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Rate of decay to 0 of the solutions to a nonlinear
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Abstract. We study the decay rate to 0 as t ! þl of the solution of equation
ct � Dcþ jcjp�1

c ¼ 0 with Neumann boundary conditions in a bounded smooth open
connected domain of Rn where p > 1. We show that either cðt; �Þ converges to 0 exponen-
tially fast or cðt; �Þ decreases like t�1=ð p�1Þ.
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1. Introduction and main results

In this paper we consider the nonlinear parabolic equation

ct � Dcþ gðcÞ ¼ 0 in Rþ �W;
qc

qn
¼ 0 on Rþ � qW;

8<
: ð1Þ

where W is a bounded smooth open connected domain of Rn and g a C1ðRÞ satis-
fies

gð0Þ ¼ 0 ð2Þ

and for some p > 1

bc > 0; Es a R; 0a g 0ðsÞa cjsjp�1: ð3Þ

From (2)–(3) we deduce that gðsÞ has the sign of s and

Es a R; jgðsÞja c

p
jsjp: ð4Þ



We define the operator A by

DðAÞ ¼ c a H 2ðWÞ; qc
qn

¼ 0 on qW

� �

and

Ec a DðAÞ; Ac ¼ �Dc:

It is well known that A is maximal monotone with compact resolvant on L2ðWÞ.
The first eigenvalue of A is 0 with eigenspace reduced to constants. The second

eigenvalue is l2 > 0 and will be denoted by l2 through the text. Moreover, the

operator B defined by

DðBÞ ¼ c a L2ðWÞ j �Dcþ gðcÞ a L2ðWÞ and qc

qn
¼ 0 on qW

� �

and

Ec a DðBÞ; Bc ¼ �Dcþ gðcÞ

is maximal monotone in L2ðWÞ. As a consequence of [1], [2] for any c0 a L2ðWÞ
there exists a unique weak solution of the equation

c 0 þ Bc ¼ 0 on Rþ; cð0; xÞ ¼ c0:

In addition, it is well known that if c0 a LlðWÞ, cðt; �Þ remains in LlðWÞ for all
t > 0. Finally [8] contains an estimate of the solution in CðWÞ and C1ðWÞ for

t > 0, which is valid for any su‰ciently regular domain.

Concerning the behaviour for t large, in [6], A. Haraux established in the case

of a pure power nonlinearity the exponential convergence to 0 of the projection on

the range of A of the solution of equation (1). Moreover in [5], the study of the

equation u 00 þ u 0 � Duþ gðuÞ ¼ 0 with Neumann boundary conditions and where

g satisfies

bC; c > 0; Es a R; cjsjp�1
a g 0ðsÞaCjsjp�1

for some p > 1, showed that either uðtÞ converges to 0 exponentially fast, or

kuðtÞkH 1
0
ðWÞb gt�1=ðp�1Þ with g > 1 for tb 1.

Several authors have treated some variants of equation (1). For example in [7]

equation (1) is considered with

gðuÞ ¼ cjujp�1
u� l1u
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and with Dirichlet boundary conditions, and the authors studied the decay rate at

the infinity of solutions to (1), where l1 > 0 is the first eigenvalue of �D in H 1
0 ðWÞ.

The result obtained there is optimal for positive solutions.

According to La Salle’s invariance principle, cf. [3], [4], any solution c of (1),

having a precompact range on Rþ with values in LlðWÞ, converges to a contin-

uum of stationary solutions of equation (1), which reduces here to the constants

of some sub-interval of g�1ð0Þ. Since the L2 distance of two solutions of (1) is

nondecreasing, actually cðt; �Þ converges to some constant a a g�1ð0Þ as well; cf.
[2], Théorème 3.11, for a more general result.

Our first result is valid without any additional hypothesis on g.

Theorem 1.1. Let g satisfy (2) and (3). Then any solution c a C
�
ð0;þlÞ;Ll

�
of

(1) satisfies the following alternative as t ! l: either

kcðt; �ÞklaCe�l2t; ð5Þ
or

bc 0 > 0; Etb 1;
��� ð

W

cðt; xÞ dx
���b c 0t�1=ðp�1Þ: ð6Þ

Remark. In Theorem 1.1, if the limit a of cðt; �Þ is not 0, (6) is automatically sat-

isfied since
Ð
W cðt; xÞ dx tends to the positive limit jWj jaj. One might wonder

whether in this case (5)–(6) become true with c replaced by c� a. It is unfortu-

nately the case only if a a Int
�
g�1ð0Þ

�
. The special case gðsÞ ¼

�
ðs� 1Þþ

�1þe

shows that we cannot hope (6) to be true with c replaced by c� a in case a ¼ 1.

Indeed, g satisfies (3) for any pb eþ 1 but of course (6) will not satisfied for p

arbitrarily large when cð0; �Þb c > 1. Because (3) is not translation invariant,

the special solution 0 plays a privileged role here. On the other hand, when

g�1ð0Þ is an interval J ¼ ½a; b�, where �la a < baþl, replacing (3) by

0a g 0ðsÞa c
�
rðsÞ

�p�1 ð7Þ

where rðsÞ ¼ dist
�
s; g�1ð0Þ

�
, we obtain

Proposition 1.2. Let g satisfy (2) and (7) and let a be the limit of a solution

c a C
�
ð0;þlÞ;Ll

�
. Then

kcðt; �Þ � aklaCe�l2t; ð8Þ
or

bc 0 > 0; Etb 1;
��� ð

W

�
cðt; xÞ � a

�
dx
���b c 0t�1=ðp�1Þ; ð9Þ

Our second result provides a more accurate estimate when gðcÞ ¼ jcjp�1
c.
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Theorem 1.3. Let us consider the nonlinear parabolic problem (1) with gðcÞ ¼
jcjp�1c. Then any solution c a C

�
ð0;þlÞ;Ll

�
of (1) satisfies the following alter-

native as t ! l: either

kcðt; �ÞklaCe�l2t; ð10Þ

or

Etb 1;
�� jcðt; �Þj � �ðp� 1Þt

��1=ðp�1Þ��
l
aKt�ð1=ðp�1ÞÞ�1; ð11Þ

where K ;C > 0, p > 1.

In the following proposition we consider two special cases showing that both

possibilities in the second result in the Theorem 1.1 can actually happen.

Proposition 1.4. Let g satisfy (2) and (3). Then we have:

(i) If W is symmetric around 0, g is odd and cð0; �Þ is an odd function in W, then any

solution c a C
�
ð0;þlÞ;Ll

�
of (1) satisfies (5).

(ii) Any solution c a C
�
ð0;þlÞ;LlðWÞ

�
of (1) such that cðt; �Þ > 0 a.e. in W sat-

isfies (6). In particular this is the case for the solution c0 a L2ðWÞ if c0b 0 and

c0 does not vanish a.e. in W.

Finally, our last result shows that the second possibility is sharp for a class of

functions g more general than the pure power.

Proposition 1.5. Under the additional hypothesis

bk1 > 0; Es a R; jgðsÞjb k1jsjp ð12Þ

for any solution c a C
�
ð0;þlÞ;Ll

�
of (1), we have

Etb 1; kcðt; �Þkla
1

k1ðp� 1Þ

� �1=ðp�1Þ
t�1=ðp�1Þ:

2. Proof of Proposition 1.5

Proof. Up to a time translation of e, we may assume c a CðRþ;LlÞ; hence

cð0; �Þ a Ll. If cð0; �Þ ¼ 0, we have cðt; �ÞC 0 and the result is obvious. Other-

wise let z be defined by

zðtÞ ¼ 1

kcð0; �Þk1�p
l þ k1ðp� 1Þt

( )1=ðp�1Þ

:
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Then z is a solution of the nonlinear ODE problem

z 0 þ k1z
p ¼ 0;

zð0Þ ¼ kcð0; �Þkl:

�

Under the additional condition (12), we will show that z is a super-solution of (1).

Indeed, we have

zt � Dzþ gðzÞ ¼ �k1z
p þ gðzÞb 0:

Since cð0; �Þa zð0Þ we deduce, by the standard comparison principle, that

cðt; �Þa zðtÞ for all tb 1.

A similar calculation shows that cðt; �Þb�zðtÞ for all tb 1, which concludes

the proof. r

3. A general result on the range component

Defining the orthogonal projection P : H ! N, where

H ¼ L2ðWÞ; N ¼ kerðAÞ and Pcðt; �Þ ¼ 1

jWj

ð
W

cðt; xÞ dx;

as already mentioned in the introduction, it was shown in [6] that for gðcÞ ¼
jcjp�1

c the estimate

kcðtÞ � PcðtÞkL2ðWÞaKe�l2t;

holds for some constant K > 0. In this section, we will show that we have the

same result for any function g satisfying (3). More generally we have

Proposition 3.1. Let c a CðRþ;LlÞ be any solution of (1). Assume that g is a

locally Lipschitz non-decreasing function. Then we have

kcðtÞ � PcðtÞk2a kcð0Þ � Pcð0Þk2e�l2t; ð13Þ

where k � k2 denotes the norm in L2ðWÞ.

Proof. We denote by ðu; vÞ the inner product of two functions u, v of L2ðWÞ. Since

g is a nondecreasing function for all c a LlðWÞ, we have a.e. in x a W

�
gðcÞ � gðPcÞ

�
ðc� PcÞb 0
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and then by integrating over W�
gðcÞ;c� Pc

�
�
�
gðPcÞ;c� Pc

�
b 0: ð14Þ

Since gðPcÞ is a constant and ðc� PcÞ a N?, we deduce that�
gðPcÞ;c� Pc

�
¼ 0. Hence from (14),�

gðcÞ;c� Pc
�
b 0:

Setting

w ¼ c� Pc;

we have

w 0 � Dw ¼ �ðI � PÞgðcÞ

since DPc ¼ PDc ¼ 0. Since�
w; ðI � PÞgðcÞ

�
¼
�
ðI � PÞw; gðcÞ

�
¼
�
gðcÞ;c� Pc

�
we find

1

2

d

dt
kwðtÞk22 ¼ ðw;DwÞ �

�
gðcÞ;c� Pc

�
a�l2kwk22 :

By integrating we obtain (13). r

4. Proof of Theorem 1.1

We set c ¼ uþ w, where u ¼ Pc and w ¼ ðI � PÞc. By projecting (1) on N we

obtain

ut þ P
�
gðcÞ

�
¼ 0; ð15Þ

where we have used that PðAcÞ ¼ 0 since RðAÞHN?. Noticing that

ut þ P
�
gðuÞ

�
þ P

�
gðcÞ � gðuÞ

�
¼ ut þ gðuÞ þ P

�
gðcÞ � gðuÞ

�
;

we can rewrite the equation (15) as

ut þ gðuÞ ¼ �P
�
gðcÞ � gðuÞ

�
:

By assumption (3), we deduce that

��P�gðcÞ � gðuÞ
���a 1

jWj kgðcÞ � gðuÞk1a
c

jWj ðkck
p�1
2p�2 þ kukp�1

2p�2Þkwk2:
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But c and u are uniformly bounded and from Proposition 3.1 we have the esti-

mate kwðtÞk2aKe�l2t: Therefore

��P�gðcÞ � gðuÞ
���aK 0e�l2t;

with K 0 > 0: This leads us to study the ODE

u 0 þ gðuÞ ¼ f ðtÞ in Rþ; ð16Þ

where

f ðtÞ ¼ P
�
gðcÞ � gðuÞ

�
and j f ðtÞjaK 0e�l2t:

Using the same method as in [5], we show the following result:

Lemma 4.1. Let c > 0, g > 0, p > 1 and g satisfying (2) and (3). Let M > 0 such

that

Ma
g

2c

� �1=ðp�1Þ
; ð17Þ

c1 > 0 with

c1a
g

2
M:

Then, for every continuous function f in ð0;þlÞ satisfying

j f ðtÞja c1e
�gt;

there exists a unique function v a C1ðRþÞ with

Etb 0; v 0 þ gðvÞ ¼ f ðtÞ ð18Þ

and

sup
t A ð0;þlÞ

fegtjvðtÞjgaM: ð19Þ

Proof. Since any solution of (18), (19) satisfies the integral equation

vðtÞ ¼ �
ðþl

t

�
f ðsÞ � g

�
vðsÞ

�
ds; ð20Þ
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we look for a solution of (20). It is then natural to introduce the function space

X ¼
n
v a Cð0;þlÞ

���� sup
t A ð0;þlÞ

egtjvðtÞjaM
o
;

equipped with the distance associated to the norm

kvkg ¼ sup
t A ð0;þlÞ

egtjvðtÞj:

We consider the operator T : X ! Cð0;þlÞ defined by

TvðtÞ ¼ �
ðþl

t

�
f ðsÞ � g

�
vðsÞ

�
ds:

From (4), we have the estimate

Es a Rþ;
��g�vðsÞ���a c

p
jvðsÞjp:

First we will show that TðXÞHX : Let v a X ; then for all tb 0,

jTvðtÞja
ðþl

t

j f ðsÞj dsþ c

p

ðþl

t

jvðsÞjp ds

a
c1

g
e�gt þ c

p
Mp

ðþl

t

e�pgs ds

a
c1

g
þ cMp

p2g

� �
e�gt

a
M

2
þ M

2p2

� �
e�gt:

Since p > 1; it follows that

jTvðtÞjaMe�gt:

Hence by (19), we obtain that Tv a X , with

kTvðtÞkgaM:

Secondly, we will prove that T is a contraction on X . In fact, for x; x a X and for

all tb 0,

jTxðtÞ �TxðtÞja cMp�1

ðþl

t

e�pgsegsjxðsÞ � xðsÞj ds

a
cMp�1

pg
kx� xkge�gt:
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Then we have

jTxðtÞ �TxðtÞjegta cMp�1

pg
kx� xkg:

Therefore, since Mp�1 satisfies (17), we conclude that Ex; x a X ,

kTx�Txkga
1

2
kx� xkg:

Thus T is a 1
2-Lipschitz functional on the complete metric space X and the result

follows from the Banach fixed point theorem. From (20) it follows easily that v

satisfies (18). Then the uniqueness of v follows from the uniqueness of the so-

lution of (20) (T is a contraction) and the fact that any solution of (18) satisfies

(20). The existence comes from the fact that conversely any solution of (20) satis-

fies (18). r

Proof of Theorem 1.1 (continued ). First we notice that if j f ðtÞjaKegt; we have

j f ðtþ TÞjaKegTegt; and then Lemma 4.1 provides the existence of an exponen-

tially decaying solution defined on ½T ;þlÞ assuming T large enough. Conse-

quently, we have a solution v that satisfies equation (18) for all tbT0, where T0

is a positive constant large enough, with

jvðtÞjaMe�l2t; ð21Þ

where M ¼ M 0egT0 and M 0 > 0. If we subtract (18) from (16) we obtain

ðu� vÞ0 þ gðuÞ � gðvÞ ¼ 0:

Setting z ¼ u� v; we complete the proof analyzing two cases.

Case 1: If zðT0Þ ¼ 0, then for all tbT0, zðtÞ ¼ 0. Hence uC v and from (21)

it follows that

juðtÞjaMe�l2t:

Then, using (13), we obtain

kcðtÞk2aM 0e�l2t:

Finally by reasoning as in [6], [7] we obtain (5).

Case 2: If zðT0ÞA 0 then EtbT0, zðtÞA 0 and we have

z 0ðtÞ þ
g
�
uðtÞ

�
� g
�
vðtÞ
�

uðtÞ � vðtÞ zðtÞ ¼ 0:
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Since g is a monotonic function,

aðtÞ :¼
g
�
uðtÞ

�
� g
�
vðtÞ
�

uðtÞ � vðtÞ

is a non-negative function. Moreover, there exists y a �0; 1½, such that

aðtÞ ¼ g 0�yuðtÞ þ ð1� yÞvðtÞ
�
a cjyuðtÞ þ ð1� yÞvðtÞjp�1:

We distinguish two cases:

• If p > 2, then by convexity of the ðp� 1Þ-th power we have

jyuðtÞ þ ð1� yÞvðtÞjp�1
a yjujp�1 þ ð1� yÞjvjp�1

a jujp�1 þ jvjp�1:

• If 1 < p < 2, we study the function ðxþ yÞa � xa for 0 < a < 1 and x; y > 0.

We prove that X ! ð1þ XÞa � X a is a decreasing function on ð0;þlÞ
and deduce that 0 < ð1þ XÞa � X a < 1. It follows by homogeneity that

ðxþ yÞa < xa þ ya by letting X ¼ x
y
. Then we conclude that

jyuðtÞ þ ð1� yÞvðtÞjp�1
a jujp�1 þ jvjp�1:

Consequently we obtain

Ep > 1; aðtÞa cðjujp�1 þ jvjp�1Þ: ð22Þ

Setting y ¼ jzj, we have

y 0 þ aðtÞyb 0:

Then the estimate (22) implies that

y 0
b�cðjujp�1 þ jvjp�1Þy ¼ �cðjzþ vjp�1 þ jvjp�1Þy:

Hence there exists some constants c2; c3 > 0 such that

y 0
b�c2ðjzjp�1Þy� c3jvjp�1

y:

Since y ¼ jzj, this gives

y 0
b�c2y

p � c3jvjp�1
y:

Putting aðtÞ ¼ c3jvjp�1, we deduce that

y 0 þ aðtÞyb�c2y
p: ð23Þ

32 I. Ben Arbi



Let us now set

AðtÞ ¼ �c3

ðþl

t

jvjp�1
ds; oðtÞ ¼ eAðtÞy:

Replacing o in (23), we obtain

oðtÞb 1

oð0Þ1�p þ ðp� 1Þc4t

( )1=ðp�1Þ

with c4 ¼
�Ðþl

0 aðsÞ ds
�ðp�1Þ

. Then for t large enough we see that

oðtÞbKt�1=ðp�1Þ:

Since eAðtÞ is a bounded function of t, we conclude that (6) holds by observing that

u ¼ zþ v and v tends to 0 exponentially at infinity. r

5. Proof of Theorem 1.3

Considering gðcÞ ¼ jcjp�1c, g satisfies (2) and (3) with c ¼ p. Hence Lemma 4.1

is applicable with c ¼ p. Therefore we assume that

Ma
l2

2p

� �1=ðp�1Þ
:

In (16), we replace gðcÞ ¼ jcjp�1c, we can subtract (18) from (16), we deduce

ðu� vÞ0 þ jujp�1
u� jvjp�1

v ¼ 0: ð24Þ

We will study two cases.

Case 1: If zðT0Þ ¼ 0 then zðtÞ ¼ 0 for all tbT0. Hence uC v and from (21) it

follows that

juðtÞjaMe�l2t:

Moreover, using (13), we obtain (10).

Case 2: If zðT0ÞA 0 then zðtÞA 0 for all tbT0. We have

z 0ðtÞ þ juðtÞjp�1
uðtÞ � jvðtÞjp�1

vðtÞ ¼ z 0ðtÞ þ aðtÞzðtÞ ¼ 0:

with
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aðtÞ ¼ juðtÞjp�1
uðtÞ � jvðtÞjp�1

vðtÞ
uðtÞ � vðtÞ

¼
jzðtÞ þ vðtÞjp�1�

zðtÞ þ vðtÞ
�
� jvðtÞjp�1

vðtÞ
zðtÞ

¼
jzðtÞjp�1 1þ vðtÞ

zðtÞ

��� ���p�1�
zðtÞ þ vðtÞ

�
� jvðtÞjp�1

vðtÞ
zðtÞ :

In that case aðtÞ > 0, indeed t 7! juðtÞjp�1
uðtÞ is non decreasing function.

Since v satisfies (19), we have
vðtÞ
zðtÞ

��� ���a 1 for t large enough.

Therefore

jvjp�1
v

z

�����
�����a ce�pl2t:

For the other term, we apply Taylor’s formula to 1þ vðtÞ
zðtÞ

	 
p
and we use

��v
z
jaKe�lt

for any l < l2 and tbTðlÞ. Indeed,

jzðtÞjp�1 1þ vðtÞ
zðtÞ

����
����
p�1

1þ vðtÞ
zðtÞ

� �
¼ jzðtÞjp�1 1þ 1þ vðtÞ

zðtÞ

� �p

� 1

� �
;

but we have

1þ vðtÞ
zðtÞ

� �p

� 1

����
����a ðpþ eÞ vðtÞ

zðtÞ

����
����a ðpþ 1Þ vðtÞ

zðtÞ

����
����a ðpþ 1ÞKe�lt;

where e > 0 and h < l2. We then obtain

aðtÞ ¼ jzðtÞjp�1 þ bðtÞ; ð25Þ

with jbðtÞjaBe�ht. Replacing a by its expression in (25), equation (24) becomes

z 0 þ jzjp�1
zþ bðtÞz ¼ 0:

For y ¼ jzj, we obtain

y 0 þ yp þ bðtÞy ¼ 0: ð26Þ

Setting xðtÞ ¼ eAðtÞyðtÞ; with AðtÞ ¼ �
Ðþl
t

bðsÞ ds we find

jAðtÞja
ðþl

t

jbðsÞj dsa B

h
e�ht: ð27Þ
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For tb 1
h
ln B

h
and by Taylor’s formula we have

Eh a ½�1; 1�; jeh � 1ja 2jhj: ð28Þ

We obtain the estimate

jxðtÞ � yðtÞja yðtÞjeAðtÞ � 1ja 2jAðtÞjyðtÞa 2B

h
kykle�ht

and conclude that

jxðtÞ � yðtÞja ke�dt; ð29Þ

where d ¼ h and k ¼ 2B
h
kykl. Replacing xðtÞ in (26), we have

�e�AðtÞx 0ðtÞ ¼ e�pAðtÞxpðtÞ:

The map t 7! e�ðp�1ÞAðtÞ is bounded and tends to 1 at infinity by integrating

over ½t0; t�, where 0 < t0 < t; x is given by

xðtÞp�1 ¼ 1

xðt0Þ1�p þ ðp� 1Þ
Ð t
t0
e�ðp�1ÞAðsÞ ds

:

We set

DðtÞ ¼ xðt0Þ1�p þ ðp� 1Þ
ð t
t0

e�ðp�1ÞAðsÞ ds and hðtÞ ¼ �ðp� 1ÞAðtÞ:

Then we show that DðtÞ � ðp� 1Þt is bounded.
From (27), we know that t 7! hðtÞ is an integrable function, so ðe�ðp�1ÞAðtÞ � 1Þ

is also integrable by (28). In order to show (11), we proceed as follows:

jDðtÞ � ðp� 1Þtj ¼
���xðt0Þ1�p þ ðp� 1Þ

ð t
t0

e�ðp�1ÞAðsÞ ds� ðp� 1Þt
���

¼
���xðt0Þ1�p þ ðp� 1Þ

ð t
t0

ðe�ðp�1ÞAðsÞ � 1Þ ds� ðp� 1Þt0
���:

Using (28) we obtain

jDðtÞ � ðp� 1Þtja jK j þ 2ðp� 1Þ2
ð t
t0

jAðsÞj dsaM1 ¼ jK j þ 2ðp� 1Þ2 B
h2
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with K ¼ xðt0Þ1�p � ðp� 1Þt0. Setting dðtÞ ¼ DðtÞ � ðp� 1Þt, we obtain

xðtÞ � 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����
¼ 1

dðtÞ þ ðp� 1Þt

� �1=ðp�1Þ
� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����
¼ 1

ðp� 1Þt

� �1=ðp�1Þ 1
dðtÞ

ðp�1Þt þ 1

0
@

1
A
1=ðp�1Þ

� 1

ðp� 1Þt

� �1=ðp�1Þ
�������

�������
¼ 1

ðp� 1Þt

� �1=ðp�1Þ
dðtÞ

ðp� 1Þtþ 1

� ��1=ðp�1Þ
� 1

�����
�����

¼ 1

ðp� 1Þt

� �1=ðp�1Þ
1� dðtÞ

ðp� 1Þtþ 1

� ��1=ðp�1Þ
 !

;

since
dðtÞ

ðp�1Þt

��� ���< 1 for t large enough. Now let hðtÞ ¼ 1þ dðtÞ
ðp�1Þt

	 
�1=ðp�1Þ
and

suppose that
dðtÞ

ðp�1Þt

��� ���a 1
2 . By the mean value theorem we obtain

jh 0ðtÞja 1

p� 1
� 21þð1=ðp�1ÞÞ:

Therefore

1� 1þ dðtÞ
ðp� 1Þt

� ��1=ðp�1Þ
�����

�����a 1

p� 1
� 21þð1=ðp�1ÞÞ dðtÞ

ðp� 1Þt

����
����:

As we have seen above, dðtÞ is bounded by M1, so we conclude that

xðtÞ � 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����aCt�1�ð1=ðp�1ÞÞ;

with C ¼ 1
p�1

	 
p=ðp�1Þ
�21þð1=ðp�1ÞÞM1.

We recall that z has a constant sign on ½T0;þl½, and z and u have the same

sign. As in Section 4, we set u ¼ vþ z and c ¼ uþ w; and we distinguish the

cases z > 0 and z < 0.

• If z > 0, then u > 0 and jcj ¼ c for t large enough. Then

jcj � 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����a u� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����þ jwjaKt�1�ð1=ðp�1ÞÞ:
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Indeed,

u� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

����� a ju� zj þ jz� xj þ x� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����
aMe�l2t þ ke�dt þ Ct�1�ð1=ðp�1ÞÞ:

Since we have (29), we obtain (11).

• If we suppose that z < 0, then u < 0: By similar calculations we obtain the

same result. Indeed, jcj ¼ �c; and we have

jcj � 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����a �u� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����þ jwj

aKt�1�ð1=ðp�1ÞÞ

since

�u� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����a ju� zj þ j�z� xj þ x� 1

ðp� 1Þt

� �1=ðp�1Þ
�����

�����
aMe�l2t þ ke�dt þ Ct�1�ð1=ðp�1ÞÞ:

Also by (29), we finally obtain (11).

6. Proof of Proposition 1.4

Proof of (i). If c is an odd function, then cð0;�xÞ ¼ �cð0; xÞ. This implies

cðt;�xÞ ¼ �cðt; xÞ for all t > 0. In that case

uðtÞ ¼ Pcðt; xÞ ¼ 1

jWj

ð
W

cðt; xÞ dx ¼ 0:

Moreover, we know that c ¼ uþ w, where wðtÞ a N? for all tb 0. We have

(cf. Proposition 3.1)

kwðtÞkLlðWÞaKe�l2t;

hence the solution c satisfies (5). r

Proof of (ii). If cð0; xÞb 0 and c does not vanish a.e. in W, then cðt; xÞ > 0 for

all tb 0, which implies that ð
W

cðt; xÞ dx > 0: ð30Þ
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We suppose that we have kcðt; �ÞklaCe�l2t and consider the problem (1). We

integrate on W and obtainð
W

ctðt; xÞ dx ¼ �
ð
W

g
�
cðt; xÞ

�
dx: ð31Þ

An elementary calculation shows that we have

ð
W

g
�
cðt; xÞ

�
dxa

c

p

ð
W

jcðt; xÞjp dx

a
c

p

ð
W

kcðt; xÞkp�1
l cðt; xÞ dx

a
c

p
Cp�1e�ðp�1Þl2t

ð
W

cðt; xÞ dx:

Now we set yðtÞ ¼
Ð
W cðt; xÞ dx. From (31) we deduce that

y 0ðtÞb�Me�dtyðtÞ;

with M ¼ c
p
Cp�1 and d ¼ ðp� 1Þl2.

Since yðtÞ > 0 by (30), we can integrate in the interval ½0; t� and obtain

yðtÞb yð0Þ exp
n
�M

ð t
0

e�ds ds
o
b yð0Þ exp �M

d

� �
> 0: ð32Þ

Hence y does not tend to 0 for t large, which contradicts our hypothesis, and we

conclude that y satisfies (6). r
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