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Abstract. Let A denote the class of all aperiodic monoids with central idempotents. A
description of all Cross subvarieties of A, based on identities that they satisfy and monoids
that they cannot contain, is given. The two limit subvarieties of A, published by Marcel
Jackson in 2005, turn out to be the only finitely generated, almost Cross subvarieties of A.
It follows that it is decidable in quartic time if a finite monoid in A generates a Cross
variety.
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1. Introduction

A finitely based, finitely generated variety of algebras that contains finitely many

subvarieties is called a Cross variety. It is long established that finite algebras from

the following classes generate Cross varieties: groups [17], associative rings [11],

[14], Lie algebras [1], lattices [10], [15], idempotent semigroups [2], [4], [5], and

commutative monoids [6]. However, this result does not hold in general. For

instance, Murskiı̆’s algebra, a groupoid with only three elements, generates a

non-finitely based variety [16] that contains continuum many subvarieties [18].

Recall that a semigroup is aperiodic if all its subgroups are trivial. The present

article is concerned with the class A of all aperiodic monoids with central

idempotents. This class constitutes a significant source of examples in the study

of the finite basis problem for semigroups and monoids. In 1969, Perkins [19]

published the first two examples of non-finitely based, finite semigroups: the well-

known Brandt monoid B1
2 of order six and a certain monoid P25 in A of order 25.

More recent work of Jackson [7], Sapir [22], and their collaboration [9] shed more

light on the finite basis problem for monoids in A and demonstrated how non-

finitely based monoids in A can be located. In 2005, Jackson proved that the class



A contains two finitely generated limit subvarieties J1 and J2 ([8], Proposition 5.1);

recall that a limit variety is a variety that is minimal with respect to being non-

finitely based. Not only are J1 and J2 the first published examples of limit vari-

eties of monoids, they remain the only known explicit examples up to the present.

Jackson asked if the class A contains any other finitely generated limit subvarieties

([8], Question 1), and this question was recently answered by Lee [12].

Theorem 1. The varieties J1 and J2 are the only finitely generated limit subvarieties

of A.

Consequently, any finitely generated, non-finitely based subvariety of A must

contain either J1 or J2.

Now when Jackson proved that the varieties J1 and J2 are limit varieties, he

also showed that they contain finitely many subvarieties that are all finitely gener-

ated ([8], Section 5). It follows that the varieties J1 and J2 are minimal with re-

spect to being non-Cross, or almost Cross. In the presence of Theorem 1, it is nat-

ural to ask if J1 and J2 are the only finitely generated, almost Cross subvarieties of

A. It turns out that the results of Jackson [8] and Lee [12] that established Theo-

rem 1 can easily be extended to not only answer this question a‰rmatively, but

also provide a description of all Cross subvarieties of A. This description is de-

tailed enough to enable one to decide in quartic time when a finite monoid from

A generates a Cross variety. These results are somewhat unexpected since descrip-

tions of Cross varieties in other large classes of algebras are not very common.

Apart from the classes mentioned at the beginning of this section, there are appar-

ently only two other known large classes with well-described Cross varieties: vari-

eties of certain commutative lattice ordered semigroups [20] and subvarieties of the

variety generated by aperiodic 0-simple semigroups [13].

2. Preliminaries

For the remainder of this article, all varieties are varieties of monoids. Refer to

the monograph of Burris and Sankappanavar [3] for more information on vari-

eties and universal algebra.

Let X� denote the free monoid over a countably infinite alphabet X. Elements

of X� are called words. For any set W of words, let SðWÞ denote the Rees

quotient monoid of X� over the ideal of all words that are not factors of any

word in W. Equivalently, SðWÞ can be treated as the monoid that consists of

every factor of every word in W, together with a zero element 0, with binary

operation � given by

w � w 0 ¼ ww 0 if ww 0 is a factor of some word in W;

0 otherwise:

�
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Example 2 (Perkins [19], Section 3). The non-finitely based monoid P25 intro-

duced in Section 1 is Sðfxyzyx; xzyxy; xyxy; x2zgÞ.

Example 3 (Jackson [8], Proposition 5.1). The varieties J1 and J2 are generated

by the monoids SðfxhxytygÞ and Sðfxhytxy; xyhxtygÞ, respectively.

A nonempty word w is an isoterm for a variety V if V does not satisfy any non-

trivial identity of the form wQw 0. For any variety V , let isoðVÞ denote the set of
all isoterms for V .

Lemma 4 (Jackson [8], Lemma 3.3). Suppose that W is any set of words and that

V is any variety. Then SðWÞ a V if and only if WJ isoðVÞ.

Lemma 5. Suppose that V is any subvariety of A such that J1; J2 UV . Then V

satisfies one of the following identity systems:

xhxytyQxhyxty; xhytxyQxhytyx; ð1aÞ
xhxytyQxhyxty; xyhxtyQ yxhxty: ð1bÞ

Proof. If xyx B isoðVÞ, then the variety V satisfies either xyxQx2y or xyxQ yx2

([8], Lemma 4.1), whence V satisfies either (1a) or (1b). Therefore it remains to

consider the case when xyx a isoðVÞ. By Example 3, Lemma 4, and the assump-

tion that J1; J2 UV , either xhxyty; xhytxy B isoðVÞ or xhxyty; xyhxty B isoðVÞ. It

is then routinely shown that the variety V satisfies either (1a) or (1b). r

Lemma 6 (Straubing [23]). Suppose that V is any finitely generated subvariety of

A. Then there exists some nb 1 such that V satisfies the identity system

xnþ1Qxn; xnyQ yxn; xny1y2 . . . ynQ y1xy2x . . . ynx: ð2nÞ

3. Main results

For each nb 1, let Zn denote the variety defined by (1a) and (2n). Let Z d
n denote

the variety that is dual to Zn. It is easily seen that Z d
n is defined by (1b) and (2n).

Proposition 7. Every variety Zn is Cross.

Proof. The finitely based variety Zn is locally finite ([21], Proposition 3.1). Since

Zn contains finitely many subvarieties ([12], Corollary 4.13), it is finitely generated

and hence also Cross. r

Theorem 8. The following statements on any subvariety V of A are equivalent:
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(a) V is Cross;

(b) V is finitely generated and J1; J2 UV;

(c) V satisfies either fð1aÞ; ð2nÞg or fð1bÞ; ð2nÞg for some nb 1.

Proof. The implication (a) ) (b) holds since the varietal property of being Cross

is inherited by subvarieties. The implication (b) ) (c) follows from Lemmas 5

and 6, while the implication (c) ) (a) follows from Proposition 7. r

Corollary 9. The varieties J1 and J2 are the only finitely generated, almost Cross

subvarieties of A.

Corollary 10. The subvarieties of every Zn and Z d
n are precisely all Cross subvari-

eties of A.

Theorem 11. It is decidable in quartic time if a finite monoid in A generates a Cross

variety.

Proof. Let M be any finite monoid in A. By Lemma 6, the variety V generated

by M satisfies (2n) for some nb 1. By Theorem 8, the variety V is Cross if and

only if it satisfies either (1a) or (1b). The result then follows since the identities in

(1a) and (1b) involve four distinct letters. r
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