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Abstract. Nonlinear matrix equations arise in di¤erent scientific topics, such as applied
statistics, control theory, and financial mathematics, among others. As in many other
scientific areas, Newton’s method has played an important role when solving these matrix
problems. Under standard assumptions, the specialized Newton methods that have been
developed for specific problems exhibit local and q-quadratic convergence and require a
suitable initial guess. They also require, as usual, a significant amount of computational
work per iteration, that in this case involve several matrix factorizations per iterations.
As expected, whenever a Newton method can be developed, a secant method can also be
developed. Indeed, more recently, secant methods for solving specific nonlinear matrix
problems have been developed opening a new line of research. As in previous scenarios,
these specialized secant methods exhibit local and q-superlinear convergence, also require
a suitable initial guess, and avoid the use of derivatives in the formulation of the schemes.

In this review we start by recalling the presence of Newton’s method and the secant
methods, and also their classical relationship, in di¤erent and sometimes unexpected
scenarios for vector problems. Then we present and describe the state of the art in the use
of Newton’s method and also the secant method in the space of matrices. A second objec-
tive is to present a unified approach for describing the features of these classical schemes,
that in the space of matrices represent an interesting research area with special features to
be explored.
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1. Introduction

Newton’s method has played a fundamental role in the development of numerical

algorithms for solving scientific computing problems in general. It is simple to
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describe, and so it is appealing, because it appears naturally from considering a

Taylor approximation to a certain function associated with the problem at hand.

It has been rediscovered several times through history for solving specialized

problems. Moreover, historically, whenever a Newton method has been proposed

to solve specific problems, secant methods have also been developed for the same

problem. The main reason is that secant methods avoid the explicit knowledge of

derivatives at the cost of reducing the asymptotic convergence from q-quadratic

to q-superlinear, and in practice this di¤erence in speed of convergence is seldom

appreciated.

One of the objectives of this review is to unify the Newton-secant connection

for several scenarios and for important applications. Special attention is paid to

the historical process in the space of vectors, describing some of the equivalent

well-known methods. The other main objective is to present some of the recent

developments for solving matrix problems using Newton’s method as well as the

secant method. In that case the movement from vectors to matrices is an intrigu-

ing and attractive topic that has produces several impressive specialized Newton’s

method, and quite recently some secant methods.

In a general setting, let us consider the following nonlinear problem:

given F : H ! H find X� a H such that FðX�Þ ¼ 0; ð1Þ

where H is a normed space, and F is a Fréchet di¤erentiable map. We denote

by F 0 the Fréchet derivative of F , and by kXk the norm of X . If H is an inner

product space, then kXk2 ¼ 3X ;X4 will be the norm induced by the inner

product. During the presentation of our review we will consider the finite dimen-

sional space H ¼ Rn for vector problems, and depending on the application, we

will consider H ¼ Cn�n or H ¼ Rn�n for matrix problems.

The well-known Newton method for solving equation (1) can be written, in a

general framework, as:

Algorithm 1 Newton’s method

1: Given X0 a H

2: for k ¼ 0; 1; . . . do
3: Solve F 0ðXkÞSk ¼ �F ðXkÞ
4: Xkþ1 ¼ Xk þ Sk

5: end for

Note that we need F 0 to find Sk at each iteration of Algorithm 1 and in order to

obtain F 0 we can use the Taylor series for F about X ,

FðX þ SÞ ¼ F ðXÞ þ F 0ðXÞS þ RðSÞ; ð2Þ
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where RðSÞ is such that

lim
kSk!0

kRðSÞk
kSk ¼ 0:

The Taylor expansion (2) allows us to identify the application of F 0ðXÞ on S

which is required to solve the linear problem of step 3 in Algorithm 1.

On the other hand, a suitable secant method can also be obtained for solving

nonlinear problems. For example, in the well-known scalar case, f : C ! C, the

secant method can be written as follows:

xkþ1 ¼ xk �
f ðxkÞ
ak

;

where ak satisfies that f ðxkÞ ¼ f ðxk�1Þ þ akðxk � xk�1Þ for kb 0, and x�1; x0 a C

are given. Notice that ak ¼ f 0ðxkÞ for all k yields the scalar Newton iteration. In

a recent work [143], a full investigation is included on the historical development

of the secant method.

For di¤erent scenarios, from vector problems to matrix problems, we will dis-

cuss in this review specialized Newton methods and the suitable secant methods

that have been developed to solve problem (1).

2. Vector problems

Let F : Rn ! Rn. Consider the linear model MkðxÞ ¼ FðxkÞ þ JðxkÞðx� xkÞ that
approximates F at xk, where JðxkÞ represents the Jacobian matrix at xk. Notice

that MkðxkÞ ¼ F ðxkÞ. The next iterate, xkþ1, in Newton’s method is obtained

by solving Mkðxkþ1Þ ¼ 0. Therefore, xkþ1 ¼ xk þ sk, where sk satisfies the linear

system of equations JðxkÞsk ¼ �F ðxkÞ. Solving this linear system for every k

represents the computational e¤ort of Newton’s method. The next result shows,

under standard assumptions, the local and q-quadratic convergence of Newton’s

method for solving (1). For a proof see [57].

Theorem 2.1. Let F : Rn ! Rn be a continuously di¤erentiable function in an

open and convex set DHRn. Let us assume that there exists x� a Rn and

r; b > 0, such that Nðx�; rÞHD, F ðx�Þ ¼ 0, Jðx�Þ�1
exists with kJðx�Þ�1ka b,

and J a Lipg
�
Nðx�; rÞ

�
. Then there exists e > 0 such that for all x0 a Nðx�; eÞ

the sequence fxkgkb0 generated by the iteration xkþ1 ¼ xk � JðxkÞ�1
FðxkÞ is well

defined, converges to x�, and satisfies

kxkþ1 � x�ka bgkxk � x�k2 for all kb 0: ð3Þ

433Newton’s and secant methods: from vectors to matrices



Here, we introduce the notation J a Lipg
�
Nðx�; rÞ

�
which means that there

exists g > 0 such that for every x; y a Nðx�; rÞ it follows that kJðxÞ � JðyÞka
gkx� yk, where Nðx�; rÞ denotes the open ball with center x� and radius r.

From (3) we conclude that Newton’s method has local and q-quadratic conver-

gence when the matrix Jðx�Þ is nonsingular, which is clearly a great advantage.

On the negative side, Newton’s method only has local convergence, so it requires

globalization strategies to be practically e¤ective and needs to solve a linear sys-

tem of equations per iteration. Concerning globalization strategies, there are

two main possibilities that can be associated with Newton-type methods and

also with secant-type methods: line search strategies and trust region schemes. In

this work we do not concentrate on the issue of globalization techniques. For

a complete treatment of this topic we recommend the books by Bertsekas [16],

Conn et al. [42], Fletcher [70], and Nocedal and Wright [139]. In the general

setting of Banach spaces, Newton’s method, as presented in Algorithm 1, has

been extensively studied. The most important theoretical tool in that case to prove

the convergence of Newton’s method is the well-known Newton–Kantorovich

Theorem that has been extended and applied to several di¤erent problems.

For a complete survey of Newton’s method in Banach spaces and the Newton–

Kantorovich Theorem, see the recent book by Argyros [5]. A historical review

about the convergence analysis of Newton’s method can be found in [140].

For solving problem (1) when F : Rn ! Rn there also exist the so-called

secant-type methods, also known as quasi-Newton methods [25]. The main fea-

ture of the secant methods is that they do not require the explicit knowledge of

the Jacobian map, JðxÞ. As in the development of Newton’s method, at every

iteration k, the following linear model is solved to obtain xkþ1

M̂MkðxÞ ¼ FðxkÞ þ Akðx� xkÞ: ð4Þ

In the vector case, Ak is an n� n matrix that is expected to approximate JðxkÞ.
Clearly if Ak ¼ JðxkÞ, for all k, then Newton’s method is recovered. However,

the idea is to avoid the use of JðxkÞ, and so the matrix Ak is obtained among those

that satisfy F ðxk�1Þ ¼ M̂Mkðxk�1Þ. When this condition is imposed, we obtain the

so-called secant equation,

Aksk�1 ¼ yk�1; ð5Þ

where sk�1 ¼ xk � xk�1 and yk�1 ¼ F ðxkÞ � F ðxk�1Þ. As in the scalar case, equa-

tion (4) satisfies M̂MkðxkÞ ¼ FðxkÞ and the next iterate, xkþ1, is the one that satisfies

M̂Mkðxkþ1Þ ¼ 0. Any method generated by this procedure is known as a secant-type

method or a quasi-Newton method, and can be written as

xkþ1 ¼ xk � A�1
k FðxkÞ;

where the vector x0 and the matrix A0 must be given.
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Notice that equation (5) represents a linear system of n equations and n2

unknowns (the n2 elements of Ak) which implies that there are infinitely many

ways of building the matrix Ak at every iteration. A very successful way of

building Ak at every k was proposed by Broyden [28], and later analyzed by

Dennis [53]. The so-called Broyden’s method is given by the following formula

for Akþ1

Akþ1 ¼ Ak þ
ðyk � AkskÞstk

stksk
: ð6Þ

The formula (6) for building Akþ1 is obtained as the closest matrix to Ak that sat-

isfies the secant equation (5), see [57], [70]. Broyden’s method has been extended

in several ways and has produced a significant body of research for many di¤erent

problems. For a complete description of Broyden’s method, its extensions and

applications see, e.g., [29], [57], [128], [139], [179].

Broyden’s algorithm can be written as:

Algorithm 2 Broyden’s method

1: Given x0 a Rn, A0 a Rn�n

2: for k ¼ 0; 1; . . . do

3: Solve Aksk ¼ �FðxkÞ . For sk
4: xkþ1 ¼ xk þ sk
5: ykþ1 ¼ Fðxkþ1Þ þ F ðxkÞ

6: Akþ1 ¼ Ak þ
ðyk � AkskÞstk

stksk
7: end for

The next result establishes, under standard assumptions, the local and q-superlinear

convergence of Broyden’s method for solving (1). For details and a full proof

see [57].

Theorem 2.2. Under the same hypothesis of Theorem 2.1, there exist positive

constants e and d such that if kx0 � x�k2a e and kA0 � Jðx�Þk2a d, then the se-

quence fxkg generated by Algorithm 2 is well defined and converges q-superlinearly

to x�.

One of the most popular variants of Broyden’s method is the so-called inverse

Broyden’s method in which the inverse of the Jacobian matrix, JðxkÞ�1, is directly

approximated at every iteration [57]. The computational cost of the inverse ver-

sion is similar to the standard Broyden’s method except that the calculation of
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the vector sk, in Step 3 of Algorithm 2, requires a matrix-vector product instead of

the solution of a linear system. For the inverse version we have that

A�1
kþ1 ¼ A�1

k þ ðsk � A�1
k ykÞyt

k

yt
k yk

; ð7Þ

and A�1
0 must be given. As in the standard Broyden’s method the matrix A�1

kþ1

given according to (7) solves an optimization problem, that in this case is stated

as

min
B AQðyk ; skÞ

kB�1 � A�1
k k2;

where Qðyk; skÞ ¼ fB a Cn�n : Bsk ¼ ykg. In other words, Akþ1 satisfies the secant

equation and A�1
kþ1 is the closest nonsingular matrix to A�1

k . Once again, under

standard assumptions the inverse Broyden’s method is locally and q-superlinearly

convergent [55], [56], [57]. The inverse Broyden’s method will play an important

role in Section 3, where we describe the secant-type extensions recently developed

for matrix problems.

Under some special assumptions on F , for solving (1), or for some special

problems, a faster rate of convergence than q-quadratic can be observed for

Newton’s method (q-order p, where p > 2). Moreover, some special methods

have been developed at some additional cost per iteration to accomplish that

kind of very fast convergence; see, e.g., [66], [80], [115], [166], [171], [176]. For

some of those special cases, under the same circumstances for which Newton’s

method shows a q-order p convergence, for p > 2, the secant-type methods also

show a convergence rate faster than q-superlinear; see for example [67], [88]. In

the scalar case, the relationship between the convergence rate of Newton’s method

and that of the secant method has been characterized [152].

As in the case of Newton’s method, the secant-type methods have also been

extended and analyzed for solving nonlinear problems in Hilbert spaces; see e.g.

[77], [156]. Newton’s method has been extended for solving nonsmooth systems

of nonlinear equations [38], [98], [129], [155], and has been combined with interior

point methods [78]. Similarly, the secant-type methods have also been extended

for nonsmooth problems [37], [121], [130], [145], and have been combined with

inexact schemes and nonstandard globalization strategies [20], [73].

2.1. Unconstrained optimization problems. The relationship between Newton’s

method and secant methods has been suitably exploited in the development of

numerical optimization algorithms, and hence it represents one of the most impor-

tant topics to illustrate the historical connection between them.

For solving smooth unconstrained optimization problems, the traditional

approach is to solve a nonlinear system with the gradient vector of the objective
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function, f : Rn ! R, i.e., find x a Rn such that ‘f ðxÞ ¼ 0. Hence, for un-

constrained optimization, we recover problem (1) with FðxÞ ¼ ‘f ðxÞ. Let us

consider, without loss of generality, the minimization problem.

The methods we consider belong to a large family of iterative methods that can

be written in a generic fashion as follows

xkþ1 ¼ xk þ akdk; ð8Þ

where dk is a search direction, usually chosen as a descent direction i.e.,

d t
k‘f ðxkÞ < 0, and ak > 0 is the step length in the direction dk. Both dk and ak

can be chosen to guarantee convergence to local minimizers, according to some

standard globalization strategies. A very important family can be obtained by

choosing the search direction as follows

dk ¼ �H�1
k ‘f ðxkÞ;

where Hk is a nonsingular and symmetric matrix that approximates the Hessian

matrix of f at xk. Di¤erent ways of choosing dk and di¤erent ways of choos-

ing ak produce di¤erent methods. Two well-known methods are obtained when

Hk ¼ I , for all k, which is known as the steepest descent method, the Cauchy

method [32], or simply the gradient method; and Hk ¼ ‘2f ðxkÞ (the Hessian

at xk) for all k, that produces Newton’s method. Notice that any possible scheme

that approximates the inverse of the Hessian matrix to obtain dk can be viewed

as an inverse preconditioning strategy for the Cauchy method [123]. See [36] for

a preconditioning strategy of that kind, based on solving a suitable di¤erential

equation by means of a marching scheme that improves the quality of the approx-

imation when k increases.

In practice, the direction dk in Newton’s method is obtained by solving the

following linear system of equations

‘2f ðxkÞdk ¼ �‘f ðxkÞ;

that can be solved inexactly, i.e., by using an iterative linear scheme and stopping

prematurely the internal solver, by monitoring the value of kFðxkÞk. The idea of

stopping prematurely the internal iterative solver goes back to Pereyra [144], who

developed such a combined scheme for solving two point boundary value prob-

lems, and was later generalized and formalized by Dembo et al. [51]. The inexact

Newton method has been associated with globalization strategies [59], nonsmooth

problems [129], and Krylov subspace methods [11], [27].

For the Newton iteration to be well defined, we must assume that f is twice

continuously di¤erentiable in the domain of interest. Moreover, in order to
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guarantee that the Newton direction is a descent direction, it is enough to assume

that the Hessian matrix is symmetric and positive definite (PD) for all k. In that

case, the inverse of the Hessian is also PD and so

‘f ðxkÞ tdk ¼ �‘f ðxkÞ t‘2f ðxkÞ�1‘f ðxkÞ < 0:

There exists several well-known techniques to modify the search direction to

guarantee that the descent condition is satisfied, including modified factorization

techniques [57], [139], and solving optimization subproblems as in the trust region

approach [42]. Not all descent directions are of the same quality. The quality of

a descent direction dk can be measured with the cosine that it forms with the

negative gradient direction

cos yk ¼
�gt

kdk

kgkk kdkk
:

Concerning the secant-type methods, in order to reduce the computational

e¤ort required by Newton’s method, Davidon introduced [47] a very clever idea

for optimization, that provides a way of approximating the derivative (Hessian

matrix) using only the gradient information evaluated at each iterate. Davidon’s

method was the first secant method for vector problems, and its computational

advantages were immediately appreciated in [71]. These very successful methods,

also called quasi-Newton methods, are the natural secant extension of Newton’s

method for problems in vector spaces. For a complete discussion of quasi-Newton

methods; see [56], [57]. The most successful ones are the DFP, the BFGS, and the

SR1 methods. All these methods belong to the family described by (8), where now

the matrix Hk is built according to some recipe to satisfy the secant equation (5).

Hence, Hk will depend not only on xk, but also on Hk�1 and xk�1; see e.g. [57],

[139]. As in the Newton method, it is always possible to guarantee that dk is

a descent direction, and as before, the direction can be obtained inexactly [72].

The secant methods for unconstrained optimization have also been extended for

nonsmooth problems [37], [121], [130].

2.2. Constrained optimization problems. Let us now discuss the extensions of

Newton’s method and secant methods for solving the constrained optimization

problem, also known as the nonlinear programming problem,

minimize f ðxÞ subject to hðxÞ ¼ 0 and gðxÞa 0; ð9Þ

where f : Rn ! R, h : Rn ! Rm, and g : Rn ! Rp. In the form (9), the problem

is quite general; it includes the unconstrained case when m ¼ p ¼ 0, and it also
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includes as special cases linear and quadratic programs in which the constraint

maps, h and g, are a‰ne and f is linear or quadratic, respectively. A function

that plays a key role in constrained optimization is the Lagrangian function

defined by

Lðx; l; mÞ ¼ f ðxÞ þ lThðxÞ þ mTgðxÞ;

where l a Rm and m a Rp are the Lagrange multiplier vectors.

We start our discussion with the following general observation: For uncon-

strained optimization problems using either Newton’s method or quasi-Newton

methods, we need to solve a sequence of symmetric linear systems of equations.

On the other hand, for solving (9), extending both the Newton method and the

secant formulations, the standard and proper approach is to solve a sequence of

quadratic programming problems in which, at every iteration, the Hessian of the

quadratic objective function is the Hessian of the Lagrangian function or a secant

approximation to the Hessian. This approach is called the Successive Quadratic

Programming (SQP) approach for solving (9). Several important observations are

in order. The success of the SQP methods depends on the existence of rapid and

robust schemes for solving quadratic programs. Fortunately, there are good

algorithms to solve them, and an excellent review on this topic can be found in

[22]. There are good implementations in both cases that guarantee local and fast

convergence, i.e., q-quadratic for Newton’s extension and q-superlinear for secant

extensions; see [16], [70], [139] for details.

As it usually happens, the earliest reference of an SQP algorithm was con-

cerned with the extension of Newton’s method [177], and later SQP-type methods

were developed to extend the secant method. The first secant-SQP method was

introduced by Garcı́a-Palomares and Mangasarian [75]. Further extensions and

convergence analysis (local and global) for SQP-Newton’s method can be found

for example in [43], [61], [148], and for SQP-secant methods in [24], [31], [58],

[72], [87], [147], [170]. Besides the SQP approach, there are some other options

to extend Newton’s method and secant methods for solving (9). For instance,

the study of Newton’s method applied directly to the first order necessary condi-

tions for (9) can be found in [79], [164], [168], and a diagonalized multiplier

version of the SQP-secant method was discussed in [169]. See also Tapia [170]

for optional extensions of the secant method for solving (9), El-Bakry et al. [61]

for the application of a Newton interior-point methods for nonlinear program-

ming problems, and Boggs et al. [23] for a special treatment of the large-scale

case. A quasi-Newton interior-point method for nonlinear programming has

also been analyzed in [127], and the connection of the trust-region globaliza-

tion strategy with SQP-type methods has received special attention; see e.g. [33],

[54], [60].
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2.3. Additional vector problems. Besides the numerical optimization area, and

the closely related topic of nonlinear systems of algebraic equations, there are

many other general vector-space scientific computing problems and some specific

applications in which the relationship between Newton’s method and the secant

methods appears.

In the numerical solution of nonlinear di¤erential equations the traditional

approach is to discretize the region of interest and also the di¤erential operators,

and then solve the associated nonlinear system of equation via numerical methods.

As in some previously described scenarios, the first attempts involved Newton’s

method. For example, in the special case of Two Point Boundary Value Problems

(TPBVP) the use of Newton’s method is analyzed in [3], and an inexact Newton

version is introduced in [144]. Later on, as it usually happens, quasi-Newton

methods were introduced for solving TPBVP; see e.g. [86]. For a general discus-

sion on the numerical solution of TPBVP; see [6]. Some other classical di¤erential

equation problems have also been attacked by Newton-type methods which are

not related to discretization schemes; see e.g. [167].

Another more recent case, in which the relationship between Newton’s method

and the secant method can be observed, is the so called parareal method that

exploits parallelism in time discretization for solving general nonlinear di¤erential

equations. It was introduced for solving Partial Di¤erential Equations (PDE) by

Lions, Maday and Turinici [120], and after been extended in several ways, it was

recently analyzed by Gander and Vandewalle [74]. In [74], the authors observed

the connection of the parareal method with multiple shooting, as analyzed by

Chartier and Phillipe [34], for which q-quadratic convergence can be established

since the multiple shooting method can be viewed as Newton’s method. In [74],

they also analyze a variant first proposed by Ba‰co et al. [7] that clearly resembles

the secant method, and indeed, they establish superlinear convergence for that

variant. Nevertheless, as far as we know, the connection between the superlinearly

convergent variants of the parareal method and the classical secant method has

not been pointed out in the literature.

The numerical solution of optimal control problems is another interesting area

in which Newton’s method, and some of its variations, has played a very impor-

tant role. In particular, Newton’s method has been combined with suitable glob-

alization strategies specially adapted to optimal control problems in [87], [109],

[174]. Moreover, SQP-type extensions have been proposed where the control

variables receive a special treatment [58], [116].

Finally, we close this subsection describing some additional standard and well-

known scientific computing vector problems for which Newton’s method (or a

closely related q-quadratically or even faster convergent scheme) was proposed

without being aware of the connection, when the related numerical techniques

were originally introduced. In most cases, these methods are still known and
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referred in the literature by their original names, although the connection with

Newton’s method has been established. For these problems, no secant counter-

part has ever been developed.

The well-known iterative refinement scheme for solving linear systems of the

form Ax ¼ b is a very good example of how Newton’s method is rediscovered for

a special application. Indeed, if an approximate solution, x, has been already

obtained by any method, and from that initial vector we apply Newton’s method

on the (linear) map F ðxÞ ¼ Ax� b we obtain an improved solution xþ as fol-

lows:

xþ ¼ x� F 0ðxÞ�1
F ðxÞ ¼ xþ A�1rðxÞ;

where the residual vector is defined for any x as rðxÞ ¼ b� Ax. In practice, to

take advantage of any possible already obtained factorization of A, it is better to

proceed as follows: Compute rðxÞ ¼ b� Ax, solve As ¼ rðxÞ, update the solution
xþ ¼ xþ s, and repeat if necessary. This last procedure is what is known in the

literature as iterative refinement, and the clear connection with Newton’s method

is seldom described. For the iterative refinement process it has been established

local and fast convergence as well as stability when combined with LU factoriza-

tions [93], [161].

A topic in which Newton’s method appears in a perhaps surprising way is the

use of inverse power shifted iteration algorithms for computing an eigenvalue—

eigenvector pair (eigenpair) of a given real n� n matrix A. In the symmetric

case, Peters and Wilkinson [146] observed the connection between Newton’s

method and the iterative calculation of an eigenpair (x̂x; l̂l) by considering the

ðnþ 1Þ � ðnþ 1Þ nonlinear system:

ðA� lIÞx ¼ 0;
1

2
ð1� xTxÞ ¼ 0;

where the normalization kxk2 ¼ 1 is included. Then Newton’s method or the

so-called projected Newton method from an initial x0 such that kx0k2 ¼ 1, are

obtained by solving iteratively the linear system

A� lI �x

�xT 0

� �
Dx

Dl

� �
¼ �

ðA� lIÞx
1
2 ð1� xTxÞ

� �
ð10Þ

and then setting xþ ¼ ðxþ DxÞ=kxþ Dxk2, and lþ ¼ lþ Dl. If the normaliza-

tion is not included when computing xþ then this would be Newton’s method

applied to the ðnþ 1Þ � ðnþ 1Þ nonlinear system. If the normalization is consid-

ered, then it is the projected Newton method. If the normalization is not included,

then local q-quadratic convergence is immediately obtained. Surprisingly, it is
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established in Tapia and Whitley [171] that if the normalization is forced at every

iteration, then the intriguing local q-order of convergence is 1þ
ffiffiffi
2

p
, which repre-

sents a superquadratic order of convergence. To observe the connection with

inverse power shifted iterations, it su‰ces to note that the first equation in (10)

implies that (see [171] for details)

ðA� lIÞxþ ¼ ðDlÞx;

i.e., the new eigenvector estimate is a scalar multiple of the one given by inverse

power shifted iterations. In the projected Newton method it can be established

that the new eigenvalue estimate is given by

lþ ¼ xTAxþ
xtxþ

:

It is well-know that the so-called Rayleigh quotient iteration uses systematically

the closely related estimate

lþ ¼ xT
þAxþ
xt
þxþ

;

for which the faster q-cubic convergence is observed.

For nonsymmetric matrices, when convergence is observed, the rate of the pre-

viously mentioned inverse iterations is in general slower than in the symmetric

case. For example, when convergence is observed, the Rayleigh quotient itera-

tion converges q-quadratically instead of q-cubically. Unfortunately there are

examples that show that the inverse iterations can fail in the nonsymmetric

case [10]. See [166] for a discussion on how to combine di¤erent inverse power

iterations to improve the chance of convergence. Variants of Newton’s method

have also been applied for approximating several matrix eigenpairs simultaneously

[1], [124].

Another interesting and attractive topic for which Newton’s method appeared,

without knowing it explicitly, is the problem of finding the best function approxi-

mation in the uniform norm, also known as the infinity norm. The classical

Chebyshev alternating theorem suggests ways for numerically computing the best

uniform approximation p� to f a C½a; b� by functions p from a Haar system

f :¼ ff1; . . . ; fng. The first e¤ective algorithm, based on the alternating theorem,

was proposed by Remez in 1934 [153]. This algorithm iteratively repeats two

distinct steps that involve nonlinear systems of n algebraic equations, and finding

the n roots of some related polynomials. It was soon identified that Remez

algorithm had quadratic convergence to p�. Later on, it was established under
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mild assumptions (mainly that f is C1) that Remez method could be viewed as

Newton’s method for a certain convenient nonlinear map [40], [138]; see also

[173]. For additional details on this topic see [39], and also [149].

3. Matrix problems

In the space of square matrices, problem (1) can be written as

Given F : Cn�n ! Cn�n find X� a Cn�n such that FðX�Þ ¼ 0: ð11Þ

Newton’s method (Algorithm 1) has also played an important role in the histor-

ical process of the algorithm development for solving specific nonlinear matrix

problems. Moreover, as we will discuss in this section, in the space of matrices

the algorithm structure is heavily problem dependent, and as discussed before for

vector problems, Newton’s method has been reinvented several times.

Let us list some of the most important nonlinear matrix problems frequently

considered in the literature for special applications, and the associated map F .

• Matrix inverse. One of the oldest and most common nonlinear matrix prob-

lem is to compute the inverse of a nonsingular matrix A, that appears associ-

ated with the solution of linear systems, and more recently associated with the

art of building suitable preconditioning strategies for iterative methods [35],

[36]. For this problem, F ðXÞ ¼ X�1 � A.

• Matrix p-th root. For this problem, F ðXÞ ¼ X p � A where p a N and pb 2.

The case p ¼ 2 has been extensively studied for several decades, see e.g. [21],

[90], [94], [103], [132], whereas the general case, p > 2, has been recently con-

sidered, see e.g. [17], [49], [50], [81], [104], [105], [162]. Computing the square

root (p ¼ 2) of a given matrix is useful for solving some boundary value

problems [158] and also appears in the modelling of flow problems [126];

and the general case (p > 2) appears associated with Markov processes [82]

among other applications. For a complete discussion on matrix p-th roots

see [95].

• Matrix sign function. The sign of a matrix extends naturally the concept of

the sign of a complex number [113]. Given a matrix A with no pure imagi-

nary eigenvalues, the sign of A is given by

S ¼ signðAÞ ¼ AðA2Þ�1=2;

where A1=2 is the principal square root of A, that will be fully described later.

See [95] for several equivalent definitions of the matrix sign function and its
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properties. The sign function is useful for solving Riccati equations, that will

be discussed later. It is also useful for solving some specialized eigenvalue

problems [101]. A practical property states that the sign of a matrix A is a

square root of the identity that commutes with A [111]. This property moti-

vates to consider F ðXÞ ¼ X 2 � I , and then apply suitable iterative methods

starting from X0 ¼ A.

• Riccati equations. The nonlinear map associated with Riccati equations is

FðXÞ ¼ XAþ ATX � XBBTX þ CTC where A, B and C are given matrices

with some special properties, and the solution X is square and usually re-

quired to have some special properties [117]. Riccati equations arise naturally

in control problems [4], [12], [15], [45], [2], [131], [154].

• Quadratic equations. Given the matrices A, B, and C, the quadratic matrix

equation AX 2 þ BX þ C ¼ 0 arises in control theory [45], [48], [97] and also

in the solution of Markov processes [118], [18]. In this case, the nonlinear

map is FðXÞ ¼ AX 2 þ BX þ C.

• Matrix rational equations. The nonlinear map associated with matrix rational

equations is

FðXÞ ¼ X eA�X�pA�Q;

where A is a given matrix, Q is a Hermitian positive definite matrix, and p is

a positive integer. The cases p ¼ 1 or p ¼ 2 have received special attention

in the last few years. Matrix rational equations appear in a wide variety of

applications [62], [63], [64], [84], [107], [136], [151], [178].

• Matrix logarithm and matrix exponential. For computing the logarithm of a

given matrix A [41], [110], we consider the map FðXÞ ¼ eX � A where

eX ¼ I þ X þ X 2

2!
þ � � � þ X k

k!
þ � � � :

Similarly, for computing the exponential of a given matrix A [96], [133], we

consider the map F ðXÞ ¼ lnX � A.

A key aspect that plays a crucial role in the space of matrices is the numerical

stability of the proposed methods. In general, Newton’s method is numerically

stable, but in many cases simplified versions of it, that are mathematically equiv-

alent and computationally appealing, are not numerically stable (i.e., a small per-

turbation Dk in Xk may lead to divergence of the sequence obtained by replacing

Xk by Xk þ Dk).

It is worth mentioning that, although nonlinear problems are the natural ones

associated with problem (11), there exist important applications for which the
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map F in (11) is a linear map that, despite being linear, represent di‰cult prob-

lems to solve, and so they deserve special attention. Moreover, quite frequently

the iterative methods associated with nonlinear problems, solve a linear matrix

problem per iteration. The best known of these di‰cult linear matrix problems

is the so-called Sylvester equation [165], that appears, e.g., in the solution of con-

trol theory problems [45]:

AX � XB ¼ C; ð12Þ

where X ;C a Cn�p and A and B are square matrices of order n and p respectively.

Note that B ¼ �AT yields the well-known Lyapunov equation [125]. The neces-

sary and su‰cient condition for (12) to have a unique solution is that the set of

eigenvalues of A and B have an empty intersection. This key theoretical result

was originally established by Sylvester [165]. For a full description of the theoret-

ical properties of Sylvester equations see [45], [99]. For solving (12) a wide variety

of numerical schemes have been proposed, ranging from direct methods that are

based on the Kronecker product to iterative methods of di¤erent types; see e.g.

[9], [46], [76], [102], [108], [134] and the references therein.

As we mentioned before, whenever a Newton method is proposed, it is possible

to define a secant scheme. Recently some authors have developed secant methods

for nonlinear matrix problems that inherit, as much as possible, the features of the

classical secant methods in previous scenarios (e.g., scalar equations, nonlinear

algebraic systems of equations). A general secant method for solving (11) should

be given by the following iteration

Xkþ1 ¼ Xk � A�1
k FðXkÞ;

where X�1 a Cn�n and X0 a Cn�n are given, and Akþ1 is a suitable linear operator

that satisfies

Akþ1Sk ¼ Yk; ð13Þ

where Sk ¼ Xkþ1 � Xk and Yk ¼ F ðXkþ1Þ � FðXkÞ. Equation (13) is known as

the matrix secant equation.

Notice that one n� n matrix is enough to satisfy the matrix secant equation

(13), i.e., the operator Akþ1 can be obtained as a matrix of the same dimension

as the step Sk and the map-di¤erence Yk. Therefore, there is a resemblance with

the scalar case, in which one equation is required to find one unknown. Hence,

once Xkþ1 has been obtained, the matrix Akþ1 can be computed at each iteration

by solving a linear system of n2 equations. The proposed algorithm, and an

important inverse variant, can be summarized as follows [135], [137]:
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Algorithm 3 General secant method for matrix problems

1: Given X�1 a Cn�n, X0 a Cn�n

2: Set S�1 ¼ X0 � X�1

3: Set Y�1 ¼ F ðX0Þ � FðX�1Þ
4: Solve A0S�1 ¼ Y�1 . for A0

5: for k ¼ 0; 1; . . . until convergence do
6: Solve AkSk ¼ �F ðXkÞ . for Sk

7: Set Xkþ1 ¼ Xk þ Sk

8: Set Yk ¼ FðXkþ1Þ � F ðXkÞ
9: Solve Akþ1Sk ¼ Yk . for Akþ1

10: end for

We can generate the sequence Bk ¼ A�1
k , instead of Ak, and obtain an inverse

version that solves only one linear system of equations per iteration:

Algorithm 4 Inverse secant method

1: Given X�1 a Cn�n, X0 a Cn�n

2: Set S�1 ¼ X0 � X�1

3: Set Y�1 ¼ F ðX0Þ � F ðX�1Þ
4: Solve B0Y�1 ¼ S�1 . for B0

5: for k ¼ 0; 1; . . . until convergence do

6: Set Sk ¼ �BkFðXkÞ
7: Set Xkþ1 ¼ Xk þ Sk

8: Set Yk ¼ FðXkþ1Þ � FðXkÞ
9: Solve Bkþ1Yk ¼ Sk . for Bkþ1

10: end for

Solving a secant equation that deals with n� n matrices is the most attractive

feature of Algorithms 3 and 4, in sharp contrast with the standard extension of

quasi-Newton methods for general Hilbert spaces, (see e.g. [77], [156]), that in

this context would involve n2 � n2 linear operators to approximate the derivative

of F . Clearly, dealing with n� n matrices for solving the related linear systems

significantly reduces the computational cost associated with the linear algebra of

the algorithm.

In order to discuss some theoretical issues of the proposed general secant

methods, let us consider the standard assumptions of Theorem 2.1 but using

Cn�n instead of Rn. We begin by noticing that the operator Ak does not approxi-

mate F 0ðXkÞ as in previous scenarios due to dimensional discrepancies. Indeed,

F 0ðXkÞ a Cn2�n2 and Ak a Cn�n. However, fortunately, F 0ðXkÞSk and AkSk both
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live in Cn�n, which turns out to be the suitable approximation since, using the

secant equation (13), we have that

Akþ1Sk ¼ Yk ¼ F ðXkþ1Þ � FðXkÞ ¼ F 0ðXkÞSk þ RðSkÞ: ð14Þ

Subtracting F 0ðX�ÞSk in both sides of (14), and taking norms we obtain

kAkþ1Sk � F 0ðX�ÞSkka kF 0ðXkÞ � F 0ðX�Þk kSkk þ kRðSkÞk;

for any subordinate norm k : k. Using now that F 0ðXÞ a Lipg
�
NðX�; rÞ

�
, and

dividing by kSkk we have

kAkþ1Sk � F 0ðX�ÞSkk
kSkk

a gkEkk þ
kRðSkÞk
kSkk

; ð15Þ

where Ek ¼ Xk � X� represents the error matrix.

Form this inequality we observe that, if convergence is attained, the left hand

side tends to zero when k goes to infinity, and so the sequence fAkg, generated by

Algorithm 2, tends to the Fréchet derivative, F 0ðX�Þ, when they are both applied

to the direction of the step Sk.

In the next subsections we will discuss the specialized versions of Newton’s

method when applied to some of the nonlinear matrix problems listed above.

We will also present the recent development of secant methods for solving some

of them. In contrast to the standard convergence theory for Newton’s method

and secant methods when solving nonlinear vector problems, for matrix problems

it is not enough to choose the initial matrices su‰ciently close to the solution

to ensure convergence; see e.g. [95], [137]. The convergence properties of most

methods discussed in the next subsections will depend on a specialized choice of

the initial matrices.

3.1. Inverse of a matrix. Let us start by describing the application of Newton’s

method for computing the inverse of a given matrix A. As we mentioned before,

for this problem the associated map F is defined as follow

F ðXÞ ¼ X�1 � A: ð16Þ

Applying the suitable Taylor’s expansion, discussed in (2), to (16) we obtain that

FðX þHÞ ¼ ðX þHÞ�1 � A ¼ X�1 � X�1HX�1 � AþOðH 2Þ;

and so F 0ðXÞH ¼ �X�1HX�1. In here, we are using the fact that if B is a non-

singular matrix and C is any other matrix such that Bþ C is invertible then

ðBþ CÞ�1 ¼ B�1 � B�1CB�1 þOðkC2kÞ:
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Consequently, forcing Step 3 in Algorithm 1 yields

�X�1
k HkX

�1
k ¼ �ðX�1

k � AÞ
Hk ¼ Xk � XkAXk;

which implies that the Newton iteration, from an initial guess X0, to find the

inverse of A is given by

Xkþ1 ¼ Xk þHk ¼ 2Xk � XkAXk: ð17Þ

Notice that, the Fréchet derivative F 0 cannot be obtained explicitly, and instead

it is obtained implicitly in the product F 0ðXÞH, which is enough to identify the

step H. The implicit representation of F 0 is a frequent event, as we will see in

the following subsections, when applying Newton’s method to solve nonlinear

matrix problems.

The iterative method (17) has been historically known as the Schulz method

[159] which was first introduced in the early 30’s. It has been established that

if X0 ¼ A�

kAk2kA�k2
, then Schulz method possesses global convergence [89], it is a

numerical stable scheme [163], and it clearly has local q-quadratic convergence.

Moreover, if A does not have an inverse, it converges to the pseudoinverse of A,

denoted by Ay (also known as the generalized inverse) [89], [95], [141], [163].

A secant method has also been defined to find the root of (16) [137]. For that,

let us consider the general secant method applied to (16)

Xkþ1 ¼ Xk � Sk�1

�
FðXkÞ � F ðXk�1Þ

��1
FðXkÞ

¼ Xk � ðXk � Xk�1ÞðX�1
k � X�1

k�1Þ
�1ðX�1

k � AÞ; ð18Þ

that after several algebraic manipulations can be reduced to

Xkþ1 ¼ Xk�1 þ Xk � Xk�1AXk; ð19Þ

which avoids the inverse matrix calculations per iteration associated with iteration

(18). Notice the resemblance between (19) and the Schulz method for solving

the same problem. The method described in (19), denoted as the secant-Schulz

method, can be written as a fixed point iteration for a suitable map, and it has

been established in [137] that the Fréchet derivative of this iteration map has

bounded powers. Therefore, the secant-Schulz method generates a stable iteration.

It has also been established that it converges locally and q-superlinearly to the

inverse of A, from X�1 ¼ aA�=kAk22 and X0 ¼ bA�=kAk22 , with a; b a ð0; 1�. More-

over, when A has no inverse, it converges locally and q-superlinearly to Ay; see
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[137] for details. It is also important to note that the q-superlinear convergence

implies the well-known Dennis-Moré condition [55], [57]

lim
k!l

kAkSk � F 0ðX�ÞSkk
kSkk

¼ 0;

that establishes the most important property of the sequence fAkg generated by

the secant-Schulz method.

We now present an experiment to illustrate the behavior of the secant-Schulz

and the Newton–Schulz iterative methods for computing the inverse of the sym-

metric and positive definite matrices poisson and gcdmat from the Matlab

gallery with n ¼ 400. In both cases, since the matrices A to be considered are

symmetric and PD, we have chosen X�1 ¼ aI with 0 < aa 1=kAk2 and X0 ¼
A�=kAk22 for the secant-Schulz, and the same X0 for the Newton–Schulz to

guarantee the convergence for both methods [135], [137]. Using a fixed value

of a we report the number of required iterations (Iter), the relative residual�
kF ðXkÞkF=kAkF

�
and the relative error (kXk � X�kF=kX�kF ) at convergence.

We also show average results for the secant-Schulz method using 100 di¤erent

random values of a in the interval ð0; 1=kAk2�. For this experiment and for all

upcoming experiments, we stop the process when

kF ðXkÞkF=kAkF a 0:5� 10�12: ð20Þ

The results are reported in Table 1, and the semilog of the relative residual and the

relative error using a ¼ 1=kAk2 are showed in Figure 1. Concerning the average

results, using the matrix poisson, we also noted that in 51 cases the secant-

Schulz method required more iterations than the Newton–Schulz method, and

both methods required the same number of iterations for all the other cases. A

Table 1. Performance of the secant-Schulz and the Newton–Schulz methods for finding the
inverse of A ¼ gallery(‘poisson’,20) and A ¼ gallery(‘gcdmat’,n) when
n ¼ 400, X�1 ¼ aI , X0 ¼ A�=kAk22 and a ¼ 1=kAk2. Average results for secant-Schulz
with X�1 ¼ aI , for 100 di¤erent random values of a.

poisson gcdmat

Method Iter
kF ðXkÞkF
kAkF

kXk�X�kF
kX�kF

Iter
kF ðXkÞkF
kAkF

kXk�X�kF
kX�kF

Newton–Schulz 21 5.28e-16 4.58e-15 35 5.71e-17 2.03e-13
Secant-Schulz 21 6.11e-16 1.60e-15 30 1.05e-13 5.65e-10

Average results for Secant-Schulz using 100 di¤erent values of a

Secant-Schulz 22.48 4.81e-14 3.22e-12 32.56 6.39e-14 3.42e-10
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similar behavior has been observed frequently. Nevertheless, for the matrix

gcdmat we observed that for 8 cases the Newton–Schulz method required less

iterations than the secant-Schulz method, for 7 cases both methods required the

same number of iterations, and in 85 cases the secant-Schulz method required

less iterations than the Newton–Schulz method.

3.2. Square root. Let us now consider F ðXÞ ¼ X 2 � A with A a Cn�n for com-

puting square roots of A. In this case, F ðXÞ ¼ 0 might have no solutions, finitely

many solutions or infinitely many solutions. For a theoretical discussion on the

existence of square roots for a given matrix; see [92], [99]. Nevertheless, when A

has no eigenvalue in the set R� ¼ fx a R : xa 0g, then there exists a unique

square root X� such that the real part of all its eigenvalues is positive. This special

solution is known as the principal square root of A, and it is denoted by X� ¼ A1=2.

The principal square root can be characterized when A is diagonalizable, i.e., if

there exists W a Cn�n such that

W�1AW ¼ L ¼ diagðl1; l2; . . . ; lnÞ;

where l1; l2; . . . ; ln are the eigenvalues of A. Note that in that case

A ¼ WLW�1 ¼ ðWL1=2W�1ÞðWL1=2W�1Þ;

where L1=2 ¼ diagð
ffiffiffiffiffi
l1

p
;
ffiffiffiffiffi
l2

p
; . . . ;

ffiffiffiffiffi
l2

p
Þ and so A1=2 ¼ WL1=2W�1. For details see

[95]. The special interest in A1=2 is based on the role it plays for several applica-

Figure 1. Semilog of the relative residual for matrices poisson (left) and gdcmat (right)
associated with Table 1 and a ¼ 1=kAk2.
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tions, e.g., Markov processes [82], [106], [175], modelling of flow problems [126],

and applications related to the logarithm of a matrix [41], [110].

Newton’s method and specialized versions of it, for computing the principal

square root of a matrix, has received significant attention for many years [82],

[90], [94], [103], [132], [160]. For Newton’s method, once again, we need to iden-

tify the Fréchet derivative F 0ðXÞ using the Taylor expansion (2)

F ðX þ SÞ ¼ ðX þ SÞ2 � A ¼ X 2 � Aþ XS þ SX þ S2:

Hence, we obtain the following algorithm

Algorithm 5 Newton’s method for F ðXÞ ¼ X 2 � A

1: Given X0 a Cn�n

2: for k ¼ 0; 1; . . . do

3: Solve XkSk þ SkXk ¼ �FðXkÞ . For Sk

4: Xkþ1 ¼ Xk þ Sk

5: end for

Notice that the linear problem in Step 3, that needs to be solved to obtain the

step Sk, is a Sylvester equation. As we mentioned before, solving a Sylvester equa-

tion is not an easy problem, and requires a significant amount of computational

e¤ort. Algorithm 5 is a stable scheme that has q-quadratic convergence to A1=2

when X0 ¼ A or X0 ¼ mI for m > 0; see [90].

In order to avoid the solution of a Sylvester equation per iteration, several

variants of Newton’s method have emerged. In [90], [94], [95] several of these

variants are described and analyzed. Many of them assume that X0 is chosen

such that X0A ¼ AX0, which imply that AXk ¼ XkA and XkSk ¼ SkXk for all

kb 0 [90]. As a consequence, Sk can be explicitly obtained, from Step 3 of Algo-

rithm 5, as Sk ¼ 1
2 ½X�1

k A� Xk� or Sk ¼ 1
2 ½AX�1

k � Xk�, and two simplified variants

of Newton’s method are obtained:

ðIÞ : Ykþ1 ¼
1

2
½Yk þ Y�1

k A� ð21Þ

ðIIÞ : Zkþ1 ¼
1

2
½Zk þ AZ�1

k �: ð22Þ

In Higham [90], it is established that if A is diagonalizable and no real eigen-

value of A is in R�, then the sequence of matrices generated by (21), or (22), con-

verges q-quadratically to A1=2 when Y0 ¼ Z0 ¼ mI for m > 0. On the negative
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side, these iterations are numerically unstable unless the following restrictive con-

ditions hold

1

2
j1� ðlj=liÞ1=2ja 1 for 1a i; ja n; ð23Þ

where the li’s are the eigenvalues of A. If A is symmetric and positive definite

(SPD), (23) is equivalent to k2ðAÞa 9 [90]. Due to these restrictive conditions

the schemes given by (21) and (22) are of little practical use.

In contrast, several additional stable variants have been proposed and analyzed

for the matrix square root problem, that are also based on Newton’s method. A

complete description of some of these variants can be found in [94]. We now pres-

ent some of the most relevant Newton-type stable options:

• Denman and Beavers [52] propose a specialized iteration for Riccati equa-

tions, that reduced to the square root problem produces the following coupled

scheme:

Ykþ1 ¼
1

2
½Yk þ Z�1

k � Zkþ1 ¼
1

2
½Zk þ Y�1

k �; ð24Þ

from Y0 ¼ A and Z0 ¼ I . Iteration (24) is stable and has the property that Yk

converges to A1=2 and Zk converges to A�1=2, both q-quadratically [94]. The

main criticism is that it requires the inverse of two distinct matrices per

iteration.

• To avoid the inverse of two matrices per iteration, Higham [94] analyzes the

following coupled variant that combines the Denman-Beaver scheme with the

Schulz method for the matrix inverse problem

Pkþ1 ¼
1

2
Pk½3I �QkPk�; Qkþ1 ¼

1

2
Qk½3I � PkQk�; ð25Þ

from P0 ¼ A and Q0 ¼ I . The coupled iteration (25) is also stable, and has

the property that Pk converges to A1=2 whereas Qk converges to A�1=2, both

q-quadratically, whenever the condition kdiagðA� I ;A� IÞk < 1 holds for

any consistent matrix norm; see [94], [111] for details.

• Meini [132] presents the following coupled iteration that avoids additional

conditions on the matrix A for convergence, while requiring a matrix inverse

(instead of two) per iteration

Ykþ1 ¼ �YkZ
�1
k Yk; Zkþ1 ¼ Zk þ 2Ykþ1; ð26Þ
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from Y0 ¼ I � A and Z0 ¼ 2ðI þ AÞ. The coupled iteration (26) is stable and

has the property that Yk converges to 0 while Zk converges q-quadratically to

4A1=2.

• Iannazzo [103] presents and analyzes the following iteration that requires one

matrix inverse per iteration

Xkþ1 ¼ Xk þHk; Hkþ1 ¼ � 1

2
HkX

�1
kþ1Hk; ð27Þ

from X0 ¼ A and H0 ¼ 1
2 ðI � AÞ. Iteration (27) is stable and the sequence Xk

converges q-quadratically to A1=2, without additional conditions.

On the other hand, it is possible to develop a secant method to find a square

root of a given matrix A. Applying Algorithm 3 to F ðXÞ ¼ X 2 � A, we obtain

Xkþ1 ¼ Xk � ðXk � Xk�1ÞðX 2
k � X 2

k�1Þ
�1ðX 2

k � AÞ: ð28Þ

Now, we will establish the q-superlinear convergence of iteration (28). Let us

assume that A is diagonalizable, that is, there exists a nonsingular matrix V such

that

V�1AV ¼ L ¼ diagðl1; l2; . . . ; lnÞ; ð29Þ

where l1; l2; . . . ; ln are the eigenvalues of A. If we define Dk ¼ V�1XkV then we

have from (28) that

Dkþ1 ¼ Dk � V�1ðXk � Xk�1ÞVV�1ðX 2
k � X 2

k�1ÞVV�1ðX 2
k � AÞV

¼ Dk � ðDk �Dk�1ÞðD2
k �D2

k�1Þ
�1ðD2

k �LÞ: ð30Þ

If we choose X�1 and X0 such that D�1 ¼ V�1X�1V and D0 ¼ V�1X0V are

diagonal matrices, then all successive Dk are also diagonal, and (30) can be written

as

Dkþ1 ¼ Dk � ðDk þDk�1Þ�1ðD2
k �LÞ ¼ ðDk þDk�1Þ�1½Dk�1Dk þL�: ð31Þ

Note that we can write (31) as n uncoupled scalar secant iterations for computing

the square roots of li, for 1a ia n, given by

d i
kþ1 ¼

d i
kd

i
k�1 þ li

d i
k�1 þ d i

k;
ð32Þ
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where d i
k ¼ ðDkÞii. From (32) we have that

d i
kþ1e

ffiffiffiffi
li

p
¼ ðd i

k e
ffiffiffiffi
li

p
Þðd i

k�1e
ffiffiffiffi
li

p
Þ

d i
k�1 þ d i

k

; ð33Þ

and so

d i
kþ1 �

ffiffiffiffi
li

p

d i
kþ1 þ

ffiffiffiffi
li

p ¼ d i
k �

ffiffiffiffi
li

p

d i
k þ

ffiffiffiffi
li

p
 !

d i
k�1 �

ffiffiffiffi
li

p

d i
k�1 þ

ffiffiffiffi
li

p
 !

: ð34Þ

Applying (34) recursively it follows that

d i
kþ1 �

ffiffiffiffi
li

p

d i
kþ1 þ

ffiffiffiffi
li

p ¼ d i
0 �

ffiffiffiffi
li

p

d i
0 þ

ffiffiffiffi
li

p
 !fk

d i
�1 �

ffiffiffiffi
li

p

d i
�1 þ

ffiffiffiffi
li

p
 !fk�1

; ð35Þ

where fkþ1 ¼ fk þ fk�1 for kb 0, and f�1 ¼ f0 ¼ 1. Notice that f fkg is a Fibo-

nacci sequence that appears quite frequently in the analysis of secant methods.

We are now ready to establish our convergence result.

Theorem 3.1. Let A a Cn�n be a diagonalizable matrix as in (29). Let us assume

that A has no nonpositive real eigenvalues, and that all iterates Xk generated by (28)

are well defined. If X�1 ¼ aI , a > 0, and X0 ¼ bI , b > 0, then the sequence fXkg
converges q-superlinearly to A1=2.

Proof. From (31) and (32) it is enough to study the convergence of fd i
kg to the

square root
ffiffiffiffi
li

p
for all 1a ia n. Since none of the eigenvalues of A is real and

nonpositive then we can choose
ffiffiffiffi
li

p
such that its real part, Reð

ffiffiffiffi
li

p
Þ, is positive for

1a ia n. On the other hand, since d i
�1 ¼ a > 0 and d i

0 ¼ b > 0 then for each i

d i
�1 �

ffiffiffiffi
li

p

d i
�1 þ

ffiffiffiffi
li

p
�����

�����< 1 and
d i
0 �

ffiffiffiffi
li

p

d i
0 þ

ffiffiffiffi
li

p
�����

�����< 1;

and hence, from (35)

lim
k!l

d i
k ¼ l

1=2
i ; Reðl1=2i Þ > 0:

Therefore,

lim
k!l

Xk ¼ VL1=2V�1 ¼ A1=2;

and the convergence is established. Now, to prove the local q-superlinear conver-

gence, consider (33) that can be written as

eikþ1 ¼ cike
i
ke

i
k�1; ð36Þ
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where eik ¼ d i
k � l

1=2
i and cik ¼ 1=ðd i

k�1 þ d i
kÞ. Notice that cik tends to 1=ð2l1=2i Þ

when k goes to infinity, and so it is bounded for k su‰ciently large. From

(36) we conclude that each scalar secant iteration (32) converges locally and

q-superlinearly to l
1=2
i . Therefore, equivalently, there exists a sequence f~ccikg, for

each 1a ia n, such that ~ccik > 0 for all k, limk!l ~ccik ¼ 0, and

jeikþ1ja ~ccikjeikj: ð37Þ

Using (37) we now obtain in the Frobenius norm

kDkþ1 �L1=2k2F ¼
Xn
i¼1

ðeikþ1Þ
2
a
Xn
i¼1

ð~ccikÞ
2ðeikÞ

2

a nĉc2k

Xn
i¼1

ðeikÞ
2
a nĉc2kkDk �L1=2k2F ; ð38Þ

where ĉck ¼ max1aianf~ccikg. Finally, we have that

kXkþ1 � A1=2kF ¼ kVV�1ðXkþ1 � A1=2ÞVV�1kF akF ðVÞkDkþ1 �L1=2kF
akF ðVÞ

ffiffiffi
n

p
ĉckkDk �L1=2kF akF ðVÞ2

ffiffiffi
n

p
ĉckkXk � A1=2kF ;

where kF ðVÞ is the Frobenius condition number of V . Hence, fXkg converges

locally and q-superlinearly to A1=2. r

Remark 3.2. If all the eigenvalues of A have positive real part, then we can

choose either X�1 ¼ aA or X0 ¼ bA or both, for a > 0 and b > 0, and using the

same arguments as in Theorem 3.1 guarantee the q-superlinear convergence of

fXkg to A1=2.

Remark 3.3. The matrix V that appears in the diagonalization of A, equation

(29), is not available. Fortunately, it is only required for theoretical purposes.

In practice, when using algorithm (28) the matrix V is not required.

It is worth pointing out that if Xk commutes with A in (28), we obtain a sim-

plified version of Algorithm 3 given by

Xkþ1 ¼ Xk � ðXk � Xk�1ÞðXk � Xk�1Þ�1ðXk þ Xk�1Þ�1ðX 2
k � AÞ

¼ ðXk þ Xk�1Þ�1�ðXk þ Xk�1ÞXk � ðX 2
k � AÞ

�
¼ ðXk þ Xk�1Þ�1ðXk�1Xk þ AÞ: ð39Þ

Notice the resemblance between (39) and (21). Both iterations are very attrac-

tive from a computational point of view, but using similar arguments to the ones
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used by Higham in [90], our next result shows that (39) is an unstable iteration

unless the eigenvalues of A satisfy a restrictive condition.

Theorem 3.4. Let A a Cn�n be diagonalizable as in (29). Let us assume that A has

no nonpositive real eigenvalues, all iterates Xk generated by (39) are well defined,

and XkA ¼ AXk for all kb 0. If

1

2
j1� ðlj=liÞ1=2ja 1 for 1a i; ja n; ð40Þ

then (39) is a stable iteration.

Proof. Let X̂XkQXk such that X̂Xk ¼ Xk þ Dk for some Dk error matrix. Our goal is

to prove that Dkþ1 is uniformly bounded when condition (40) holds. Using similar

arguments to the ones used by Higham in section 3 of [90] we have that

Dkþ1 ¼ ðXk þ Xk�1Þ�1½Xk�1Dk þ Dk�1Xk � ðDk þ Dk�1ÞXkþ1� þOðkDk2Þ;

where D ¼ maxfDk;Dk�1g. Using the notation given by (29), it follows that

Dk ¼ V�1XkV . Let ~DDk ¼ V�1DkV . Hence, each element ~dd
ðkþ1Þ
ij of ~DDkþ1 can be

written as

~dd
ðkþ1Þ
ij ¼

~dd
ðkÞ
ij d i

k�1 þ ~dd
ðk�1Þ
ij d

j
k � ð~ddðkÞij þ ~dd

ðk�1Þ
ij Þd j

kþ1

d i
k þ d i

k�1

þOðkDk2Þ; ð41Þ

where 1a i; ja n and d i
k ¼ ðDkÞii. Since d i

k converges to li, we have that (41) can

also be written as

~dd
ðkþ1Þ
ij ¼ 1

2l
1=2
i

½~ddðkÞij l
1=2
i þ ~dd

ðk�1Þ
ij l

1=2
j � ð~ddðkÞij þ ~dd

ðk�1Þ
ij Þl1=2j � þOðkDk2Þ

¼ 1

2
½1� ðlj=liÞ1=2�~ddðkÞij þOðkDk2Þ: ð42Þ

Note that, if 1
2 j1� ðlj=liÞ1=2ja 1 then ~dd

ðkþ1Þ
ij remains bounded, and the result is

established. r

We now present some numerical experiments to illustrate the behavior of the

specialized secant method (Algorithm 3), the Denman and Beavers (DB) iteration

(24), and Meini’s iteration (26). We stop all considered algorithms when (20)

holds. First, we consider the matrix dorr from the Matlab gallery with n ¼ 10

and y ¼ 10�7. These values were chosen as in [132]. This matrix is row diagonal
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dominant, tridiagonal, ill-conditioned for small value of the input argument y,

and all its eigenvalues are nonnegative. The initial matrices which guarantee

convergence for the used methods are X�1 ¼ aI and X0 ¼ bA for secant method

(according to Theorem 3.1) where a > 0 and b > 0. For the DB iteration we use

Y0 ¼ A and Z0 ¼ I , and for Meini’s iteration Y0 ¼ I � A and Z0 ¼ 2ðI þ AÞ are
used; see [52], [132] for details. The symbol (**) means that the algorithm does not

converge. The results are reported in Table 2. We can observe that DB does not

achieve convergence (to be precise, the norm of the residual diverges to infinity).

Meini’s iteration converges, but it requires more than twice as many iteration as

the secant method, see Figure 2.

We now consider a problem described in [132]. For this example, A is the fol-

lowing Frobenius matrix

A ¼

�p3 �p2 �p1 �p0

1 0 0 0

0 1 0 0

0 0 1 0

0
BBB@

1
CCCA;

Figure 2. Semilog of the relative residual (left) and the relative error (right) associated with
Table 2.

Table 2. Performance of the secant method and Newton methods for finding the square
root of A ¼ gallery(‘dorr’,n,y) when n ¼ 10, y ¼ 10�7, and a and b are random
positive values generated with rand(‘state’,1).

Method Iter kFðXkÞkF=kAkF kXk � X�kF=kX�kF
DB ** ** **

Meini 20 1.58e-13 3.62e-07
Secant 8 2.3e-14 5.66e-09
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where pi with 3a ia 0 are the coe‰cients of pðxÞ ¼ ðx� 2Þðx� 5Þ
�
ðxþ 1Þ2 þ e

�
which is the characteristic polynomial of A. In this case A has two complex con-

jugate eigenvalues �1e i
ffiffi
e

p
. For small values of e, these eigenvalues tend to be

real and negative, and therefore the matrix A1=2 is ill-conditioned. In this experi-

ment we take di¤erent values of e and, following [132], we report the iteration at

which the minimal value of kFðXkÞkF=kAkF is reached. We use the same initial

matrices as in the previous experiment.

We can see in Table 3 that for all values of e the DB iteration achieves the

lowest relative residual norm. On the other hand, Meini’s iteration for e ¼ 10�6

and e ¼ 10�8 has the worst performance and for these cases the secant method

reduces considerably the relative residual norm in spite of the ill-conditioning

of A1=2.

3.3. Sign of a matrix. Let us now consider the application of Newton’s method

for computing the sign of a matrix. Let us recall that S ¼ signðAÞ ¼ AðA2Þ�1=2,

where A1=2 is the principal square root of A. The following is a list of the most

important properties of the matrix sign function, that play a role when defining

iterative schemes to compute S [95]: S2 ¼ I , i.e., S�1 ¼ S; AS ¼ SA; and if A is

SPD then S ¼ I . Moreover, if A is a square matrix with no pure imaginary eigen-

values, and B is a block matrix defined as

0 A

I 0

� �
; ð43Þ

Table 3. Performance of the secant method and Newton methods for finding the square
root of a Frobenius matrix with pðxÞ ¼ ðx� 2Þðx� 5Þ

�
ðxþ 1Þ2 þ e

�
for di¤erent values

of e, and for n ¼ 4.

e Method Iter kFðXkÞkF=kAkF kXk � X�kF=kX�kF
DB 11 1.32e-14 6.47e-15

10�2 Meini 10 4.99e-13 7.78e-14
Secant 29 1.25e-12 2.94e-11

DB 14 3.4e-13 1.03e-12
10�4 Meini 12 4.46e-07 3.96e-09

Secant 50 3.38e-11 9.94e-10

DB 71 4.55e-11 1.74e-10
10�6 Meini 13 0.74108 0.0338

Secant 30 1.51e-07 6.74e-08

DB 55 1.86e-09 2.93e-09
10�8 Meini 1 0.902 0.999

Secant 58 5.86e-04 3.55e-05
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then

signðBÞ ¼ 0 A1=2

A�1=2 0

� �
: ð44Þ

For a proof of this last property see [94], and for additional properties of the

matrix sign function see [95], [113]. Each method studied on the previous section

to find the square root of a given matrix A can be used to find S ¼ signðAÞ. For

example, to apply Newton’s method it su‰ces to start from X0 ¼ A, that obviously

commutes with A, and apply one of the simplified Newton methods (21–22) to

F ðXÞ ¼ X 2 � I , that yields:

Xkþ1 ¼
1

2
½Xk þ X�1

k �: ð45Þ

Iteration (45) from X0 ¼ A was originally proposed by Roberts [154]; and it is

stable and q-quadratically convergent to signðAÞ. Once again, to avoid the inverse

matrix required per iteration, this scheme can be combined with the Schulz

method, to produce the so-called Newton–Schulz method

Xkþ1 ¼
1

2
Xk½3I � X 2

k � ð46Þ

from X0 ¼ A. Iteration (46) converges q-quadratically to S�1 ¼ S, if kI � A2k < 1

for any consistent matrix norm. Iteration (46) is equivalent to the direct applica-

tion of Newton’s method to F ðXÞ ¼ X�2 � I [135]. As we mentioned before, iter-

ation (45) is q-quadratically convergent, however its initial convergence behavior

can be slow [91], [112]. To reduce the number of initial iterations, a scaling in (45)

can be introduced replacing Xk by mkXk with mk a Rþ. Several ways to choose the

parameter mk has been proposed; see e.g., [8], [30], [91]. A commonly used scaling

is given by

mk ¼ 1=jdetðXkÞj1=n; ð47Þ

that can be computed inexpensively during the matrix inverse calculation in (45).

Finally, it is worth mentioning that Kenney and Laub [111] present a family of

iterations to compute the sign of a matrix based on Padé approximation tech-

niques [26].

Once again, we can use the fact that S ¼ signðAÞ is one of the square roots

of the identity matrix to propose a secant method (28) for computing a root of

F ðXÞ ¼ X 2 � I . Note that, all iterates Xk commute with the identity matrix I ,
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so it is possible to use iteration (39) instead of (28). Finally, the secant iteration to

compute the sign of A can be written as

Xkþ1 ¼ ðXk þ Xk�1Þ�1ðXk�1Xk þ IÞ; ð48Þ

from X�1 ¼ aA, X0 ¼ bA where a; b > 0. For these initial matrices and using

similar arguments as in the proof of Theorem 3.1, it is possible to guarantee

q-superlinear convergence of (48) to the sign of A. Moreover, (48) is a stable iter-

ation because all the eigenvalues of I are equal to one, and therefore they satisfy

the restrictive conditions (23).

In the following experiment we illustrate the performance of the Newton itera-

tion (45), the scaled Newton iteration (45) and (47), and also the secant iteration

(48) to compute the sign of the symmetric matrices orthog and fiedler from

the Matlab gallery. As far as we know there is no scaled version of the secant

method. For this experiment we fix n ¼ 150, a ¼ 1:0, and b ¼ 1:5. A similar

behavior of the secant method is observed for any other positive values of a

and b. Once again we stop the algorithms when (20) holds.

3.4. p-th root. We now consider FðXÞ ¼ X p � A, where p a N and pb 2, to

find a p-th root of A. As for p ¼ 2, there is a special interest in the principal

p-th root of A that will be denoted by X� ¼ A1=p. If A has no real eigenvalue in

R�, then A1=p is the unique matrix that satisfies:

(1) F ðA1=pÞ ¼ 0.

(2) Let b1; b2; . . . ; bn be the eigenvalues of A1=p and Z ¼ fz : �p=p < argðzÞ <
p=pg. Then for A1=p it holds that bi a Z for all i, where z is a complex num-

ber, z ¼ aþ ib, and argðzÞ ¼ arctanðb=aÞ.

Di¤erent ideas have been recently proposed to compute A1=p; see e.g. [17], [49],

[100], [104], [172], [162]. We now describe the most relevant schemes which relate

Table 4. Performance of Newton, scaled Newton, and secant for finding the sign of
A ¼ gallery(‘orthog’,n,2) and A ¼ gallery(‘fiedler’,1:n) when n ¼ 150,
a ¼ 1:0 and b ¼ 1:5.

ortho fiedler

Method Iter
kFðXkÞkF
kAkF

kXk�X�kF
kX�kF

Iter
kFðXkÞkF
kAkF

kXk�X�kF
kX�kF

Newton 3 5.18e-15 5.12e-15 19 9.1e-18 1.68e-9
Newton (scaled) 3 5.18e-15 5.12e-15 16 1.5e-17 1.68e-9

Secant 3 6.42e-14 9.12e-15 17 2.59e-14 1.68e-9
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to Newton’s method. The general form of this method for computing a p-th root

of A is Xkþ1 ¼ Xk þ Sk where Sk solves

Xp�1

i¼0

X
p�1�i
k SkX

i
k ¼ A� X

p
k : ð49Þ

Equation (49) represents the step 3 of Algorithm 1, and it was obtained using the

Taylor expansion of FðXÞ ¼ X p � A. This equation is a generalized Sylvester

equation in the matrix variable Sk. To avoid the significant computational cost

of solving (49) per iteration, several simplified versions of Newton’s method have

been considered. The standard simplified Newton iteration can be obtained

assuming that A commutes with X0, which in turn implies that AXk ¼ XkA and

SkXk ¼ XkSk for all k. Under this assumption Newton’s method can be written

as

Xkþ1 ¼
1

p
½ðp� 1ÞXk þ X

ð1�pÞ
k A�:

This simplified iteration converges to the unique positive definite root of A when A

is SPD [100], [104], but in the general case convergence to A1=p cannot be guaran-

teed [162]. Unfortunately, in general it is numerically unstable [162]. There are

some other simplified iterations based on the commutativity of A with X0 that

are numerically stable; see e.g. [49].

Bini et al. [17] present a Newton-type method to compute A�1=p instead of

A1=p, which is also q-quadratically convergent and numerically stable. This

specialized method requires a trustable scheme for computing A1=2, and so it

can be applied only for p > 2. Similarly, Iannazzo [104] presents two di¤erent

Newton-type iterations to compute A1=p, and once again they are q-quadratically

convergent and numerically stable, but they also require a trustable scheme for

computing A1=2.

As far as we know, there are no matrix secant methods based on Algorithms 3

and 4 for computing the matrix p-th root when p > 2. Nevertheless, a low-cost

scheme has been recently developed for large-scale matrix p-th root calculations,

which satisfies a weak secant equation [50].

3.5. Riccati equations. Let us now consider

F ðXÞ ¼ XAþ ATX � XBBTX þ CTC; ð50Þ

with A a Rn�n, B a Rn�r, C a Rq�n, and r; qf n. The equation FðXÞ ¼ 0 is

known as Continuous-time Algebraic Riccati Equation (CARE) and plays an
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important role in control theory problems [45], [131] and dynamical systems [4],

among others.

Several applications require a symmetric positive semidefinite stabilizing solu-

tion of (50). The solution X� is stabilizing if the matrix A� BBTX� is stable, i.e, if
its eigenvalues lie in the open left half plane, see e.g., [45], [117] for details. Since

the n� n solution X� is symmetric, it is customary to represent it in a factored

form X� ¼ YY T . There is an extensive literature concerning numerical methods

for the solution of CARE; e.g., [45], [117], [131] and references therein. However

it is a common approach, in the large and sparse case, to use Newton’s method

to find a solution of (50), e.g., [13], [14], [83], [114], [157]. As usual, the general

Newton iteration is given by Xkþ1 ¼ Xk � F 0ðXkÞ�1
FðXkÞ, that after the standard

Taylor expansion can be written as

Algorithm 6 Newton’s method for CARE

1: Given X0 a Rn�n such that X0 ¼ X T
0 and A� BBTX0 is stable.

2: for k ¼ 0; 1; . . . until convergence do
3: Set Ak ¼ A� BBTXk

4: Solve AT
k Xkþ1 þ Xkþ1Ak ¼ �CTQC � XkBB

TXk . for Xkþ1

5: end for

Algorithm 6 has been known in the literature as the Kleinman iteration for

CARE [114]. Notice that the Lyapunov equation (step 4) must be solved at every

iteration. Recently for large scale problems the Kleinman iteration is combined

with Alternating Direction Implicit (ADI) iterations for solving the Lyapunov

equations [14], [68]. For another approach suitable for small and medium size

problems which is based on the sign function see Byers [30].

A quasi-Newton scheme has also been developed for solving CARE, that

obtains a reduction in the computational cost of the linear algebra involved

[142]. However, the scheme proposed in [142] approximates the Fréchet derivative

using finite di¤erences, and so it cannot be considered as a secant method. So

far, there are no matrix secant methods based on Algorithms 3 and 4 for Riccati

equations.

3.6. Rational equations. We consider the following rational matrix equation

X eA�X�pA ¼ Q; ð51Þ

where A is a nonsingular n� n matrix, Q is an n� n Hermitian positive definite

matrix, p is a positive integer and A� represents the conjugate transpose of A.

Equation (51) requires maximal (minimal) Hermitian positive definite solutions.
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A maximal solution of (51) denoted by Xþ satisfies that Xþ > X for any Hermi-

tian solution X , where A > B (AbB) means that A� B is a positive definite

(semidefinite) matrix, which is the well-known Löwner ordering for Hermitian

matrices. A minimal solution X� can be defined similarly. For additional com-

ments concerning the existence of solutions for (51) see [64], [65], [178]. Rational

equations appear in the analysis of stationary Gaussian reciprocal processes over

a finite interval [69], in the field of optimal control theory [64], and it is related to

an algebraic Riccati equation of the type arising in Kalman filter theory [119].

When p ¼ 1 a Newton’s method has been already developed, and after a standard

Taylor expansion and simple manipulations it can be written as

Xkþ1eL�
kXkþ1Lk ¼ Qe 2L�

kA; ð52Þ

where Lk ¼ X�1
k A. Notice that at every iteration of (52) the inverse of a matrix

needs to be computed, and a discrete Sylvester equation (also known as Stein

equation) needs to be solved for Xkþ1. From suitable initial matrices and mild

assumptions the q-quadratic convergence of (52) has been established [84].

To avoid the inverse at each iteration in (52), when p ¼ 1, Q ¼ I and using the

plus sign, a simplified variant based on the Newton–Schulz scheme (17) has been

recently proposed and analyzed [136]. This simplified iteration is given by

Xkþ1 ¼ 2Xk � XkA
��ðI � XkÞA�1Xk: ð53Þ

The method indicated by (53) is clearly inexpensive. Notice that it only requires

to compute A�1 at the beginning of the process. Starting with X0 ¼ AA�, iter-
ation (53) converges q-linearly to the minimal solution of (51) [136]. For di¤erent

values of p, there are some other iterative schemes that posses q-linear conver-

gence to extremal solutions of (51) which are not based on Newton’s method, but

instead on fixed points iterations [62], [63], [84], [107], [150], [178]. So far, there

are no matrix secant methods based on Algorithms 3 and 4, for solving rational

equations.

4. Conclusions

Newton’s method has been omnipresent in the development of applied mathemat-

ics and scientific computing; and whenever a Newton method is applicable to a

general nonlinear problem a suitable secant method can also be obtained for the

same problem. In this work we present a condensed review of this longstanding

relationship in di¤erent and sometimes unexpected scenarios. In our presentation,
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we also emphasize that Newton’s method has been rediscovered several times

through history for solving specialized vector and matrix problems.

In the space of matrices we discuss and further analyze a recent interpretation

of the classical secant method. In the special case of computing the inverse, the

square root, and the sign of a given matrix, we fully analyze the specialized

versions that emerge from this interpretation of the secant method, and illustrate

their practical performance together with the best available specialized Newton

method. Our preliminary numerical experiments show the expected q-quadratic

and q-superlinear convergence for Newton’s method and secant methods respec-

tively, and indicate that for solving nonlinear matrix problems the secant methods

have interesting properties that remain to be fully understood.
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