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Rate of decay to 0 of the solutions to a nonlinear
parabolic equation
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Abstract. We study the decay rate to 0 as ¢ — +oo of the solution of equation
W, — A+ |[y|? ’llp = 0 with Neumann boundary conditions in a bounded smooth open
connected domain of R” where p > 1. We show that either (¢, -) converges to 0 exponen-
tially fast or y(¢,-) decreases like #~1/(»=1),
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1. Introduction and main results
In this paper we consider the nonlinear parabolic equation

U, =AY +g(y) =0 inR" xQ,

%:0 on RT x 0Q,
on

(1)

where Q is a bounded smooth open connected domain of R” and g € C'(R) satis-
fies

9(0) =0 2)
and for some p > 1

Je>0,VseR,  0<g'(s) <cls|”". (3)

From (2)—(3) we deduce that g(s) has the sign of s and

VseR, |g(s)| < §|s|". 4)
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We define the operator 4 by

D(A) = {l// € H%QL% =0on ag}

and

Ve D(A), Ay =—Ay.

It is well known that 4 is maximal monotone with compact resolvant on L?(Q).
The first eigenvalue of A is 0 with eigenspace reduced to constants. The second
eigenvalue is A, > 0 and will be denoted by A, through the text. Moreover, the
operator B defined by

D(B) = {w e L*(Q)| Ay + g(¢) € L*(Q) and % =0on GQ}

and
Ve D(B), By =—-A¢y+g())

is maximal monotone in L?(Q). As a consequence of [1], [2] for any y, € L*(Q)
there exists a unique weak solution of the equation

Y +By=00onR";  Y(0,x) =i,

In addition, it is well known that if , € L*(Q), y(¢,-) remains in L*(Q) for all
t>0. Finally [8] contains an estimate of the solution in C(Q) and C'(Q) for
t > 0, which is valid for any sufficiently regular domain.

Concerning the behaviour for 7 large, in [6], A. Haraux established in the case
of a pure power nonlinearity the exponential convergence to 0 of the projection on
the range of A4 of the solution of equation (1). Moreover in [5], the study of the
equation u” + u' — Au + g(u) = 0 with Neumann boundary conditions and where
g satisfies

3C,c>0,Vse R, cls)” ' <g'(s) < Cls"™!

for some p > 1, showed that either u(¢) converges to 0 exponentially fast, or
||u(t)||H0|(Q> > =1/~ with y > 1 for t > 1.

Several authors have treated some variants of equation (1). For example in [7]
equation (1) is considered with

g(u) = clul’'u— Jqu
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and with Dirichlet boundary conditions, and the authors studied the decay rate at
the infinity of solutions to (1), where 4; > 0 is the first eigenvalue of —A in Hj (Q).
The result obtained there is optimal for positive solutions.

According to La Salle’s invariance principle, cf. [3], [4], any solution ¥ of (1),
having a precompact range on R™ with values in L*(Q), converges to a contin-
uum of stationary solutions of equation (1), which reduces here to the constants
of some sub-interval of g~!(0). Since the L? distance of two solutions of (1) is
nondecreasing, actually y(z,-) converges to some constant a € g~'(0) as well; cf.
[2], Théoréme 3.11, for a more general result.

Our first result is valid without any additional hypothesis on g.

Theorem 1.1. Let g satisfy (2) and (3). Then any solution \ € C((O, +00), LOO) of
(1) satisfies the following alternative as t — oo: either

Il (r, )l < Ce™, ()

or

3¢’ >0,V >1, ” w(t,x) dx’ > ¢/ VD), (6)
Q

Remark. In Theorem 1.1, if the limit a of (¢, ) is not 0, (6) is automatically sat-
isfied since [, /(7 x)dx tends to the positive limit [Q||a|. One might wonder
whether in this case (5)-(6) become true with s replaced by ¢ — a. It is unfortu-
nately the case only if @ € Int(g~'(0)). The special case g(s) = ((s — 1)+)1JrC
shows that we cannot hope (6) to be true with i replaced by y — a in case a = 1.
Indeed, ¢ satisfies (3) for any p > ¢+ 1 but of course (6) will not satisfied for p
arbitrarily large when ¥(0,-) > ¢ > 1. Because (3) is not translation invariant,
the special solution 0 plays a privileged role here. On the other hand, when
g~'(0) is an interval J = [o, ff], where —o0 < o < § < +00, replacing (3) by

0<g'(s) < c(p(s))" (7)
where p(s) = dist(s, g~'(0)), we obtain

Proposition 1.2. Let g satisfy (2) and (7) and let a be the limit of a solution
Y e C((0,400),L*). Then

lW(t,) —all,, < Ce™, (8)

or
3" >0,V >1, ” (Y(t,x) —a) dx’ AN (9)
Q

Our second result provides a more accurate estimate when g(\/) = |y/|” 1y
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Theorem 1.3. Let us consider the nonlinear parabolic problem (1) with g(¥) =
\W|”" Y. Then any solution € C((0,+00), L) of (1) satisfies the following alter-
native as t — oo: either

W, < Ce, (10)

or
viz 1, )l - ((p— 1)) Y| < ke WD
where K,C >0, p > 1.

In the following proposition we consider two special cases showing that both
possibilities in the second result in the Theorem 1.1 can actually happen.

Proposition 1.4. Let g satisfy (2) and (3). Then we have:

(1) If Q is symmetric around 0, g is odd and (0, -) is an odd function in Q, then any
solution € C((0,+00),L™) of (1) satisfies (5).

(ii) Any solution y € C((0,+0), L*(Q)) of (1) such that y(t,-) > 0 a.e. in Q sat-
isfies (6). In particular this is the case for the solution y, € L*(Q) if Yy = 0 and
Y does not vanish a.e. in Q.

Finally, our last result shows that the second possibility is sharp for a class of
functions g more general than the pure power.

Proposition 1.5. Under the additional hypothesis
ey >0,Vse R, |g(s)| = kils|” (12)

for any solution y € C((0,+0),L*) of (1), we have

| oy
Vi1, L), <4——— /=),

2. Proof of Proposition 1.5

Proof. Up to a time translation of &, we may assume ¥ € C(R",L™), hence
w(0,-) e L*. If(0,-) = 0, we have (¢,-) = 0 and the result is obvious. Other-
wise let z be defined by

| 1/(p—1)
0= {|¢<o, Mo +ki(p— 1>r} '
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Then z is a solution of the nonlinear ODE problem

{z/ + izl =0,
2(0) = [[(0,)]l.,-

Under the additional condition (12), we will show that z is a super-solution of (1).
Indeed, we have

z—Az+g(z) = —k1zf +¢g(z) = 0.

Since ¥(0,-) <z(0) we deduce, by the standard comparison principle, that
W(t,) <z(r) forall £ > 1.

A similar calculation shows that y(¢,-) > —z(¢) for all # > 1, which concludes
the proof. O

3. A general result on the range component

Defining the orthogonal projection P : H — N, where
H=1L%*Q), N=ker(4) and Py(1,-)= %'J W(t,x)dx,
Q

as already mentioned in the introduction, it was shown in [6] that for g(y¥) =
lW|”"y the estimate

(1) = Py(2)ll o) < Ke™,

holds for some constant K > 0. In this section, we will show that we have the
same result for any function ¢ satisfying (3). More generally we have

Proposition 3.1. Let y € C(RY, L) be any solution of (1). Assume that g is a
locally Lipschitz non-decreasing function. Then we have

(1) = Py (o)l < [[¥(0) = Py (0) e, (13)

where || - ||, denotes the norm in L*(Q).

Proof. We denote by (u,v) the inner product of two functions u, v of L?>(Q). Since
g is a nondecreasing function for all y € L*(Q), we have a.e. in x € Q

(9(b) — g(PY)) (¥ — PY) =0
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and then by integrating over Q

(9(h). v = PY) — (g(P). b — Pyr) = 0. (14)

Since ¢(Py) is a constant and (Y — Py) e Nt, we deduce that
(9(Py),y — Py) = 0. Hence from (14),

(Q(W),lﬁ - Pl//) >0.
Setting

w= lﬁ—Plﬁ,
we have

w' —Aw = —(I — P)g(¥))
since APy = PAy = 0. Since

(w,(I = P)g(¥)) = (I — P)w,g(¥)) = (9(¥), ¥ — PY)

we find

|

(e Iz = (v, Aw) = (g(¥). ¥ = PY) < —2a|wl]3.

N —

By integrating we obtain (13). O

4. Proof of Theorem 1.1

We set y = u+ w, where u = Py and w = (I — P){y. By projecting (1) on N we
obtain

“t+P(g(¢)) =0, (15)

where we have used that P(4y) = 0 since R(4) = N+. Noticing that

u+ P(g(u)) + P(g(¥) — g(u)) = u,+ g(u) + P(g(¥) — g(u)),

we can rewrite the equation (15) as

ur+ g(u) = —P(g(W) — g(u)).

By assumption (3), we deduce that

|P( )| = |Q| lg(¥) — g, < |Q| (”‘//Hzp 2t ||”||2p 2)||WH2
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But  and u are uniformly bounded and from Proposition 3.1 we have the esti-
mate ||w(t)||, < Ke ', Therefore

[P(g(h) — g(u))| < K’
with K’ > 0. This leads us to study the ODE
u'+gu)=f(r) inRT, (16)
where
f(6)=P(g(y) —g(w) and |f(1)] < K'e ™"
Using the same method as in [5], we show the following result:

Lemma 4.1. Let ¢ > 0,y > 0, p > 1 and g satisfying (2) and (3). Let M > 0 such

that
S\
M <= 17
<(2)" (17)
c1 > 0 with
c < %M

Then, for every continuous function f in (0,-+0o0) satisfying
(O] <cre™,

there exists a unique function v e C'(R™) with

Vi>0, v +gv) =/ (18)
and
sup {e”|v(r)|} < M. (19)
te(0,400)

Proof. Since any solution of (18), (19) satisfies the integral equation

v@=—jwvm—am»m (20)
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we look for a solution of (20). It is then natural to introduce the function space

X = {v e C(0,+0)

sup e’o(1)] < M},

te(0,+00)

equipped with the distance associated to the norm

lvll, = sup e[v(1)].
te(0,+00)

We consider the operator 7 : X — C(0,+00) defined by

+o0
To(t) = —J (f(s) = g(v(s)) ds.
From (4), we have the estimate

Vse RY,  |g(v(s))] < ;|v(s)|".

First we will show that 7 (X) < X. Let v € X; then for all 7 > 0,

+00 +00
|f<s>|ds+fJ o(s)” ds

To(t)| < J
| ¢ DJ:

IA

-+ 00
g E pyr J e P ds
4 D t

c cM?PN _,
<\ =+ e’
voopy

(M, MY
= D) 2p2 e .

Since p > 1, it follows that

|7 v(r)| < Me ™.
Hence by (19), we obtain that 7 v € X, with
7 o(0)]l, < M.

Secondly, we will prove that 7 is a contraction on X. In fact, for x, X € X and for
all > 0,

+0
|7 x(t) = TX(1)| < eMP™! J e P7e”|x(s) — X(s)| ds
t
cMr!
<

Ty

l|x — )"c||ye*V’.
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Then we have

MP
\Tx(1) — TR(t)]e" < & x — %||..
py

Therefore, since M?~! satisfies (17), we conclude that Vx, X € X,

[a—

|7 x—Tx

» < 5l =X,

Thus 7 is a %—Lipschitz functional on the complete metric space X and the result
follows from the Banach fixed point theorem. From (20) it follows easily that v
satisfies (18). Then the uniqueness of v follows from the uniqueness of the so-
lution of (20) (Z is a contraction) and the fact that any solution of (18) satisfies
(20). The existence comes from the fact that conversely any solution of (20) satis-
fies (18). O

Proof of Theorem 1.1 (continued). First we notice that if |f(¢)| < Ke”', we have
|f(t+ T)| < Ke'Te? | and then Lemma 4.1 provides the existence of an exponen-
tially decaying solution defined on [T, +4o0) assuming 7 large enough. Conse-
quently, we have a solution v that satisfies equation (18) for all # > T}, where T
is a positive constant large enough, with

lo(1)] < Me™", (21)
where M = M'e?T and M’ > 0. If we subtract (18) from (16) we obtain
(=)' + glu) — g(v) = 0.

Setting z = u — v, we complete the proof analyzing two cases.
Case 1: 1If z(Ty) = 0, then for all > Ty, z(¢) = 0. Hence u = v and from (21)
it follows that

u(t)] < Me™™".
Then, using (13), we obtain
()]l < M'e ",

Finally by reasoning as in [6], [7] we obtain (5).
Case 2: 1If z(Ty) # 0 then Vi > Ty, z(¢) # 0 and we have

g(u(r)) —g(v(1))
u(r) = o(1)

(1) + z(1) = 0.
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Since ¢ is a monotonic function,

is a non-negative function. Moreover, there exists 0 € ]0, 1], such that
(1) = g’ (Qu(t) + (1 — 0)o(2)) < c|Ou(z) + (1 — O)o(r)|" .

We distinguish two cases:

e If p > 2, then by convexity of the (p — 1)-th power we have
10u() + (1= 0)o(0)]"~" < Oul”™" + (1= O)o]"™" < )" + 0"

e If 1 < p < 2, we study the function (x + ) — x“for 0 < a < 1 and x, y > 0.
We prove that X — (1 +X)“— X“ is a decreasing function on (0,+00)
and deduce that 0 < (1 + X)“ — X9 < 1. It follows by homogeneity that
(x+»)* < x*+ p by letting X = 5. Then we conclude that

|0u(t) + (1 — O)o(0)]”" < Ju]”™" + [o]”".
Consequently we obtain

Wp > 1, () < e(ful” + o)), (22)
Setting y = |z|, we have

¥y +a(t)y = 0.
Then the estimate (22) implies that
vz —e(ul” oy = ez 4o oy
Hence there exists some constants ¢,, ¢3 > 0 such that
v ==y — el
Since y = |z|, this gives
y' = —cay? —eslol’ .

Putting a(7) = ¢3|v|” ", we deduce that

v +a(t)y = —cy”. (23)
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Let us now set

~+00
A(t) = —C3J " ds,  w(t) = ety

t

Replacing o in (23), we obtain

1 1/(p-1)
CO(I) = {w(o)l—p + (p _ 1)C4Z}

with ¢4 = ([, a(s) ds) "D Then for ¢ large enough we see that

w(t) = K V/r=b,

Since (") is a bounded function of 7, we conclude that (6) holds by observing that
u = z+ v and v tends to 0 exponentially at infinity. O

5. Proof of Theorem 1.3

Considering g(y) = [y|?~", g satisfies (2) and (3) with ¢ = p. Hence Lemma 4.1
is applicable with ¢ = p. Therefore we assume that

a 1/(p-1)
M<|[— .
B <2p)

In (16), we replace g(y) = || 'y, we can subtract (18) from (16), we deduce
(u—0) + |ul’'u— )" o= 0. (24)

We will study two cases.
Case 1: 1f z(Ty) = 0 then z(z) = 0 for all + > Ty. Hence u = v and from (21) it
follows that

|u(t)] < Me™™".

Moreover, using (13), we obtain (10).
Case 2: 1f z(Ty) # 0 then z(z) # 0 for all > T;. We have

2(0) + ()" u(t) = |o(0)" o) = 2'(1) + a(1)=(1) = 0.

with
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o) — 101 u(o) ~ o)1)
u(t) — v(1)
_ 20 + o) (20 + o(r)) — lo(0)]” ()
2(1)
p=1q 4 v p-1 p—1
O 5 0+ o) = ool
- z(1)

In that case o(¢) > 0, indeed 7 — |u(¢)|” 'u(¢) is non decreasing function.
Since v satisfies (19), we have ‘LE;; <1 for ¢ large enough.
Therefore

-1
|U|P v < Cefp/lgt.
z

v(t)
z(1)

p
For the other term, we apply Taylor’s formula to <1 + ) and we use ‘f | < Ke

forany A < Ay and r > T'(A). Indeed,

p=l v(t) " v _ ()P v(r) ! _
o i+l () =0 (0 (155) 1)
but we have
v()” v(1) v(1) it
’<1+Tf)) 1’S(p+s)m’s(p+l)‘m‘s(erl)Ke ,
where ¢ > 0 and # < 4. We then obtain
(1) = 20" + o), (25)

with |f(#)] < Be™"'. Replacing o by its expression in (25), equation (24) becomes
2+ 2P 2+ Bz = 0.
For y = |z|, we obtain
Y+ y"+ B2y =0. (26)
Setting &(1) = eWy(¢), with A() = — [ f(s) ds we find
+oo

A4(1)] < J 1B(s)] ds < 5 27)

1
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For t > % lng and by Taylor’s formula we have
Vhe|-1,1], |e"—1|<2/n|

We obtain the estimate
A(t) 2B —nt
1€(0) — ()] < y()]e™ — 1] < 2[A(1)|¥(1) < 1 Iylle

and conclude that
() = y(1)] < ke,
where 0 =7 and k = % llvll.,- Replacing &(#) in (26), we have

—e‘A(’)f'(t) — e—pA(f)gp(,).

35

(29)

The map ¢ +— e (?~D4() js bounded and tends to 1 at infinity by integrating

over [t, t], where 0 < 7y < ¢, & is given by

1
(1) + (p— 1) [ e (r-DAW) g5

o' =

We set

t

D(z):f(to)l_”Jr(p—l)J PV gy and A1) = —(p — 1) A(2).

Iy

Then we show that D(¢) — (p — 1)z is bounded.

From (27), we know that 7 — /(¢) is an integrable function, so (e~ (?~D4() — 1)

is also integrable by (28). In order to show (11), we proceed as follows:

t

D) = (p = el = [e(t)' 7+ (= 1) | 140 s~ (- 1)

to
t

- Jew)' "+ o=

Using (28) we obtain

t

ww—@—nﬂsmho@—nﬁ|4mmSMrﬂm+%p—wB

)

(e= = DA _ 1y ds — (p — 1)10‘.

,72
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with K = &(#)" ™7 — (p — 1)to. Setting d(1) = D(¢) — (p — 1)1, we obtain

(1)
(p—1)1

)

_ ( 1 >1/(p—1) (1 B <(pd£t>1)t+ 1>—1/(p—1)>,

—1/(p=1)
<1 for ¢ large enough. Now let () = <1 + (;IE?),) " and
d(r)

= By the mean value theorem we obtain

1
—~
hS'

| | =
—_
N—
~
N
=
S
L
/
Ll
4 |
—_
\—/
=
ki
|
N
—
=
|_‘
—_
=
~——
=
M

—
hS
|
[
~—
~

d(1)
(p=1)t
suppose that

since )

1
<1

1 -
In'(1)| < — % 2 1+(1/(p=1))

Therefore

LRV
p—1

- d(1) —1/(p=1)
‘1 <1+(p1)t> =

d(1) ‘
(p— 1t

As we have seen above, d(t) is bounded by M|, so we conclude that

‘i(t)—<ﬁ>wn 3

with € = (1) P /1) g,
We recall that z has a constant sign on [Ty, +oo[, and z and u have the same
sign. As in Section 4, we set u = v+ z and ¥ = u+ w, and we distinguish the

cases z >0 and z < 0.

Cr1-/(-1),

e [fz >0, then u > 0 and || =  for ¢ large enough. Then

L\ 1\ -
—— —— < KW=,
i <(p - 1)t> ! ((p - 1)t> vl

<
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. ((p_ll)l>1/(1)—1)

< Mo 4 ke ¥ 4 Cr1-(/(-1).

Indeed,

Slu—zl+]z=¢l+

Since we have (29), we obtain (11).

e If we suppose that z < 0, then u < 0. By similar calculations we obtain the
same result. Indeed, || = —, and we have

‘I%I—(ﬁy/@—”S|_u_(ﬁ>l/<m)

< thlf(l/(l’*l))

+ 1wl

since

<lu—zl+ |-z -+

f‘Qpimeww

< Me™™' + ke 4 C ' -1/p71),

Also by (29), we finally obtain (11).

6. Proof of Proposition 1.4

Proof of (i). If Y is an odd function, then ¥(0,—x) = —(0,x). This implies
W(t,—x) = —y(t,x) for all # > 0. In that case

u(t) = Py(t,x) = é,[g W(t,x)dx =0.

Moreover, we know that y = u + w, where w(¢) € N+ for all 7 >0. We have
(cf. Proposition 3.1)

Iw(O)l] ) < Ke™™",
hence the solution y satisfies (5). O

Proof of (ii). If (0,x) > 0 and ¥ does not vanish a.e. in Q, then ¥(z,x) > 0 for
all ¢ > 0, which implies that

j Wt %) dx > 0. (30)
Q
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We suppose that we have |[y/(¢,-)||,, < Ce ' and consider the problem (1). We
integrate on Q and obtain

[, wexrae==| glwte0)ax (1)
Q Q
An elementary calculation shows that we have
c
[Lotem)axs E[ e
Q Pla

¢ -1
sprmwuwmww

IA

€ erle (=D J W(t, x) dx.
p Q

Now we set y(t) = [, ¥/(1,x) dx. From (31) we deduce that

yl(t> = 7Meiéty(t>a

with M =<CP~Vand § = (p — 1)/,.
Since y(¢) > 0 by (30), we can integrate in the interval [0, 7] and obtain

'E

Lo M
y(t) = »(0) exp{fMJ e ds} > y(0) exp{;} > 0. (32)
0
Hence y does not tend to 0 for ¢ large, which contradicts our hypothesis, and we
conclude that y satisfies (6). 0
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