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Abstract. We define the notion of strong projective limit of Banach Lie algebroids. We
study the associated structures of Fréchet bundles and the compatibility with the differ-
ent morphisms. This kind of structures seems to be a convenient framework for various
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1. Introduction

The notion of Lie algebroid (algébroide de Lie in the French terminology) was first
introduced by J. Pradines in [36] in relation with Lie groupoids. Lie algebroids are
generalizations of both Lie algebras and tangent vector bundles. This notion is an
adapted framework for different problems one can meet

e in geometric mechanics where a theory of Lagrangian and Hamiltonian sys-
tems can be developed on such structures (cf. [43], [9], [8]);

e in symplectic geometry in view of the symplectization of Poisson manifolds
and applications to quantization ([18], [42]);

e in geometry where classifying Lie algebroids ([11]) are associated to finite type
G-structures, this notion of G-structure includes most of the classical geomet-
ric structures ([28]);

e in optimal control theory where one can write a version of the Pontryagin
Maximum Principle (cf. [27]).

*The author is grateful to Professor Fernand Pelletier for helpful comments and suggestions.
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In finite dimensions, there exists a bijection

— between Lie algebroid structures on an anchored bundle and Poisson structures
on its dual,

— between Lie algebroid structures and Lie differentials (cf. [26], [9]).

This situation is studied in [7] for almost Lie algebroids under appropriated
conditions.

In this paper, we consider Lie algebroids modeled on Fréchet manifolds. Sev-
eral difficulties arise when one considers manifolds modeled on Fréchet spaces [F:
the lack of a general solvability theory of differential equations (cf. [16]) and the
pathological structure of GI(F) (which does not admit a reasonable Lie group
structure). These problems have a solution on certain projective limits of spaces:
on one hand, existence of integral curves of vector fields, autoparallel curves with
respect to linear connections (cf. [4]), horizontal global section for connection on
particular spaces (cf. [3]); on the other hand, existence of a generalized Lie group
Hy(F) as structural group for the tangent bundle (cf. [14]).

The study of projective (or inverse) limits of different types of spaces (mani-
folds, bundles, . ..) was the subject of investigations by many authors:

— projective limits of tangent bundles of a finite dimensional manifold (cf. [15])
and more generally projective limits of fiber bundles (cf. [5]), a classical example
being the geometry of infinite jets bundle as developed for example in [38];

— projective limits of Banach Lie groups studied in [13] linked with the ILB-
groups ([31], [39]);

— universal laminated surfaces studied by Nag and Sullivan (cf. [29]) used in
mathematical physics.

In this paper, we are interested in the notion of projective limits of Lie alge-
broids which can be endowed with Fréchet structures. One can find in [19] the
notion of variational Lie algebroid, used in PDE, where the vector fields are re-
placed by sections of a bundle over a projective limite of finite jets.

The main result of this paper (Theorem 5.1) asserts that the strong projective
limit (lim E;, lim 7;, lim M;, lim p;) of Banach Lie algebroids (; is a vector bundle
over the base M; and p; : E; — TM; is the anchor) is a Fréchet Lie algebroid.

This paper is organized as follows. In part 2 we recall the notions of manifolds
and fiber bundles modeled on convenient vector spaces as defined by Kriegel and
Michor in ([20]) and different objects of such spaces. The strong projective limit of
Banach fiber bundles is developed in [5] and one gets a generalization of the results
obtained on the tangent bundle by Galanis in [15]; this result is recalled in part 3.
The notion of Banach Lie algebroid is presented in part 4 where one can find the
notions of Lie and differential derivatives and morphisms (cf. [2]). In part 5 the
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projective limit of this kind of algebroids is endowed with a structure of Fréchet
space. In part 6 we give examples of such objects, where E; = TM; and the anchor
is a Nijenhuis tensor (framework adapted to the infinite-dimensional harmonic
oscillator) and E; is a particular sub-bundle of 7M;:

e for finite dimensional ranks, one can have the notion of diffiety,

e the inverse limit Banach (or Hilbert) setting corresponds to infinite-
dimensional ranks and is an interesting framework for diverse problems in
quantum field theory.

In the last part we study the projective limits of semisprays and admissible
curves.

2. Infinite dimensional manifolds modeled on convenient vector spaces

Classical differential calculus is perfectly adapted to finite dimensional or even
Banach manifolds (cf. [22]).

On the other hand, convenient analysis, developed in [20], provides a satisfac-
tory solution of the question how to do analysis on a large class of locally convex
spaces and in particular on projective limits of Banach manifolds or fiber bundles.

We recall the main results given in the book [20] or in the paper [21], §2.

2.1. Smooth mappings on convenient vector spaces. In order to endow some
locally convex vector spaces (l.c.v.s.) E, which will be assumed Hausdorff, with a
differentiable structure we first use the notion of smooth curves ¢ : R — E, which
poses no problems.

We denote the space C* (R, E) by @; the set of bounded (resp. continuous)
linear functionals is denoted by E’ (resp. E*).

We then have the following characterization: a subset B of E is bounded iff
[(B) is bounded for any / € E*.

Definition 2.1. A locally convex vector space is said to be convenient if the follow-
ing condition is satisfied:

if c: R — Eisacurve such that /o c: R — R is smooth for all / € E*, then c is
smooth.

The ¢™-topology on a l.c.v.s. is the final topology with respect to all smooth
curves R — E. Its open sets will be called ¢*-open.

For Fréchet spaces, this topology coincides with the given locally convex
topology.

Let £ and F be two convenient spaces and let U < E be a ¢*-open. A map
f:E>U— F is said to be smooth if foce C”(R,F) for any ¢ € C*(R, U).
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Moreover, cf. [21], 2.3 (5), the space C* (U, F) may be endowed with a structure
of convenient vector space.

2.2. Differentiable manifolds

2.2.1. Structure of differentiable manifold. A chart (U, ¢) on a set M is a bijec-
tion ¢ : U — ¢(U) < E from a subset U of M on a ¢*-open subset of a conve-
nient vector space E.

A family (U, ¢,),., of charts is called a C*-atlas if all chart changings
Pup = Py © (goﬁ)_l 293Uy 0 Ug) — 9,(U, 0 Ug) are smooth.

Two C*-atlases are called equivalent if their union is again a C*-atlas.

The set M equipped with an equivalence class of C*-atlases is called
C*-manifold.

A subset W of the manifold M is open iff for all « € 4 the subset ¢, (U, N W)
of E is ¢™-open.

The so defined topology is both the final topology with respect to all inverses of
chart mapping in one atlas and the final one with respect to all smooth curves.

From now on we assume that manifolds are smoothly Hausdorff, i.e., the
smooth functions in C* (M, R) separate points in M.

2.2.2. Smooth mappings. A mapping /' : M — N between two C*-manifolds is
called smooth if for all x € M and for all chart (¥,y) on N such that f(x) e V
there exists a chart (U,p) on M such that x € U, f(U) = ¥V and such that
Yo fogp!is smooth.

This is the case iff f o ¢ is smooth for each smooth curve ¢ : R — M.

We will denote by # the ring of smooth functions from M to R.

2.2.3. Vector bundles. Let p: F — M be a smooth mapping between differen-
tiable manifolds F and M.

A vector bundle chart on (F, p, M) is a pair (U, ®) where U is an open subset
in M and where @ is a fiber respecting diffeomorphism as in the diagram

Wy _* ., Ux
N A
U

where V' is a fixed real convenient vector space, called the standard fiber.

Two charts (U, @) et (Us, @) are called compatible if @, o (®,)”" (x,v) may
be written as (x, @1 »(x)(v)) where @ > : Uy n Uy — GL(V). The mapping @ >
is smooth in L(V') where L(V) is the space of bounded linear mapping (and then
smooth).

Fu=p v
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A vector bundle atlas (U,,®,),., for p: F — M is a set of pairwise com-
patible charts (U,, ®,) where (U,), ., is an open cover of the manifold M. The
notion of equivalent atlases is obvious.

A smooth vector bundle p : F — M corresponds to manifolds F (total space),
M (base) and a smooth mapping p : F — M (projection) equipped with an equiv-
alence class of vector bundle atlases.

A section s of p:F — M is a smooth mapping s: M — F such that
pos=Idy.

The space F of all sections of F can be endowed with a structure of convenient
vector space.

2.2.4. Vector fields. A (kinematic) tangent vector at x € M is an equivalence
class for the following equivalence relation

C1 (0) = C2(0) =X € U

¢1 ~ ¢y if and only if {(q)oq)( ) ( 062)( )

where (U, ¢) is a chart on M.

The set of all tangent vectors at the different points of the manifold, endowed
with a structure of fiber bundle, is called the (kinematic) tangent bundle and de-
noted by TM.

A (kinematic) vector field is a smooth section of TM. We denote the space of
(kinematic) vector fields by X¥(M). Tt can be equipped with a structure of conve-
nient vector space.

For smooth regular manifolds ([20], 14), the bracket of two vector fields X and
Y can be defined if M is assumed to be a ¢™-open set of a convenient vector space
E by

where X and Y are seen as smooth mappings from M to E.

2.2.5. Tangent mapping. Let M and N be two differentiable manifolds and let
f: M — N be a smooth mapping. f induces a linear mapping 7f : TxM —
Ty M which maps a tangent vector to a curve ¢ where ¢(0) = x to the tangent
vector to the curve f o c at f(x).

The mapping 7f : TM — TN is then smooth and called tangent mapping of f.

2.2.6. Cotangent bundle. A (kinematic) 1-form at x € M is a bounded linear
functional on the convenient vector space T M (so it belongs to 7. M'). The set
of all these 1-forms at the different points of M can be endowed with a structure of
vector bundle called (kinematic) cotangent bundle and denoted by 7' M.
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A smooth atlas (U,,¢,),., of M gives rise to transition functions x —
-1
d(ﬁ”/}"(%c) )%(x)-

2.2.7. Differential forms. On a manifold M a (kinematic) 1-form is nothing but
a smooth section of 7' M.

The set of these 1-forms can be equipped with a structure of convenient vector
space.

On a smooth regular manifold, the class of differential forms ([20], 33.22)
stable under Lie derivation Ly, exterior derivative d, interior product iy and
pullback f* is the graded algebra

Q(M) = Bk (M)
k=0

where

QF (M) = LK (TM, R)

has a structure of convenient vector space. Q°(M) corresponds to % and
Q'(M)=T'M.

We denote by Q*(M, E) = L, (TM, E) the space of k-forms with values in the
vector bundle p: E — M.

The Lie derivative L : (M) x Q¥(M) — Q¥ (M) is a smooth mapping defined
by

k
(Lyw)(X1,.... X)) = X (0(X1,..., X)) = > o(Xi,...,[X,X],..., X)

i=1

The exterior derivative d : QX(M) — Q**!(M) is smooth and defined by

k ) N
(dw)(x)(Xo, ..., Xx) = Z(—l)’Xi(w(Xo, X X))
i=0
+ >0 (DYo(X, X, Xo, .., Xy Xy X,

0<i<j<k

3. Strong projective limit of Banach vector bundles

3.1. Projective limits of topological spaces. A projective system of topological
spaces is a sequence ((X;,9/); ), Where
— forall i e N, X; is a topological space,

— for all i, j € N such that j > i, 5{ : X; — X; is a continuous mapping,
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— forallie N, = Idy,

— for all integers i < j < k, o/ 05;‘ =oF,

An element (x;),. of the product [[,_ X; is called a thread if for all j > i,
07 (%)) = xi.

The set X = lim X; of such elements, endowed with the finest topology for
which all the projections d; : X — X; are continuous, is called projective limit of
the sequence ((X;,0]);5.);cn

A basis of the topology of X is constituted by the subsets (5,»)71(U,<) where U, is
an open subset of X; (and so ¢/ is open).

Let ((X;,0/ )/>,)leN and ((Y,,y, )j=i) ;e DE tWo projective systems whose re-
spective projective limits are X and Y.

A sequence (f;);. of continuous mappings f;: X; — Y, satisfying for all
i,j €N, j>i the condition

v ofi=tiod]

is called projective system of mappings.
The projective limit of this sequence is the mapping

f X — Y? (xi)ieN = (ﬁ(xi))ieN'

The mapping f is continuous and is a homeomorphism if all the f; are homeo-
morphisms (cf. [1]).

3.2. Strong projective limit of Banach manifolds. The system ((M,-,éf >jZi)ieN
is called strong projective system of Banach manifolds if

— M; is a manifold modeled on the Banach space M,
- ((Mi,éf)j>i)[eN is a projective sequence,

— for all x=(x;) € M =lim M;, there exists a projective system of local charts
(Ui, ;) such that x; € = U; where one has the relation 9,00/ =d! o ;s

— U=1lim U; is open in M.

The projective limit M =lim M; then has a structure of Fréchet manifold
modeled on the Fréchet space ™ = lim M; where the differentiable structure is
defined via the charts (U, ¢) where ¢ = hm 9;: U — (p:(U))).

pis a homeomorph1sm (projective limit of homeomorphisms) and the charts
changings (Y o ¢~"), ) = im((; o (go,)fl)w( ) between open sets of Fréchet
spaces are C* in the sense of convenient spaces.

Example 3.1. Let p : E — M a vector bundle of finite rank over the finite dimen-
sional manifold M. The space of infinite jets of sections of E is a strong projective
system of Banach manifolds (cf. [38], [1]).
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Example 3.2. Projective limit of Banach—Lie groups (cf. [13], [31], [1]).
A group G is called projective limit of Banach—Lie group modeled on the pro-
Jective limit G = lim G; if
(1) G =lim G; where (Gi,5ij ) is a projective system of Banach—Lie groups where
G, i1s modeled on G;,

(2) for all i e N there exists a chart (U, ¢;) centered at the unity e; € G; such that
(a) 0/(U;) = U for j = i,
(b) 5{0(0]. = (pjoéij,
(c) lim ¢;(U;) is an open set of G and lim U; is open in G according to the
projective limit topology.

As a simple example, one can consider the space of real sequences R",
equipped with the product topology; it is an abelian Lie group, projective limit of
the abelian Lie groups R/, j e N.

More interesting examples correspond to compact groups because any com-
pact group is the projective limit of a family of compact Lie groups (cf. [41]).

It is possible to define on Fréchet Lie groups G which are projective limits
of sequences of Banach Lie groups the exponential exp; as projective limit of the
sequence expg,. This mapping is then continuous.

3.3. Strong projective limit of vector bundles. Let ((M;,6) =) ;en bE @ strong
projective system of Banach manifolds where each manifold M; is modeled on the
Banach space M;.

For any integer i let (E;, 7;, M;) be the Banach vector bundle whose type fiber
is the Banach vector space E; where ([;, )lf );=iien 18 @ projective system of Banach
spaces.

The sequence ((E;, 1/ )= l.)l.eN where £/ is a morphism of vector bundles is
called strong projective system of Banach vector bundles on ((Mi,élf ) > i) if for all
(x;) there exists a projective system of trivializations (U, t;) of (E;, n;, M;), where
T (n,-)_l(U,») — U; x E; are local diffeomorphisms such that x; € U; (open in M;),
and where U = li£1 U, is open in M and where, for all i, j € N such that j > i, we
have the compatibility condition

(511 X ﬂlj) 0T = ‘L',jO](l-j.

We then have the following proposition which generalizes the result of [15]
about the projective limit of tangent bundles to Banach manifolds whose proof
can be found in [5].

Proposition 3.3. Let (E;, n;, M;),_y be a strong projective system of Banach vector
bundles.
Then (1@ E;, lim 7;, 1i£1 M;) is a Fréchet vector bundle.
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Observe that GI(E) cannot be endowed with a structure of Lie group. So it
cannot play the role of structural group. We then consider, as in [14], the general-
ized Lie group H°(E) = lim H}(E), the projective limit of the Banach Lie groups

1

HO(E) = {(hl, cooh) e [[GUE) : A oy = Iy o 2] fork < j < i}.
=1
We then obtain the differentiability of the transition functions T.

4. Banach Lie algebroids

4.1. Definition. Examples. Let 7: E — M be a Banach vector bundle whose
fiber is a Banach space E.

A morphism of vector bundles p : E — TM is called anchor. This morphism
gives rise to p : E — T'M = X(M) defined for every x € M and every section s of
E by: (p(s))(x) = p(s(x)) and still denoted by p.

Assume there exists a bracket [.,.]; on the space E which provides a structure
of real Lie algebra on E.

Definition 4.1. (E,n, M, p) is called a Banach Lie algebroid if
(1) p:(E,[,]g) — (X¥(M),[.,.]) is a Lie algebra homomorphism,
(2) [s1, f52)p = fls1, ] + (p(sl))(f)sz forevery f € # and s;,s, € E.

Example 4.2. £ = TM and p = N is a Nijenhuis tensor, i.e., satisfying the condi-
tion

[NX,NY] = N([NX, Y] + [X,NY] - N([N, Y)))
(I'M,n,M,N) is a Lie algebroid for the bracket |.,.], defined by
X,Y]y =[NX,Y]+ [X,NY] - N([X, Y)).
The trivial case corresponds to N = Idpy,.

Example 4.3. E is an involutive distribution over a Banach manifold M. The
anchor is then the canonical injection p : E — TM.

Example 4.4. E is the cotangent bundle of a Banach manifold and p=P is a
Poisson tensor. The bracket on the sections of 7*M (cf. [25]) is defined by

{o, B} p = Lpp(2) — Lpu(B) + d<p, Py
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(T*M,P,M,{.,.}p) is a Lie algebroid because, in particular, we have

{on f-BYp = S {0 BYp + Lpu(f) -

One can find in [34] a generalization to the Jacobi structures (which were intro-
duced by Lichnerowicz in [23]).

Example 4.5. Let y : M x G — M be a right action of a Lie group G (with Lie
algebra ¢) on a Banach manifold M. Then there exists a natural morphism of the
trivial Banach bundle M x % in TM defined by

qj(xa X) = T(xﬁe)l//(oa X)
For all X and Y in ¥, we have
Y{X, Y} = [YX),¥(Y)],

where {, } is the Lie bracket on ¢ (cf. [20], 36.12).
(M x %Y, M,{,})is then a Lie algebroid.

4.2. Derivatives. On a Banach Lie algebroid the base of which is smooth regular
one can define the notions of Lie derivative L/ with respect to a section s of E (this
notion generalizes the Lie derivative Ly with respect to a vector field, section of
the tangent bundle) and exterior derivative d, (cf. [2], [7]). For the case of finite
dimensional algebroid, see [26].

For every section s of the vector bundle E, there exists a unique graded endo-
morphism of degree 0 of the graded algebra Q(M, E), called the Lie derivative
with respect to s and denoted by L? which satisfies the following properties:

(1) for a smooth function f € Q*(M,E) = 7
Lf(f) = L/)oS(f) = ipos(df)

where Ly denotes the usual Lie derivative with respect to the vector field X,
(2) for a g-form w € Q(M, E) (where ¢ > 0)

(LP@)(s1,...,84) = LI (w(s1,...,54))

- Zw(sl,...,si,l, (S, 8i] gy St 1y -5 5q)-
i=1
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On the other hand, we can also define for any function f € Q°(M,E) = 7 the
element of Q! (M, E), denoted d,f, by

d,f =t,0df (1)

where ¢, : T*M — E* is the transpose of the anchor.

There exists a unique graded endomorphism of degree 1 of the graded algebra
Q(M,E), called Q(M, E)-value derivative, denoted d,, which satisfies the follow-
ing properties:

(1) For any function f € Q*(M,E) = 7, d,f is the element of Q'(M, E) defined

by the relation (1).

(2) For any element @ of Q(M,E) (¢ >0), dyw is the unique element of
Q7Y (M, E) such that for all s, ...,s, € E,

q
(d,) (50, - - -, Z L/’ (0(80s -+ 8ty 15))

i=0
q

+ Y D (i 55500 S5 5y)).
0<i<j<gq

We then have
d,od,=0.

4.3. Algebroids morphisms

Definition 4.6. A linear bundle morphism ¢ : E — E’ over f: M — M’ is a
morphism of the Lie algebroids (E,n, M,p) and (E', 7', M',p') if the mapping
v QUM E") — QY M, E) defined by

(o) (s15...,8) = oy (W ost,... osy)
commutes with the differentials
dyoy" =" od,.
We then get the category of Banach Lie algebroids.

4.4. Admissible curves. In what concerns mechanics, an element a of E can be
regarded as a generalized velocity and the actual velocity v is obtained when
applying the anchor to «, i.e., v = p(a).

A curve y: [0,1] — E is said to be admissible (cf. [9]) if m'(r) = p(y(1)) where
t+— m(1) = n(y(t)) is the base curve.

A Lie algebroid morphism maps admissible curves to admissible curves.
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4.5. Semisprays. Let (E,n,M,p) be a Banach Lie algebroid and let
Trn:TE — TM the tangent map of =. We denote by 75 : TE — E the tangent
bundle of E.

The notion of semispray we give is a direct generalization of the one used when
E=TM.
Definition 4.7. A section S : E — TE is called a semispray if
(1) TE © S = IdE,
(2) TroS =p.

We then have the following link between admissible curves and semisprays

(cf. [2])

Proposition 4.8. A4 vector field on E is a semispray if and only if all its integral
curves are admissible curves.

We now introduce a particular class of semisprays. For 4 > 0, we denote by
h; : E — E the homothety of factor A defined by /4, (u,) = Auy, for any u € E, and
any x € M. A semispray S is a spray if we have

Sohy,=ATh;oS.

5. Strong projective limits of Banach Lie algebroids

(E;, 7, M,-,p,»),eN is called strong projective system of Lie algebroids if

(E,, f, ]>1)16N is a strong projective system of Banach vector bundles
(mi: E; — M;),., over the strong projective system of manifolds
( Ml751] )ieN’

for all i, j € N such that j > i, one has

piof] =16l op,

— f/E;— E; is a morphism of the Lie algebroids (Ej, mj, M, p;) and
(EianhMiapi)‘

We then have the main result of this paper.

Theorem 5.1. Let (E;, 7, M;, p;);.n be a strong projective systems of Banach Lie
algebroids.
Then (lim E; lim m;, lim M;,lim p;) is a Fréchet Lie algebroid.
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Proof. First observe that the projective limit lim M; is endowed with a differential
manifold structure as defined in 2.1.1. Then (hm E;, lim 7;, lim M ); is a Fréchet
vector bundle whose structural group is H°(E) (cf. Propos1t10n 3.3). The projec-
tive limit of the (vector) tangent bundles (lim TM;, lim p;,lim M;) is equipped
with a Fréchet vector bundle structure; we then get the result of [15], Theorem 2.1.

Let us study the properties of the sections of the vector bundles lim 7'M,
lim E; and the projective limit of the anchors p;.

For (g;),.x, such that g; = g; 06/ = (6/)"(g;) we can define the projective limit
g = lim g; which is still smooth.

First remark that if X;= T0/(X ), we have Xi(g;) = (T9/(X)))(9:) =

X;(gi 0! ) X;(g;). We can define X = lim X; € lim X(M;) and we get Xy =
lim X;g; where Xig;e 7. If the sequences (X1);en and (X?),.n where
X1 X? € X(M;) are such that X! = T5/(X}') (resp. X? = T5/(X?)), they give rise
to elements X', X% e lim X(M;). Because X! and X! are 5’—related (so are

7 and X7), the1r brackets are d/-related too, i.e., [X;, XZ} = Té’([X1 X?];) and
we get the bracket of X! and X 2 as projective 11m1t of these brackets.

Lets = lgl s; be where s; € E;. Because the spaces lgn M; and lgl E; are dif-
ferentiable manifolds, the section s : (xo,x1,...) — (s0(x0),s1(x1),...) is smooth
(cf. Definition 2.2.2).

Let us prove that we can deduce the compatibility condition

ftj [S]17 S/Z]E [Sll ’ Slz]E, © 5IJ

from the structure of morphism of fl-j (commutativity with the differentials applied
to 1-forms). A
We have ((f/)"(dg%)) (s}, 7) = (d, %) (f o ,f’ o s7) where

(dElai)(f'j osi,f o Sz)
f/os1 ( ) Lpio(fl_/os/_z) (af(j;josjl)) —OCl[fj OS f]osz}E
= L[) os] (O( (Slz)) L/) os? (OC (Stl)) - ai[sl-l7S[2]E,'
X (a(s?)) — X7 (i(s7)) — uls; 7]

On the other hand we have

(s
(D @) (5D) = Ly (U ) (8)) = () ) s} 571,
» f,--" 0 sf>) - Xz(oc-(f,-" 0 s})) —alf o), i 052l
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Because f/ is a morphism, we get o;[s!, s?] £ = il 1/ o, 1 o2 g, and then

the compatibility condition.

So the bracket [s!, sz}],m g, of projective limits of sections st = = lim st and
s* = lim s7 can be defined as the projective limit of the sections s}, s7], of E;.

The set lim E; equipped with this bracket is then a Lie algebra.

Accordlng to the condition p; o f/ = /= T&’ o p; the projective limit p = lim p; is
a linear bundle morphism.

So the mapping p=Iim p; is a Lie algebra homomorphism between
(lim £, [., ]hm £,) and (lim TM,, [,

" Forallie N, every section s1 and s? of E; and every smooth g; : M; — R, we
have

Isi, 9571, = gils; 571, + (pils7)) (9)s7-
In order to get the relation

[s1,9]p = gls1, 2] + (P(Sl))(g)sz
we have to prove that
) £/ o (gls}57) = ails} 57 03/, |
2) S o [(p(s))9)s7] = [(pils])) (gi)s?] o 7.

For the first item, for any thread (x;),_y, i.e., x; = 6/(x;), we have

1o (gils]5715) () = £ (g 0 6] %[5}, 571 (x9)).

Because f /is a linear mapping from L 1(x;) to 77 1(x;), this expression equals

2

gi(x;) < f ([s} s}+57],(x7)). Thanks to the compatlblhty condition f/ o [}, 57]s, =
1

s}, 5], £ © 5! we have proved the first point.
For the second item, we first use the commutativity with the differentials d,

and d.
[ (drg0)(5) () = [de, (6))"(90)] (57) ()
and so
(dig0) (7 0 5)(x:) = [di(9))(5)(%)).
Using the definition of d,, i.e., dig; = 1, o dg; we have
dgi [ pi (7 (5(x7)))] = dg; (p;(s1(x))

and so

[2i(f; 0 ) (90)(x:) = [p; © 5](9) (x))-
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Due to the compatibility condition, we get
[/ o (p; 0 5)1(90) = [p(s)]((6]) " © g3).

It is then easy to obtain the second point. O

6. Examples

6.1. Nijenhuis Lie algebroid. Let ((M;,5)) =) ;cp bE @ strong projective system
of Banach manifolds.

For any i € N, consider a Nijenhuis tensor N; : TM; — TM; (cf. Example 4.2).
In this case, we consider f; = S =T 5/ morphism from TM; to TM;. If we have the
compatibility condition

NOTéj T5’oN

then (lim 7M;,lim 7;, lim M;,lim ;) is a Fréchet Lie algebroid because we get in
particular

(6))" o drag, = dra; 0 (5])"

As an example we can consider the case of an infinite-dimensional harmonic
oscillator which is a L-integrable Hamiltonian system (cf. [24]). We consider the
projective limit ((R*,5/ )j=i)ien Where o/ is the canonical projection from R¥
onto R*¥. The Nijenhuis tensor N; which corresponds to the recursion operator
can be written as

d 0
N; = (X;% + y,%) <dxk QR — + dyr ® —>
k=1 yk

where ((x1, y1), ..., (x;, »;)) are the coordinates on R*. It is then easy to establish
the compatibility condition.

6.2. Distributions. A distribution on a Banach manifold B is a smooth map
D : B — TB such that for every x € B, D, is a linear subspace of 7 B. This distri-
bution is involutive if for any vector fields X and Y tangent to D, the bracket
[X, Y] is still tangent to D.

Notice that the range of a Lie algebroid anchor is an involutive weak distribu-
tion (cf. [33]) if the base is smooth regular (cf. [7]).

Let ((M,,él ) j>1)I€N be a strong projective system of Banach manifolds. Con-
sider for any i € N a smooth involutive distribution E; over the manifold AM,;.
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Then (E;, 7i;, My, J;), ., Where J; : E; — TM; is the natural injection and £/ is the
restriction of T 5{ to E;, is a strong projective system of Lie algebroids.

The projective limit lim E; can be seen as an involutive distribution of the
Fréchet bundle lgl TM,;.

6.2.1. Projective limit of finite rank distributions. Consider the case of a
1-dimensional distribution on the infinite jets of sections of a linear bundle
p:F — N. Let X be a vector field on F projectable on N with projection X;
the flow ¢ of X covers the flow pX of X and by prolongation to J*(F) we
obtain a one-parameter local group ¢, = pr*(p;") of transformations on J* (F)
(cf. [6], [30]). The prolongation pr*(X) of the vector field X is the vector field
on J*(p) associated to this flow. Moreover this flow preserves the Cartan distri-
bution (contact ideal) %.

One can remark that % is an involutive distribution on the projective limit
lim 7J !(p) which appears as limit of non involutive distributions on J(p) (cf. [38]).

If one considers a system of PDEs &, i.e., a subvariety of the bundle J*(r), by
infinite prolongation, we get a submanifold i: & — J*(x) of J*(x). We then
have an involutive distribution on & by restriction of the Cartan distribution to &
by the pull-back i (cf. [19], [10]).

Recall that an infinite-dimensional smooth Fréchet differentiable manifold
equipped with a finite dimensional involutive distribution corresponds to the no-
tion of diffiety (differential variety) as introduced by Vinogradov ([40]). One can
find applications of such a framework in non holonomic mechanics and non linear
control systems (see for instance [12]).

6.2.2. Inverse limit of Banach distributions. One considers here the case where
the maps 5,"“ : M; .y — M; are canonical injections between Banach manifolds,
the distributions E; are of corank 1 defined as ker o; where o; is a 1-form fulfilling
the different compatibility conditions.

One can meet this kind of situation for M; = C'(S") where o;(1;) = [1 ui(x) dx.
The associated distribution is affine ([17]) and is linked with the first Poisson tensor
of the KdV equation.

7. Strong projective limit of semisprays

Let (E;, m;, M;, p;); . be a strong projective system of Lie algebroids.
Consider a sequence (y;),.n Where y; : [0,1] — E; is an admissible curve such
that for all 7, j € N such that j > i

fiov =

Hence y = lim ; exists.
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For all 7, j € N such that j > i and for all 7 € [0, 1], using the equalities
(mi09;) (1) = (8] o (my07)) (1) = T ((m 0 7) (1))
we obtain
(i 09)' (1) = pi(7:(1)) = TO] ((m; 07)) (1) = p; (1))
So, for all 7 € [0, 1], we have

(o) (t) = p(»(1)).

Such a curve will be called admissible curve in E = lgn E;.
Now consider a sequence (S;);.n Where S;: E; — TE; is a semispray such
that

Tfij 08; =S80 fz/

We then can define S : (ug,u1,...) — (So(uo), Si(u1),...) which is a smooth
section of 1@ TE;. Tt is easy to see that we have g oS = Idg.
For all i, j € N such that j > i and for all u; = f;/(u;) we have

(Triosio fi = pio f)(w)

(T o Tf 055 = pio f)(w)
= (T(mio f/)os;— plOf)(

(T omj)os;—pyo f)(u;

(Tmios;i— pi)(ur) =

Finally, we can write
(T 0 51— pi) (i) = TS (Tmy 0.5 — p;) (1).
So we have
Tros=p.

S will be called semispray.

One can obviously define the notion of spray on the projective limit lim E; as
projective limit of sprays.

We end this paper with a proposition which establishes the link between semi-
sprays and admissible curves. It generalizes the result of [2] (for the case of sprays
in the particular case £ = TM see [37]).
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Proposition 7.1. 4 vector field S = lim S; on E = lim E; is a semispray if and only
if all its integral curves are admissible curves.

Proof. The proof is nothing but an adaptation of the proof of Theorem 2.3 one
can find in the paper [2]. Consider a semispray S =lim S; and assume that
¢:[0,1] — E is an integral curve of S. Then for all i e N, ¢;: [0,1] — E; is an
integral curve of ; (i.e., for all 7 € [0, 1], /(1) = Si(¢;(1))), where f o ¢; = ¢;. It
follows that for all i € N and for all 7 € [0, 1] we have

T7Z',‘ ] C;(f) = (T7Z'l‘ ] S,) (Ci(t)).

Because 7; 0 /(1) = p;(c(1)), ¢; is an admissible curve and so is ¢ = lim ¢;.
The converse is left to the reader. O

For a projective limit of sprays it is easy to prove that for all /, j € N such that
Jj =iand for all u; = f(u;) using the relation 4} o f;/ = f o h/ and properties of
tangent mappings we have

Tf (s; 0 h} — ATh} 0 5;)(u;) = (s: 0 b} — ATh} o ;) (uy).

So we can write S o/, = ATh) oS and S is a spray on E.

References

[1] M. C. Abbati and A. Mania, On differential structure for projective limits of mani-
folds. J. Geom. Phys. 29 (1999), 35-63. Zbl 0935.58008 MR 1668101

[2] M. Anastasiei, Banach Lie algebroids. Preprint 2010. arXiv:1003.1263

[3] M. Aghasi, C. T. Dodson, G. N. Galanis and A. Suri, Conjugate connections and
differential equations on infinite-dimensional manifolds. J. Geom. Phys. (2008).

[4] M. Aghasi and A. Suri, Ordinary differential equations on infinite dimensional mani-
folds. Balkan J. Geom. Appl. 12 (2007), 1-8. Zbl 1132.58006 MR 2321963

[5] M. Aghasi and A. Suri, Splitting theorems for the double tangent bundles of Fréchet
manifolds. Balkan J. Geom. Appl. 15 (2010), 1-13. Zbl 1218.58006 MR 2608533

[6] 1. M. Anderson, Introduction to the variational bicomplex. In Mathematical aspects of
classical field theory, Contemp. Math. 132, Amer. Math. Soc., Providence, RI, 1992,
51-73. Zbl 0772.58013 MR 1188434

[7] P. Cabau and F. Pelletier, Almost Lie structures on an anchored Banach bundle.
Preprint 2011. arXiv:1111.5908

[8] J. F. Carifiena and E. Martinez, Lie algebroid generalization of geometric mechanics.
Banach Center Publ. 54, Polish Academy of Sciences, Institute of Mathematics, War-
saw 2001. Zbl 1009.70014 MR 1881655


http://www.emis.de/MATH-item?0935.58008
http://www.ams.org/mathscinet-getitem?mr=1668101
http://arxiv.org/abs/1003.1263
http://www.emis.de/MATH-item?1132.58006
http://www.ams.org/mathscinet-getitem?mr=2321963
http://www.emis.de/MATH-item?1218.58006
http://www.ams.org/mathscinet-getitem?mr=2608533
http://www.emis.de/MATH-item?0772.58013
http://www.ams.org/mathscinet-getitem?mr=1188434
http://arxiv.org/abs/1111.5908
http://www.emis.de/MATH-item?1009.70014
http://www.ams.org/mathscinet-getitem?mr=1881655

Projective limit of Lie algebroids 19

[9] J. Cortés, M. de Ledn, J. C. Marrero and E. Martinez, Nonholonomic Lagrangian
systems on Lie algebroids. Discrete Contin. Dyn. Syst. 24 (2009), 213-271.
Zbl 1161.70336 MR 2486576

[10] R. Dridi, Utilisation de la méthode d’équivalence de Cartan dans la construction d’un
solveur d’équations différentielles. Thése, Université des Sciences et Technologies de
Lille I, 2007. http://hal.inria.fr/tel-00264288

[11] R. L. Fernandes and I. Struchiner, Lie algebroids and classification problems in geom-
etry. Sdo Paulo J. Math. Sci. 2 (2008), 263-283. Zbl 1173.22003 MR 2503824

[12] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, Deux applications de la géométrie
locale des diffiétés. Ann. Inst. H. Poincaré Phys. Théor. 66 (1997), 275-292.
Zbl 0895.58003 MR 1456514

[13] G. Galanis, Projective limits of Banach-Lie groups. Period. Math. Hungar. 32 (1996),
179-191. Zbl 0866.58009 MR 1407918

[14] G. N. Galanis, Projective limits of Banach vector bundles. Portugal. Math. 55 (1998),
11-24. Zbl 0904.58002 MR 1612319

[15] G. N. Galanis, Differential and geometric structure for the tangent bundle of a projec-
tive limit manifold. Rend. Sem. Mat. Univ. Padova 112 (2004), 103-115.
Zbl 1121.58007 MR 2109955

[16] R. S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math.
Soc. (N.S.) 7 (1982), 65-222. Zbl 0499.58003 MR 656198

[17] T. Kappeler and M. Makarov, On the symplectic foliation induced by the second
Poisson bracket for KdV. In Symmetry and perturbation theory, Quad. Cons. Naz.
Ricerche Gruppo Naz. Fis. Mat. 54, Rome 1998, 132—152.

[18] M. V. Karasev, Analogues of objects of the theory of Lie groups for nonlinear Poisson
brackets. Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), No.3, 508-538; English transl.
Math. USSR-Izv. 28 (1987), 497-527. Zbl 0608.58023 MR 0854594

[19] A. V. Kiselev and J. W. van de Leur, Involutive distributions of operator-valued evo-
lutionary vector fields and their affine geometry. In Proceedings of the 5th international
workshop on group analysis of differential equations and integrable systems, University
of Cyprus, Department of Mathematics and Statistics, Nicosia 2011, 99-109.

Zbl 05983630

[20] A. Kriegl and P. W. Michor, The convenient setting of global analysis. Math. Surveys
Monogr. 53, Amer. Math. Soci., Providence, RI, 1997. Zbl 0889.58001 MR 1471480

[21] A. Kriegl and P. W. Michor, Regular infinite-dimensional Lie groups. J. Lie Theory 7
(1997), 61-99. Zbl 0893.22012 MR 1450745

[22] S. Lang, Differential and Riemannian manifolds. Graduate Texts in Math. 160, 3rd ed.,
Springer-Verlag, New York 1995. Zbl 0824.58003 MR 1335233

[23] A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées. J. Differen-
tial Geometry 12 (1977), 253-300. Zbl 0405.53024 MR 0501133

[24] C. S. Liu, Infinite-dimensional Hamiltonian-Jacobi theory and L-integrability. Pre-
print 2009. arXiv:0905.0720


http://www.emis.de/MATH-item?1161.70336
http://www.ams.org/mathscinet-getitem?mr=2486576
http://hal.inria.fr/tel-00264288
http://www.emis.de/MATH-item?1173.22003
http://www.ams.org/mathscinet-getitem?mr=2503824
http://www.emis.de/MATH-item?0895.58003
http://www.ams.org/mathscinet-getitem?mr=1456514
http://www.emis.de/MATH-item?0866.58009
http://www.ams.org/mathscinet-getitem?mr=1407918
http://www.emis.de/MATH-item?0904.58002
http://www.ams.org/mathscinet-getitem?mr=1612319
http://www.emis.de/MATH-item?1121.58007
http://www.ams.org/mathscinet-getitem?mr=2109955
http://www.emis.de/MATH-item?0499.58003
http://www.ams.org/mathscinet-getitem?mr=656198
http://www.emis.de/MATH-item?0608.58023
http://www.ams.org/mathscinet-getitem?mr=0854594
http://www.emis.de/MATH-item?05983630
http://www.emis.de/MATH-item?0889.58001
http://www.ams.org/mathscinet-getitem?mr=1471480
http://www.emis.de/MATH-item?0893.22012
http://www.ams.org/mathscinet-getitem?mr=1450745
http://www.emis.de/MATH-item?0824.58003
http://www.ams.org/mathscinet-getitem?mr=1335233
http://www.emis.de/MATH-item?0405.53024
http://www.ams.org/mathscinet-getitem?mr=0501133
http://arxiv.org/abs/0905.0720

20 P. Cabau

[25] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian
systems through the theory of Poisson-Nijenhuis manifolds. Quaderno S 19, Universita
degli Studi di Milano, 1984.

[26] C.-M. Marle, Differential calculus on a Lie algebroid and Poisson manifolds. In The J.
A. Pereira da Silva birthday schrift, Textos Mat. Sr. B 32, Univ. Coimbra, Coimbra
2002, 83-149. Zbl 1031.53114 MR 1969436

[27] E. Martinez, Reduction in optimal control theory. Rep. Math. Phys. 53 (2004), 79-90.
Zbl 1060.58012 MR 2050148

[28] P. Molino, Sur quelques propriétés des G-structures. J. Differential Geometry 7 (1972),
489-518. Zbl 0267.53019 MR 0423441

[29] S. Nag and D. Sullivan, Teichmiiller theory and the universal period mapping via
quantum calculus and the H'/? space on the circle. Osaka J. Math. 32 (1995), 1-34.
Zbl 0820.30027 MR 1323099

[30] P. J. Olver, Applications of Lie groups to differential equations. Graduate Texts in
Math. 107, 2nd ed., Springer-Verlag, New York 1993. Zbl 0785.58003 MR 1240056

[31] H. Omori, Infinite-dimensional Lie groups. Transl. Math. Monogr. 158, Amer. Math.
Soc., Providence, RI, 1997. Zbl 0871.58007 MR 1421572

[32] S. Paycha, Basic prerequisites in differential geometry and operator theory in view of
applications to quantum field theory. Lecture notes, 2009. http://matematicas.uniandes
.edu.co/summer2009/index.php?Op=2

[33] F. Pelletier, Integrability of weak distributions on Banach manifolds. Preprint 2010.
arXiv:1012.1950

[34] D. I. Ponte, Grupos y groupoides de Lie y Estructuras de Jacobi. Thesis, Universidad
de la Laguna, 2003. ftp://tesis.bbtk.ull.es/ccppytec/cpl67.pdf

[35] L. Popescu, A note on Poisson Lie algebroids. J. Geom. Symmetry Phys. 12 (2008),
63-73. Zbl 1162.53326 MR 2498780

[36] J. Pradines, Théorie de Lie pour les groupoides différentiables. Relations entre pro-
priétés locales et globales. C. R. Acad. Sci. Paris Sér. A 263 (1966), 907-910.
7Zbl 0147.41102 MR 0214103

[37] G. Rezaie and R. Malekzadeh, Sprays on Fréchet modelled manifolds. Inz. Math.
Forum 5 (2010), 2901-2909. Zbl 1218.58007 MR 2745224

[38] D. J. Saunders, The geometry of jet bundles. London Math. Soc. Lecture Note Ser.
142, Cambridge University Press, Cambridge 1989. Zbl 0665.58002 MR 989588

[39] R. Schmid, Infinite dimensional Lie groups with applications to mathematical physics.
J. Geom. Symmetry Phys. 1 (2004), 54—120. Zbl 1063.22020 MR 2096566

[40] A. M. Vinogradov, Local symmetries and conservation laws. Acta Appl. Math. 2
(1984), 21-78. Zbl 0534.58005 MR 736872

[41] A. Weil, L'intégration dans les groupes topologiques et ses applications. Hermann, Paris
1940. Zbl 0063.08195 MR 0005741

[42] A. Weinstein, Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc.
(N.S.) 16 (1987), 101-104. Zbl 0618.58020 MR 866024


http://www.emis.de/MATH-item?1031.53114
http://www.ams.org/mathscinet-getitem?mr=1969436
http://www.emis.de/MATH-item?1060.58012
http://www.ams.org/mathscinet-getitem?mr=2050148
http://www.emis.de/MATH-item?0267.53019
http://www.ams.org/mathscinet-getitem?mr=0423441
http://www.emis.de/MATH-item?0820.30027
http://www.ams.org/mathscinet-getitem?mr=1323099
http://www.emis.de/MATH-item?0785.58003
http://www.ams.org/mathscinet-getitem?mr=1240056
http://www.emis.de/MATH-item?0871.58007
http://www.ams.org/mathscinet-getitem?mr=1421572
http://matematicas.uniandes.edu.co/summer2009/index.php?Op=2
http://matematicas.uniandes.edu.co/summer2009/index.php?Op=2
http://arxiv.org/abs/1012.1950
ftp://tesis.bbtk.ull.es/ccppytec/cp167.pdf
http://www.emis.de/MATH-item?1162.53326
http://www.ams.org/mathscinet-getitem?mr=2498780
http://www.emis.de/MATH-item?0147.41102
http://www.ams.org/mathscinet-getitem?mr=0214103
http://www.emis.de/MATH-item?1218.58007
http://www.ams.org/mathscinet-getitem?mr=2745224
http://www.emis.de/MATH-item?0665.58002
http://www.ams.org/mathscinet-getitem?mr=989588
http://www.emis.de/MATH-item?1063.22020
http://www.ams.org/mathscinet-getitem?mr=2096566
http://www.emis.de/MATH-item?0534.58005
http://www.ams.org/mathscinet-getitem?mr=736872
http://www.emis.de/MATH-item?0063.08195
http://www.ams.org/mathscinet-getitem?mr=0005741
http://www.emis.de/MATH-item?0618.58020
http://www.ams.org/mathscinet-getitem?mr=866024

Projective limit of Lie algebroids 21

[43] A. Weinstein, Lagrangian mechanics and groupoids. In Mechanics day, Fields Inst.
Commun. 7, Amer. Math. Soc., Providence, RI, 1996, 207-231. Zbl 0844.22007
MR 1365779

Received November 30, 2010; revised December 23, 2011

P. Cabau, Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique,
73376 Le Bourget-du-Lac Cedex, France
E-mail: patrickcabau@yahoo.fr


http://www.emis.de/MATH-item?0844.22007
http://www.ams.org/mathscinet-getitem?mr=1365779

