of D0
L.

(2) ) (5): By definition of an indispensable binomial, we have to show that

every system of binomial generators of IL contains xðBuÞþ � xðBuÞ� up to a sign.

This follows from the fact that the Betti number corresponding to the fiber

fxðBuÞþ ; xðBuÞ�g is equal to 1 (cf. [10], Lemma 2.1).

(5) ) (2): Let G be an arbitrary set of minimal generators of IL. Since

xðBuÞþ � xðBuÞ� is an indispensable binomial, then we may assume that xðBuÞþ �
xðBuÞ� a G. Suppose, on the contrary, that fxðBuÞþ ; xðBuÞ�g is not a 2-element

fiber. Then it has a monomial xa other than xðBuÞþ and xðBuÞ� . We can replace

xðBuÞþ � xðBuÞ� a G by two binomials xðBuÞþ � xa and xa � xðBuÞ� and reduce the

new set of generators to the minimal one by eliminating a superfluous element.

This contradicts that the binomial xðBuÞþ � xðBuÞ� is indispensable.

(1) ) (6): Follows from the definitions of HðBÞ and NðBÞ.
If B is generic, then Lemma 2.1 implies the result. r

Remark 2.3. The Scarf property of IL does not imply that NðBÞ ¼ HðBÞ. To see

this, suppose that

BT ¼ 1 �1 1 �1 2 �2

0 1 �1 0 1 �1

� �
:
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Since the Gale diagram intersects each of the four open quadrants, by [10],

Proposition 4.1, IL is not Cohen–Macaulay and therefore is a Scarf lattice ideal.

We can see easily that u ¼ ð1; 1Þ a NðBÞ, but u B HðBÞ.

Theorem 2.4. If B is of size n� ðn� 1Þ, then IL is a Scarf lattice ideal if and only

if it is generic. In particular, the result is true for the defining ideal of a monomial

curve in An.

Proof. If IL is generic, the result is obvious. Conversely, suppose that IL is a Scarf

lattice ideal and let u a NðBÞ. By relaxing (cf. the proof of [8], Proposition 2.6.1,

to see what ‘‘relaxing’’ means) the facets of the simplex PðBuÞþ (if it is necessary),

we can find a maximal lattice point free polytope Q which has u as one of its lat-

tice points. Here we recall that a polytope is said to be maximal lattice point free

if it contains no lattice points in its interior, but every facet of it contains at least

one lattice point in its relative interior. It is easy to show that all homogeneous

matrices of size n� ðn� 1Þ are Cohen–Macaulay. Therefore the matrix B is

Cohen–Macaulay, and we can apply [12], Theorem 3.2, to see that Q corresponds

to a basic fiber of the degree of a highest minimal syzygy of S=IL over S. Since IL
is a Scarf lattice ideal, Q has exactly n lattice points, i.e., each facet of Q has a

unique lattice point. This implies that 0A u is not on the facet passed from the

origin and consequently asuppðBuÞ ¼ n. Since u is an arbitrary element of

NðBÞ, we get the result. r

Remark 2.5. An important problem in combinatorial commutative algebra is to

characterize face numbers (resp. total Betti numbers) of Scarf complex D0
L (resp.

of Scarf lattice ideal IL). In the non-complete intersection codimension 2 case,

we know by [10] that f ðD0
LÞ ¼

�
f0; 2ð f0 � 2Þ; f0 � 3

�
. For a generic ðnþ 1Þ � n-

matrix B, Björner [3] proved that the h-vector hðD0
LÞ ¼ ðh0; . . . ; hnÞ satisfies the

equalities h0 ¼ hn�1 ¼ 1, hn ¼ 0 and hi ¼ hn�1�i for all 0a ia
�
n�1
2

�
. Then using

this observation he also showed that f0; f1; . . . ; fbðn�3Þ=2c completely determine

f ðD0
LÞ. Here, by Theorem 2.4, the problem is solved in the case of Scarf mono-

mial curves.

3. Initial ideals

Let M be a monomial ideal in S minimally generated by monomials xu1 ; . . . ; xur

and

DM :¼ fJJ fu1; . . . ; urg jmaxðJÞAmaxðJ 0Þ
for all J 0 J fu1; . . . ; urg other than Jg:
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Recall from [9], Chapter 6 that DM is a simplicial complex and the Nn-graded

module FM :¼ 0
J AD Sð�eJÞ equipped with the di¤erential given in [9], Chapter

6 is the monomial Scarf complex where each basis element eJ is in the homological

degreeaJ and Nn-degree maxðJÞ a Nn. In general, the complex FM is contained

in the minimal free resolution of S=M over S, and if the equality occurs we say

that M is a Scarf monomial ideal.

Theorem 3.1. Let IL be an xi-full Scarf lattice ideal, i.e., the variable xi appears in

each of its minimal binomial generators. Then the reverse lexicographic initial ideal

of IL with xi smallest is a Scarf monomial ideal.

Proof. We may assume that G ¼ fxuþ
1 � xu�

1 ; . . . ; xuþr � xu�r g is the unique mini-

mal set of G-homogeneous binomial generators of IL so that xi divides each

monomial xu�i for i ¼ 1; . . . ; r. Then by [10], Lemma 8.4, M ¼ 3xuþ
1 ; . . . ; xuþr 4 is

the reverse lexicographic initial ideal of IL with xi smallest. It is easy to show

that IL þ 3xi4 ¼ M þ 3xi4. Therefore using the properties of tensor product, we

can show that k½xi�nk ðS=IL þ 3xi4ÞUS=M. Since xi is a nonzero divisor on

S=IL, it follows that the minimal free resolution of S=M over S is obtained from

the minimal free resolution of S=IL by setting xi ¼ 0 in the matrices of di¤erential.

If we prove that the face poset of DM is isomorphic to the face poset of D0
L, we

get the result. To this end, we note that since the Scarf complex FM is con-

tained in the minimal free resolution of S=M over S, the above argument

shows that f ðD0
LÞb f ðDMÞ, where the inequality is component-wise comparison

of f -vectors. The vertex sets of D0
L and DM are V :¼ fu1; . . . ; urg and Vþ :¼

fuþ1 ; . . . ; uþr g, respectively. If J a D0
L, then maxðJÞAmaxð �J 0J 0Þ for all J 0 JV

other than J, or equivalently maxðJþÞAmaxðJ 0þÞ for all J 0þ JVþ other than

Jþ, which is also equivalent to Jþ a DM . So we have the inclusion D0
L ,! DM

defined by J 7! Jþ. In view of f ðD0
LÞb f ðDMÞ this gives us the result. r

Corollary 3.2 (Yanagawa). All initial monomial ideals of a non-complete intersec-

tion codimension 2 lattice ideal are Scarf monomial ideals.

Proof. Let IL be a non-complete intersection codimension 2 lattice ideal and M

be an initial ideal of IL with respect to any term order represented by a generic

weight vector l. Following Peeva and Sturmfels [10], Algorithm 8.2, we construct

a lattice ideal I~LL in S½t� ¼ k½x1; . . . ; xn; t� which is the flat deformation of IL with

respect to l and whose image under substitution t ¼ 1 and t ¼ 0 are IL and M.

Now the ideal I~LL is a t-full Scarf lattice ideal. Thus by Theorem 3.1, we get the

result. r

Example 3.3. The codimension 2 lattice ideal IL ¼ 3x1x3 � x2
2 ; x1x4 � x2x3; x2x4

� x2
34HS ¼ k½x1; x2; x3; x4� is the defining ideal of the twisted cubic curve

ðs; tÞ 7! ðs3; s2t; st2; t3Þ in P3 and is x2-full Scarf lattice ideal. It has eight distinct
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initial ideals [13], and seven of them are not generic (in the sense of [9], Defini-

tion 6.5). If l denotes the degree reverse lexicographic order with x2 smallest, then

M ¼ inlðILÞ ¼ 3x1x3; x1x4; x2
34, which is not generic. Setting u1 ¼ ð1;�2; 1; 0Þ,

u2 ¼ ð1;�1;�1; 1Þ, u3 ¼ ð0;�1; 2;�1Þ, we see that the facets of DM are fuþ1 ; uþ2 g
and fuþ1 ; uþ3 g. By Theorem 3.1, the facets of D0

L are fu1; u2g and fu1; u3g and M

and IL are resolved minimally by DM and D0
L, respectively.

4. Some algebraic properties

By Serre’s criterion, a Noetherian ring is normal if and only if it satisfies Serre’s

conditions S2 and R1. On the other hand, Hochster’s theorem states that every

normal toric ring is Cohen–Macaulay. The S2 condition alone is not su‰cient

for Cohen–Macaulayness as an example due to Hochster (cf. [4], Exercise 6.2.7)

shows. However, Goto, Watanabe and Suzuki [4], Exercise 6.2.8 (c), proved that

for simplicial toric ring being Cohen–Macaulay is equivalent to satisfying S2

condition. In this section, we will present a homological proof for a result due to

Yanagawa which states that for Scarf toric rings, being Cohen–Macaulay is equiv-

alent to satisfying S2 condition. The combinatorially inclined reader may refer to

[8], Proposition 2.6.1, for a very nice combinatorial proof of this result.

Motivated by Hochster’s theorem, Sturmfels asked and conjectured the finer

question that if a toric ideal is Cohen–Macaulay, does it have a Cohen–Macaulay

initial ideal? In [8], Matusevich showed that for a Cohen–Macaulay generic toric

ideal IA, the initial ideals in�eiðIAÞ (i ¼ 1; . . . ; n), are Cohen–Macaulay. In this

section, we will prove a similar result for Cohen–Macaulay codimension 2 toric

ideals.

Lemma 4.1. Let IL be a Scarf lattice ideal and p ¼ proj-dimSðS=ILÞ ¼ dimD0
L þ 1.

Then the Krull dimension of ExtpSðS=IL;SÞ is equal to n� p or n� p� 1.

Proof. By [4], Corollary 3.5.11, we have dimExtpSðS=IL;SÞa n� p. Let e a ðFLÞp
be a generator of FL in homological degree p corresponding to a highest minimal

syzygy of S=IL over S, and let e� a F �
L be its dual. Since e� is a cocycle of F �

L, we

have the corresponding element e� a ExtpSðS=IL;SÞ. Setting J ¼ annðe�Þ, we see

that S=JUS � e� HExtpSðS=IL;SÞ. By the construction of FL we have qðeÞ ¼Ppþ1
i¼1 mi � ei, where each mi is a nonconstant monomial and each ei is a generator

of FL in homological degree p� 1. It is easy to show that J 0 :¼ 3m1; . . . ;mpþ14
I J. Since by Krull’s theorem we have dimS=J 0b n� p� 1, we conclude that

dimExtpSðS=IL;SÞb n� p� 1. r

Theorem 4.2 (Yanagawa). Let IL be a Scarf lattice ideal. Then S=IL satisfies

Serre’s condition S2 if and only if it is Cohen–Macaulay.
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Proof. The ‘‘if ’’ part is obvious. To prove the ‘‘only if ’’ part, suppose, on the

contrary, that S=IL is not Cohen–Macaulay. Then p :¼ proj-dimSðS=ILÞ >
codimðILÞ. Since S=IL satisfies Serre’s condition S2, we have dimExt jSðS=IL;SÞa
n� j � 2 for all j > codimðILÞ by [15], Lemma 2.9 (3). In particular, we have

dimExtpSðS=IL;SÞa n� p� 2, which contradicts Lemma 4.1. r

Theorem 4.3. Let IL be a Scarf lattice ideal. Then S=IL is Gorenstein if and only

if IL is a principal ideal.

Proof. If IL is principal, the result is obvious. Conversely, let S=IL be Gorenstein

and p ¼ proj-dimSðS=ILÞ. We have ExtpSðS=IL;SÞUS bp=im qT
p where qp : ðFLÞp

¼ S bp ! ðFLÞp�1 ¼ S bp�1 is the last di¤erential in the minimal free resolution FL.

Since S=IL is Gorenstein, we have ExtpSðS=IL;SÞUS=IL and bp ¼ 1. If pb 2,

then the structure of di¤erential of FL implies that im qT
p is a monomial ideal,

which is a contradiction. r

We say that S=IL is k-Buchsbaum (kb 0 is an integer) if mkH i
mðS=ILÞ ¼ 0 for

iAdimS=IL. Notice that 0-Buchsbaum is Cohen–Macaulay.

Theorem 4.4. Let IL be a Scarf lattice ideal and p ¼ proj-dimSðS=ILÞ. If S=IL is

k-Buchsbaum ( for some k > 0), then p ¼ n� 1.

Proof. We assume that mkH n�p
m ðS=ILÞ ¼ 0 for some integer k > 0. By the local

duality theorem, we have ExtpSðS=IL;SÞUHomS

�
Hn�p

m ðS=ILÞ;E
�
, where E is the

injective hull of the residue field S=m. Thus, mkH n�p
m ðS=ILÞ ¼ 0 if and only

if mk ExtpSðS=IL;SÞ ¼ 0. Hence, ExtpSðS=IL;SÞ is of finite length. Let e, J and J 0

be as in the proof of Lemma 4.1. We see that S=J and S=J 0 are of finite length.

Thus, dimS=J 0 ¼ 0, which implies that dimS ¼ pþ 1, i.e., p ¼ n� 1. r

Remark 4.5. Consider a codimension 2 lattice ideal IL H k½x1; . . . ; xn�. If IL is

k-Buchsbaum (k > 0), then by Theorem 4.4 and [10], Theorem 2.3, we have

p ¼ n� 1a 3. Since in a polynomial ring whose number of variablesa 3, IL is

Cohen–Macaulay, we conclude that k-Buchsbaumness (k > 0) for IL implies that

p ¼ n� 1 ¼ 3.

In the remainder of this section we will assume that the ideal IL is a toric ideal

of an integer d � n-matrix A. Each column ai of the matrix A is identified with

a monomial t ai in the polynomial ring k½t� :¼ k½t1; . . . ; td �. Notice that S=IL ¼
k½NA� ¼ k½t a1 ; . . . ; t an �H k½t�.

Theorem 4.6. If IL is a Scarf toric ideal, then the Scarf toric ring S=IL is a Golod

ring.
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Proof. This was proved for generic toric ideals in [6]. Exactly the same proof

remains valid for Scarf lattice ideals. The key ingredient is that the Koszul homol-

ogy TorS� ðS=IL; kÞ can be computed by the minimal free resolution of S=IL which

is the algebraic Scarf complex, and this property of generic toric ideals holds for

Scarf toric ideals by their definition as well. r

Remark 4.7. For a Scarf toric ring S=IL, Golodness also implies being Goren-

stein is equivalent to being hypersurface, i.e., IL is a principal ideal (cf. [1], Sec-

tion 5.2).

Theorem 4.8. The toric ring R ¼ S=IL satisfies Serre’s condition S2 if and only if

the ideal IL þ 3xi4 is free of embedded primes for i ¼ 1; . . . ; n.

Proof. Cf. [8], Proposition 2.5.2. r

Theorem 4.9. Let IL be an xi-full Scarf toric ideal. Then IL is Cohen–Macaulay if

and only if in�eiðILÞ is Cohen–Macaulay.

Proof. First, we assume that IL is Cohen–Macaulay. Using the equality IL þ 3xi4
¼ in�eiðILÞ þ 3xi4, we can see that the ideal in�eiðILÞ is generated by the set

ðIL þ 3xi4ÞBk½x1; . . . ; xi�1; xiþ1; . . . ; xn� in S. Therefore, the ideal in�eiðILÞ is free
of embedded primes. Now the result follows from [14], Proposition 2.9, and the

well-known fact (cf. [7]) that each initial ideal of a toric ideal is equidimensional,

i.e., all of its minimal primes have the same height. The ‘‘only if ’’ part follows

from the inequalities codimðILÞaproj-dimSðS=ILÞaproj-dimS

�
S=in�eiðILÞ

�
. r

Corollary 4.10. Let IL be either a codimension 2 or a generic toric ideal. If IL is

Cohen–Macaulay, then it admits a Cohen–Macaulay initial ideal.

Proof. If IL is generic, then Theorem 4.9 implies that in�eiðILÞ is Cohen–Macaulay

for i ¼ 1; . . . ; n. For a codimension 2 lattice ideal IL, we consider the two follow-

ing cases:

Case 1: IL is not complete intersection. In this case the ideal IL is Scarf. If the

ideal IL is xi-full, then by Theorem 4.9, we get the result. Otherwise, by [10], Prop-

osition 8.3, there exists a reverse lexicographic term order0with xi smallest such

that the reduced Gröbner basis of IL with respect to0 is a minimal generating set.

We assume that o a Nn represents the term order0. Using [10], Algorithm 8.2,

we construct a lattice ideal I~LL in S½t� ¼ k½x1; . . . ; xn; t� which is a flat deformation

of IL with respect to o. According to the proof of [10], Proposition 8.3, the ideal I~LL
has the same number of minimal generators as IL. Therefore by [10], Proposi-

tion 4.1, the ideal I~LL is Cohen–Macaulay. Let00 be a reverse lexicographic term
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order on monomials in S½t� ¼ k½x1; . . . ; xn; t� with t smallest. Then by Theorem

4.9, in00 ðI~LLÞ is Cohen–Macaulay in S½t� and so

S=in0ðILÞUS½t�=
�
in00 ðI~LLÞ; t

�
is Cohen–Macaulay.

Case 2: IL is complete intersection. Let0 be as in the previous case. Then

M ¼ in0ðILÞ is complete intersection and so Cohen–Macaulay. r

5. Examples

In this section we will present several examples of Scarf lattice ideals which were

obtained by exhaustive and heuristic search using CoCoA [5]. In particular, we

will give an example of Scarf lattice ideals which is neither codimension 2 nor

generic.

Example 5.1 (Scarf monomial curves in A4, A5). If we assume that M is the set

of all monomial curves Ca;b; c;d : t 7! ðta; tb; tc; tdÞ in A4 with 1a a < b < c <

da 100, then exhaustive search by CoCoA shows that we have 5500 Scarf

monomial curves of seven types (in terms of f -vector of D0
L) as in Table 1. Fur-

thermore, by heuristic search using CoCoA we found that the monomial curve

t 7! ðt205; t210; t240; t246; t329Þ in A5 is Scarf.

Example 5.2 (A Scarf lattice ideal that is neither generic nor of codimension

2). Using CoCoA and by exhaustive search, we find that the matrix

BT ¼
1 �1 �2 �1 3

0 1 1 �3 1

0 �2 4 �1 �1

2
64

3
75

Table 1. Scarf monomial curves in M.

f -vector of D0
L A typical example Numbers in M

ð7; 12; 6Þ C20; 24; 25; 31 4701

ð8; 14; 7Þ C36; 42; 47; 49 386

ð9; 16; 8Þ C35; 45; 48; 56 289

ð10; 18; 9Þ C39; 50; 51; 58 77

ð11; 20; 10Þ C51; 59; 72; 74 21

ð12; 22; 11Þ C56; 77; 79; 88 25

ð14; 26; 13Þ C79; 82; 89; 95 1
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defines the lattice ideal

IL ¼ 3x2x
2
3x4 � x1x

3
5 ; x

3
4 � x2x3x5; x

3
2x

2
4 � x1x

2
3x

2
5 ; x

4
2 � x1x3x4x5;

x2
2x

3
3 � x1x

2
4x

2
5 ; x

4
3 � x2

2x4x5; x
3
3x

2
4 � x3

2x
2
54HS ¼ k½x1; . . . ; x5�;

which has codimension 3 and is not generic. We will show that the ideal IL is

Scarf. The linked Scarf complex D0
L can be depicted as in Figure 1.

Here each vector ui corresponds to the minimal generator xuþ
i � xu�i in the

ordering appeared in the above list of minimal generators, for instance u1 ¼
ð�1; 1; 2; 1;�3Þ. The one to one correspondence J 7! CJ :¼ fxmaxðJÞ�u j u a Jg
between the facets of D0

L and the set of all highest basic fibers are listed as follows:

fu1; u2; u3g 7! fx3
2x

2
3x

3
4 ; x1x

2
2x

2
4x

3
5 ; x

4
2x

3
3x5; x1x

4
3x4x

2
5g;

fu1; u3; u4g 7! fx4
2x

2
3x

2
4 ; x1x

3
2x4x

3
5 ; x1x2x

4
3x

2
5 ; x1x

3
3x

3
4x5g;

fu1; u4; u5g 7! fx4
2x

3
3x4; x1x

3
2x3x

3
5 ; x1x

4
3x

2
4x5; x1x

2
2x

3
4x

2
5g;

fu1; u5; u6g 7! fx2
2x

4
3x4; x1x2x

2
3x

3
5 ; x1x3x

3
4x

2
5 ; x

4
2x

2
4x5g;

fu1; u6; u7g 7! fx2x4
3x

2
4 ; x1x

2
3x4x

3
5 ; x

3
2x

3
4x5; x

4
2x3x

2
5g;

fu1; u7; u2g 7! fx2x3
3x

3
4 ; x1x3x

2
4x

3
5 ; x

2
2x

4
3x5; x

4
2x4x

2
5g:

Using this correspondences, one can completely write down the Scarf chain com-

plex FL associated to D0
L. It is of the form

0 ! S6 ! S12 ! S7 ! S ! 0:

Comparing this complex with minimal free resolution of S=IL over S, we see that

the ideal IL is Scarf.

Figure 1. The linked Scarf complex D0
L.
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