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Two results on the rank partition of a matroid
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Abstract. The rank partition of a matroid M is the maximum dominance ordered partition
r such that the ground set of M can be partitioned into independent sets of sizes r1; r2; . . . .
We prove two structural results on this partition, both motivated by representation theory
of the general linear group. The first result characterizes the rank partition in terms of
standard Young tableaux with a certain matroidal property. The second result says that
the rank partition interacts nicely with certain polytopal decompositions of the matroid
polytope of M. We also describe the representation theoretical motivation of these results.
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1. Introduction and statement of results

The rank partition of a matroid M is an isomorphism invariant that describes

when a matroid can be partitioned into independent sets of various sizes. It

was defined by J. A. Dias da Silva in 1990 [5], and is related to matroid par-

titioning theorems of Edmonds [6], and Edmonds–Fulkerson [7]. The goal

of this paper is to prove two new results on the rank partition of a general

matroid.

Given a matroid M with ground set ½n�, its rank partition is the sequence

rðMÞ ¼ ðr1; r2; . . . ; rlÞ defined by the condition that for every positive integer

ka l, the partial sum
Pk

i¼1 ri is the size of the largest union of k independent

sets from M.

Our main results on the rank partition are motivated by algebraic reformula-

tions that have easy proofs for matroids realizable over a field k of characteristic

zero. We indicate here how these results arise, giving the details in Section 5.
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Let v ¼ ðv1; . . . ; vnÞ be a configuration of vectors realizing M in a vector space V

over k, a field of characteristic zero. Define,

GðvÞ :¼ spankfgv1 n gv2 n � � �n gvn : g a GLðVÞg:

It is shown in [3] how this module is related to the rank partition of M: GðvÞ con-
tains an irreducible representation of highest weight l t if and only if la rðMÞ
(dominance order). This is essentially equivalent to results of Dias da Silva and

Gamas on vanishing of symmetrized tensors [5].

By considering the projections of GðvÞ to a fixed irreducible representation

of GLðVÞ, we were able to formulate and prove the following combinatorial

result.

Theorem 1. Let M be a loopless matroid with ground set ½n�. There is a standard

tableau of shape l whose rows index independent sets of M if and only if la rðMÞ
in dominance order.

The matroid basis polytope of M is the convex hull PðMÞ in Rn of the charac-

teristic vectors of the bases of M. Polyhedral subdivisions of PðMÞ sometimes

arise by taking one parameter family of projective configurations vðtÞ and taking

the limit as t ! 0, as first observed by Kapranov [9]. Studying how G
�
vðtÞ

�

behaves in the limit t ! 0, we were able to formulate and prove the following

combinatorial result.

Theorem 2. Suppose that M is a loopless matroid and

PðMÞ ¼ 6
i

PðMiÞ

is a polyhedral subdivision. Then there is an index j such that rðMÞ ¼ rðMjÞ.
Further, for any tableau whose rows index independent sets of M, there is an index

j such that the rows of this tableau index independent sets of Mj.

After giving preliminary results on matroids, rank partitions and matroid

polytopes, we give combinatorial proofs of these results. We conclude by showing

how these results are obtained from GðvÞ using the algebraic methods suggested

above.

2. Preliminaries

Here we collect several definitions and basic results about matroids, rank parti-

tions and matroid polytopes.
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2.1. Basic matroid definitions. We always take M to be a matroid with ground

set ½n� :¼ f1; 2; . . . ; ng. That is, M is a simplicial complex on ½n� whose collection

of faces IðMÞ, called independent sets, satisfy the exchange axiom: For any pair

of independent sets I ; I 0 a IðMÞ with jI j < jI 0j, there is some e a I 0 � I such that

I A feg a IðMÞ.
The bases of M are its maximal independent sets, all of which have the same

cardinality rðMÞ. We denote the set of bases of M by BðMÞ. The rank of an

arbitrary subset AH ½n� is the size of a maximal independent set contained in A,

and this is denoted rMðAÞ.
Examples of matroids abound, the most prominent example coming from lin-

ear algebra: If v1; v2; . . . ; vn are vectors in a vector space V , then the independent

sets of the associated matroid are those I H ½n� such that fvi : i a Ig is a linearly

independent list of vectors. Such matroids are said to be realizable over the field

of V .

2.2. The rank partition. For each matroid M we define a sequence of numbers

rðMÞ ¼ ðr1; r2; . . . ; rk; . . .Þ by the condition that, for each kb 1,

r1 þ � � � þ rk ¼ max
�
jJj : J ¼ 6

k

j¼1

Ij; Ij a IðMÞ
�
:

This sequence is called the rank partition of M. The choice of terminology is

justified in the following result of Dias da Silva.

Proposition 3 (Dias da Silva [5]). For every matroid M, rðMÞ is a partition, i.e.,

r1b r2b � � � .

If every singleton is independent in M, then we say that M is loopless. A

moment’s thought reveals that when M is loopless, rðMÞ is a partition of n, i.e.,

r1 þ r2 þ � � � ¼ n.

Example 4. The definition of the rank partition is valid for any simplicial com-

plex D. The following example (due originally to Seth Sullivant) shows that, in

general, the rank partition of D may fail to be a partition. Let D be the simplicial

complex on ½6� with facets

f1; 2; 3g; f1; 4g; f2; 5g; f3; 6g:

Then rðDÞ ¼ ð3; 1; 2Þ, which is not a partition.

The union of two matroids M and N, both with ground set ½n�, is defined to be

the matroid MAN whose independent sets are unions I A J of independent sets

413Two results on the rank partition of a matroid



I a IðMÞ and J a IðNÞ. We denote the k-fold union of M with itself by M ðkÞ.
The rank partition of M is at once seen to be capture the ranks of the unions

M;M ð2Þ;M ð3Þ; . . . .
Let M and N be matroids with common ground set ½n�. A weak map of

matroids is a bijection w : ½n� ! ½n� such that wIðNÞH IðMÞ. We denote the

existence of a weak map by writing M ! N and say that N is a weak image of

M. Clearly, whenever M ! N the rank of N is at most the rank of M. There

is a more general notion of weak map that allows some elements of M to ‘‘be

mapped to zero’’, however we will not use this notion here.

Proposition 5. If M and N are loopless matroids on ½n� and M ! N is a weak

map, then rðNÞa rðMÞ in dominance order.

Recall that the dominance order on partition is defined so that lam if and only

if jlj ¼ jmj and for every kb 1,
Pk

i¼1 li a
Pk

i¼1 mi.

Proof. If M ! N is a weak map, then for every kb 1 there are weak maps

M ðkÞ ! N ðkÞ:

The resulting inequality of the ranks of these matroids is exactly the statement that

rðNÞa rðMÞ. r

Example 6. Consider the matroid M obtained from U2;3 by doing a parallel

extension once to each element.

This matroid has rank partition ð2; 2; 2Þ. Consider the matroid N obtained from

U2;2 by doing a parallel extension twice.

Then rðNÞ ¼ ð2; 2; 2Þ. Both M and N are weak order minimal with rank partition

ð2; 2; 2Þ. The fibers of the poset map

(Matroids, weak order) ! (Partitions, dominance order),

do not seem to be easy to describe.

A tableau is a filling of the numbers 1; . . . ; n into the Young diagram of a

partition l ‘ n (drawn in English notation), with each number used exactly once.

A tableau whose rows index independent set of M is said to be M-independent. A

tableau is said to be standard if the numbers in each row and column form an
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increasing sequence. The following result connects M-independent tableaux with

the rank partition.

Theorem 7 (Dias da Silva). There is an M-independent tableau of shape l if and

only if la rðMÞ in dominance order.

The content of Theorem 1 is to strengthen the above result by adding a stan-

dardness constraint to the tableaux.

2.3. Matroid polytopes. If M is a matroid on ½n� with bases BðMÞ, then the

matroid basis polytope of M is defined to be the convex hull of the pointsP
i AB ei a Rn, where B ranges over all elements of BðMÞ. Denote the matroid

base polytope of M by PðMÞ. This polytope lives in the hyperplane of Rn where

the sum of the coordinates is rðMÞ. Each base B a BðMÞ gives a vertex
P

i AB ei of

PðMÞ.
There is the related notion of the independence polytope of M, denoted QðMÞ,

which is the convex hull of the incidence vectors of independent sets of M. The

matroid base polytope is the face of QðMÞ determined by maximizing the sum of

the coordinates. For all I a IðMÞ,
P

i A I ei is a vertex of QðMÞ.
Here we give a simple interpretation of the independence polytope of the k-fold

union of M with itself, that does not appear to be recorded in the literature.

Proposition 8. For any matroid M,

QðM ðkÞÞ ¼ kQðMÞB ½0; 1�n:

Proof. We see that kQðMÞ is the Minkowski sum of QðMÞ with itself k times.

The containment ‘‘H’’ follows since every vertex of QðM ðkÞÞ is in the intersection.

For the reverse containment, we work with an inequality description of the inde-

pendence polytope. The rank function of the union is known to be

rM ðkÞ ðAÞ ¼ min
BHA

�
jA� Bj þ k � rMðBÞ

�
:

An inequality description of PðM ðkÞÞ is thus given by xi b 0 for all i and for every

flag of subsets BHAH ½n�,

X

i AA

xi a jA� Bj þ k � rMðBÞ:

We need to check whether these inequalities are valid on kQðMÞB ½0; 1�n. Cer-

tainly each of the inequalities xi b 0 is valid. Pick x a kQðMÞB ½0; 1�n and subsets
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BHAH ½n�. Then

X

i AA

xi=k ¼
X

i AA�B

xi=k þ
X

j AB

xj=k

a
X

i AA�B

1=k þ
X

j AB

xj=k ¼ jA� Bj=k þ
X

j AB

xj=k

a jA� Bj=k þ rMðBÞ:

The first inequality follows since x a ½0; 1�n and the second inequality follows since

x=k a QðMÞ. Multiplying both sides by k proves that kQðMÞB ½0; 1�n HQðM ðkÞÞ.
r

As noted by a referee, the analogous statement holds for an arbitrary union of

matroids:

QðM1A � � �AMlÞ ¼
�
QðM1Þ þ � � � þQðMlÞ

�
B ½0; 1�n:

3. Proof of Theorem 1

The idea of the proof of Theorem 1 is as follows: Take an M-independent tableau

of shape l, and if it is not standard apply some local moves to its entries that pre-

serve the M-independence and bring the tableau closer to being standard. When

M is a uniform matroid, this can be done with the usual straightening algorithm of

the representation theory of Sn and GLrðCÞ. The goal of this section is to show,

when interpreted properly, the straightening algorithm works for all matroids.

We will need the alternating basis exchange property of matroids, proved by

Kung.

Lemma 9 (Kung [10]). Let A ¼ A1 t A2 and B ¼ B1 t B2 be bases of a matroid M

such that A1BB2 ¼ j and A1AB2 is dependent. Then, there are non-empty

subsets CHA1 and DHB2 such that A� CAD and B�DAC are both bases

of M.

To remember the slightly odd numbering of the sets being exchanged here, we

draw the mnemonic

B1 B2

A1 A2

and remember that the straightening algorithm for tableaux exchanges elements

of A1 with elements of B2 and does nothing to B1 and A2.
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Corollary 10. Let A ¼ A1 t A2 and B ¼ B1 t B2 be independent sets of a matroid

M such that A1BB2 ¼ j, jBjb jAj and jA1AB2j ¼ jBj þ 1.

Then there are non-empty subsets CHA1 and DHB2 of the same size such that

A� CAD and B�DAC are both independent in M.

In the proof we use the truncation of M to a given rank sa rðMÞ. This is

the matroid whose bases are those independent sets of M of size s. We will

also ‘‘add generic elements’’ to M without increasing its rank. That is, we will

add new elements to M that are not contained in a circuit of size less than

rðMÞ þ 1.

Proof. We may assume that B is base of M. If not, we can truncate M to the rank

of B, so that B is a base. Since the truncation of M is a weak image of M, the

result will follow by proving the truncated version.

Assume that B is a base of M. By adding generic elements with large labels

to A2 (without increasing the rank of M), we obtain a set A 0
2 IA2 such that

A1AA 0
2 is a base of M too. Apply the alternating basis exchange lemma to

A1 t A 0
2 and B1 t B2, noting that A1AB2 is dependent as it has cardinality larger

than the rank of M. r

Proof of Theorem 1. We use the straightening algorithm that arises in the repre-

sentation theory of the symmetric group, see [11], Chapter 2.

Consider the violation to T being a standard tableau that occurs in the south-

most row and east-most column of this row, say cell ð j; kÞ of T . That is, rows

j � 1 and j of T look as follows

x1 < x2 < � � � < xk < xkþ1 < � � � � � � � � � < xr;

y1 < y2 < � � � < yk < ykþ1 < � � � < ys;

where yk < xk and xj < yj for k < ja s. Let B denote the elements in row j � 1

of T and A denote the elements in row j of T . We partition B and A as

B ¼ B1AB2; B1 :¼ fx1; x2; . . . ; xk�1g; B2 :¼ fxk; . . . ; xrg;
A ¼ A1AA2; A1 :¼ fy1; y2; . . . ; ykg; A2 :¼ fykþ1; . . . ; ysg:

Since jA1AB2j ¼ jBj þ 1, we apply the corollary to the alternating basis ex-

change lemma to conclude that there are non-trivial subsets CHA1 and DHB2

such that A� CAD and B�DAC are independent sets in M. Let S be the

tableau obtained by exchanging the numbers in C with D, and then sorting the

rows of the result. It follows from the dominance lemma for row tabloids [11],

Chapter 2, that the south-east most violation in S of being standard is north-west
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of ð j; kÞ. We conclude that S is closer to being a standard tableau than T , hence

the theorem is proved by induction. r

Example 11. The number of M-independent standard tableaux of shape l de-

pends on the ordering of the ground set ofM. This can be seen in rank two already

by taking M to be U2;2 and adding a parallel element. Suppose that the elements

of U2;2 are labeled 1 and 2, and 3 is parallel to 1. The only M-independent stan-

dard filling is

1 2

3
:

If we relabel so that 2 and 3 are taken to be parallel in M then both of

1 2

3
;

1 3

2

are M-independent.

At least for hook shapes1 there is an explanation for the disparity seen here:

The number of standard tableaux of a fixed hook shape whose rows are non-

broken circuit sets of M does not depend on an order of the ground set. This is

proved in [2]. In the second case above, the first row of 1 3

2
is a broken circuit.

4. A valuation and the proof of Theorem 2

Recall that a function f from the set of labeled matroids (say with labels ½n�) to an

abelian group is said to be valuative if, for any matroid basis polytope decompo-

sition PðMÞ ¼ 6
i
PðMiÞ,

f ðMÞ ¼
X

i

f ðMiÞ �
X

i< j

f ðMi; jÞ þ
X

i< j<k

f ðMi; j;kÞ � � � � ;

where Mi1;...; ij is the matroid whose bases are those bases common to Mi1 ; . . . ;Mij .

Derksen and Fink [8] have given a complete description of the module of matroid

invariants that behave valuatively.

We will write A� for a set partition fA1; . . . ;Alg of ½n�, i.e., ½n� ¼ A1 t � � � t Al

and Ai A j.

1A hook is a partition with at most one part not equal to 1.
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Lemma 12. Consider a matroid M on ½n� with rank function rM. Define the formal

sum

HðMÞ ¼
X

A�

A�;

where the sum ranges over set partitions A� of ½n� and Ai is independent for all i.

Then H is a valuative invariant of matroids.

Proof. We follow the idea of Ardila, Fink and Rincon [1]. It is su‰cient to prove

that the function fA� ðMÞ, that is 1 if every Ai is independent in M and 0 otherwise,

is a valuative invariant. Indeed,

HðMÞ ¼
X

A�

fA�ðMÞðA1; . . . ;AlÞ;

the sum over all set partitions of ½n�.
Define PS; s ¼ fx a ½0; 1�n :

P
j AS xj b sg along with its characteristic function

wS; s, which is 1 on PS; s and 0 otherwise. The statement PðMÞB7
i
PAi ; jAi jA j is

equivalent to fA� ðMÞ ¼ 1. It follows that

fA� ¼
Yl

j¼1

wAj ; jAj j

and this is a valuation by a result of Ardila, Fink and Rincon [1]. r

We can now prove the second of the main theorems.

Proof of Theorem 2. Suppose that PðMÞ ¼ 6l

j¼1
PðMjÞ is a matroid base poly-

tope decomposition. Then there is a set partition A� of ½n� into independent sets of

sizes r1; r2; . . . , where rðMÞ ¼ ðr1; r2; . . .Þ.
Thus, there is some j such that HðMjÞ contains the term A�, which proves the

second part of the theorem. It follows that rðMjÞb rðMÞ. However, rðMjÞa
rðMÞ, since Mj is a weak image of M. We conclude that rðMÞ ¼ rðMjÞ. r

Corollary 13. Let M be a loopless matroid on ½n�. Suppose that for every weak

map M ! N we have rðMÞA rðNÞ. There are at most finitely many realizations

of M over a given field, up to projective equivalence.

Proof. This follows from a result of La¤orgue, who proves that matroids whose

polytopes have no matroid basis polytope decompositions have finitely many

projectively distinct realizations. r
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Example 14. Let MðK4Þ be the matroid of the complete graph on four vertices,

K4. This matroid is realizable over any field. Since K4 can be covered by two dis-

joint spanning trees, r
�
MðK4Þ

�
¼ ð3; 3Þ. Any rank 3 matroid that is a weak image

of MðK4Þ is a direct sum of a rank two matroid and a rank one matroid, hence

MðK4Þ has at most finitely projective realizations over any field. In fact, MðK4Þ
is projectively unique.

Example 15. Alfonsin and Chatelain [4] introduced the notion of a matroid

subdivision. This was a decomposition of the bases of matroid M as a union

BðMÞ ¼ 6
i
BðMiÞ where Mi AM for all i, and for all i, j, the intersections

BðMiÞBBðM jÞ, were the bases of a matroid.

Let M have bases BðMÞ ¼ f13; 14; 23; 24; 34g. Define M1 to have bases

BðM1Þ ¼ f13; 34; 14g and M2 to have bases BðM2Þ ¼ f23; 34; 24g. The intersec-

tion is f34g, which is the collection of bases of a matroid. However, the rank

partitions of these matroids are

rðMÞ ¼ ð2; 2Þ; rðM1Þ ¼ rðM2Þ ¼ ð2; 1; 1Þ:

Hence the convexity implicit in the statement of Theorem 2 is essential in making

the statement true.

5. Representation theory motivation

The results above were inspired by the representation theory and geometry that

surrounds certain general linear group orbits in ðkrÞnn and torus orbit closures in

Grassmannians.

Let v ¼ ðv1; v2; . . . ; vnÞ be a realization of M by vectors vi a V , where V ¼ kr is

the r-dimensional vector space over a field k of characteristic zero. The object that

motivated Theorems 1 and 2 is the k-linear span of the set of tensors

fgv1 n gv2 n � � �n gvn : g a GLðVÞgHVnn:

We denote this span by GðvÞ; this is a module for the diagonal action of the gen-

eral linear group GLðVÞ on the tensor product. The combinatorics of M is subtly

tied to the irreducible decomposition of the GLðVÞ-module GðvÞ.
Recall that the irreducible representations of GLðVÞ that occur in Vnn are

indexed by partitions l that fit in a dimðVÞ-by-n box. Thus, to describe the

isomorphism type of GðvÞ it is su‰cient give a list of partitions along with their

multiplicities in GðvÞ.
A Young symmetrizer is a particular element of the symmetric group algebra

kSn (whose precise definition we do not need here) that acts (up to a scalar) as a
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GLðVÞ-module projection of Vnn onto an irreducible submodule. Young sym-

metrizers are indexed by tableaux, and if cT is the symmetrizer associated to the

tableau T , then the image of cT on Vnn is either zero or the irreducible GLðVÞ-
module associated to the shape of T . We write the action of the symmetric group

Sn on Vnn, by permuting tensor factors, on the right. In this way, Vnn is a left

GLðVÞ-module and a right kSn-module.

See [3], Theorem 2, for the following result.

Theorem 16. The image of a Young symmetrizer cT on GðvÞ is not zero if and only

if the columns of T index independent sets of the matroid M.

It is a consequence of Schur–Weyl duality that the Young symmetrizers of

standard tableaux of shape l span the space of GLðVÞ-module homomorphisms

Vnn ! (the irreducible GLðVÞ-module of shape l). Thus, we obtain the follow-

ing result.

Proposition 17. The multiplicity of l in GðvÞ is positive if and only if there is a

standard M-independent tableaux of shape l.

The irreducible decomposition of GðvÞ is far from having a complete descrip-

tion in terms of the combinatorics of M. However, we o¤er a result on how GðvÞ
changes as v varies along a one-parameter curve of configurations.

Here it is appropriate to work in the field of Laurent series K ¼ kððtÞÞ, which is

a field with a valuation n : K ! Z, sending atn þ (higher degree terms) 7! n, for

aA 0. Let R ¼ k½½t�� be the ring of elements with non-negative valuation. The

field k is an R-module, where t acts by zero on k, and the functor knR � can be

thought of as ‘‘evaluation at zero.’’ Let vðtÞ ¼
�
v1ðtÞ; . . . ; vnðtÞ

�
be a collection of

elements vi a Rr.

Then G
�
vðtÞ

�
is a representation of GLðKnk VÞ.

Lemma 18. The modules G
�
vðtÞ

�
and

knR

�
G
�
vðtÞ

�
BRnn

�

determine each other in the sense that the multiplicity of a partition l in one is equal

to the multiplicity of l in the other.

Proof. Take a complete set of highest weight vectors of weight l for G
�
vðtÞ

�
. The

intersection of the K-vector space these generate with ðRrÞnn is a free R-module,

since ðRrÞnn is free and R is a torsion free principal ideal domain. Extend a basis

of this submodule to a basis of ðRrÞnn and let A be the change of basis matrix

between this basis and the standard basis of ðRrÞnn. The determinant of A is

invertible over R which means it is invertible at t ¼ 0. Hence the basis for the
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submodule remains independent at t ¼ 0. This proves that the multiplicity of l in

knR

�
G
�
vðtÞ

�
BRnn

�
is at least the multiplicity of l in G

�
vðtÞ

�
, and since the mul-

tiplicity of l could only go down upon setting t ¼ 0, we are done. r

We now sketch how Theorem 2 arose. To do this, we project the full

rank configurations of the GLrðKÞ � ðK�Þn-orbit closure (Zariski closure) of�
v1ðtÞ; . . . ; vnðtÞ

�
into the Grassmannian of r planes in n-space. Viewing this

configuration as an r-by-n matrix, the projection map is taking the row span.

The image is a torus orbit closure that is known to break into finitely many torus

orbit closures at t ¼ 0, as described by Kapranov [9] or Speyer [12]. Further, if

x1; . . . ; xl are points of the Grassmannian belonging to the interiors of these torus

orbit closures, then we can find configurations of n-vectors, v1; . . . ; vl such that vi

projects to xi and

knR

�
G
�
vðtÞ

�
BRnn

�
¼

X

i

GðviÞHVnn:

By [12], Proposition 12.2, of Speyer,

P
�
M

�
vðtÞ

��
¼ 6

l

i

P
�
MðviÞ

�

is a matroid polytope subdivision. Since the rank partition r of M
�
vðtÞ

�
appears

with positive multiplicity on the left in the equality,

knR

�
G
�
vðtÞ

�
BRnn

�
¼

X

i

GðviÞ

there is some i such that the r appears with positive multiplicity in GðviÞ. This

means that r
�
MðviÞ

�
¼ r.
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