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Cutting corners in Michell trusses

Elizabeth Figueroa, Adam Hill, Denise Iusco and Rolf Ryham*

Abstract. A corner is defined to be the vertex of a strict cone locally containing the support
of a truss and having locally empty intersection with the support of the applied force. A
topological perturbation called corner cutting is defined in two dimensions and the process
is shown to have a negative e¤ect on the mass of planar trusses, independent of the angle
of the corner. Minimal, finite, planar trusses are therefore free of corners. Applied point
forces are shown to be balanced by at least one truss, thereby showing that the admissible
class is nonempty. Explicit mass and geometric bounds are presented as part of this
construction.
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1. Introduction

Michell trusses deal with a variational problem posed by the mechanical engineer

Anthony George Maldon Michell in the early part of the twentieth century [9];

that is, what configuration of bars and cables needed to balance a system of

applied forces is most economical? Force is transmitted by an axial stress; a sym-

metric, rank one matrix-valued measure supported on the bars and cables. The

linear density of individual bars or cables is proportional to their strength. In the

Michell truss problem, one minimizes the total mass subject to balancing an

applied load. The stress is a solution to the force balance equations stating that

the material body will remain at rest under the applied force. In the study of

Michell trusses, one is interested in the construction and existence of minimal

structures. This is a di‰cult mathematical problem with subtle existence and reg-

ularity issues where the number of bars and cables needed to withstand an applied

point force may diverge to infinity [4].
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In this paper, a su‰cient condition is given for determining when a truss is not

minimal. Minimality can be tested by making local perturbations to the structure,

but these perturbations are generally di‰cult to construct since satisfying the force

balance equation requires a change in topology. However, a natural place to look

for improvement is corners. A topological perturbation called corner cutting is

introduced and it is shown to have a negative e¤ect on the mass of finite, planar

structures. Repeatedly applying the corner cutting construction yields a sequence

of trusses with decreasing mass and increasing number of members.

Returning to the global question, in the direct method, it is necessary to dem-

onstrate the existence of at least one load balancing structure. To this end, an ex-

plicit construction of a balancing truss is given which yields geometric and mass

estimates in terms of the data—the applied force.

The definitions of a truss and the corner cutting construction appearing in this

paper were inspired by [4]. There, a strategy to address the formation of di¤use

structures was proposed by defining a class of stresses which accounts for the

limits of finite trusses. A duality principle for the stress and strain tensors was for-

mulated and the infimum over this class was shown to be the same as in Michell’s

problem. Solving the dual formulation is often more straightforward and leads to

constructive, optimization algorithms [3], [5], [6], [10], [11].

In three dimensions, the e¤ective stress tensor can be more complicated than

presented above. From the point of view of optimal design, one must consider

the need for a material with two dimensional microstructures, in addition to bars

and cables. This is discussed in more detail in [1]. Among potential materials that

may be used to fulfill these criteria are metallic foams and single-scale laminates

[2]. However, this is beyond the scope of our discussion.

In Section 2, trusses and applied point forces are defined. The main results are

stated in Section 3. The corner cutting perturbation is defined in Section 4 and the

construction of a truss with geometric and mass bounds is given in Section 5.

Acknowledgment. We thank Robert Hardt for introducing us to this topic. We

are indebted to Wilfrid Gangbo for showing us the construction in Theorem 3.3.

We also thank Michael Burr for a careful reading of the manuscript and the

referees for making helpful suggestions.

2. Notation

Throughout the paper, the following notation will be used.

Rn�n; linear transformations of Rn;

v � w ¼
Xn
i¼1

viwi for v;w a Rn; s : t ¼
Xn
i; j¼1

sijtij for s; t a Rn�n;

96 E. Figueroa, A. Hill, D. Iusco and R. Ryham



vnw a Rn�n where ðvnwÞij ¼ viwj for i; j ¼ 1; . . . ; n; v;w a Rn.

For x and y distinct points in Rn, ½xy� is the closed line segment and ðxyÞ is the
open line segment.

2.1. Trusses. To motivate the definition of a truss, consider an idealized one

dimensional bar under compression. Let u be a unit vector parallel to the bar.

Following Cauchy, slice the bar into two pieces with a plane perpendicular to

the bar. Let n be the outward pointing normal vector of the first piece. By

Galilean invariance, c.f. [8], the stress at the cut is a symmetric matrix. Since

the force points in the direction of the outward normal, n is an eigen-vector

of the stress with positive eigen-value. Finally, the plane perpendicular to the

bar is the null space of the stress, since the bar withstands only compression.

From the spectral theorem, it follows that the stress is of the form oun u for

some positive constant o. The number o is called the strength, or weight, of

the bar.

Motivated by this discussion, the stress carried by a bar spanning distinct

points x and y in Rn is osxy, where o is a positive constant,

dsxy ¼
x� y

jx� yj n
x� y

jx� yj dm; ð1Þ

and m is arc length measure with respect to ðxyÞ. Note that the Leibniz notation

dsxy is used to define sxy. Similarly, the stress carried by an idealized cable span-

ning x and y is nsxy where n is a negative constant.

More generally, let T be the collection of finite, VerðnÞ-valued Radon measures.

An element of T is called a truss. Here, VerðnÞ is the Veronese cone of rank one

symmetric linear transformations, i.e. matrices of the form lun u for l a R and

u a Rn. Recall that a vector or matrix valued measure is Radon if it is Borel

regular and its variation measure is finite on compact sets [7]. Let T0 HT be the

collection of VerðnÞ-valued Radon measures s of the form s ¼
P

i A I lisxi yi , where

I is finite and xi; yi a Rn are distinct and li is a nonzero real number for all i a I .

An element of T0 is called a finite truss.

If s a T, then the variation measure jsj and mass ksk are defined by

jsjðUÞ ¼ sup
f AC0ðURn�nÞ;

kfk�a1

ð
Rn

f � ds; ksk ¼ jsjðRnÞ;

for all open subsets U of Rn. Here, kfk� ¼ maxx ASn�1 jf : xn xj. In particular, if

s ¼
P

i A I lisxi yi a T0, and B is a Borel set, then
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jsjðBÞ ¼
X
i A I

jlijmð½xi yi�BBÞ; ksk ¼
X
i A I

jlij jxi � yij: ð2Þ

Finally, a point p is said to lie in the support of s if r > 0 implies jsj
�
BrðpÞ

�
> 0.

Equilibrated applied forces. Applied forces are vector-valued measures sup-

ported in Rn. If a static solution to the force balance equation exists, then the

linear and angular moments of the applied forces vanish. Thus, the space of equi-

librated forces F is the collection of Rn-valued Radon measures f with finite first

moment measure jxjdj f j, andð
Rn

Wðx� zÞ � df ðxÞ ¼ 0 for all W a SkwðnÞ and z a Rn: ð3Þ

Here, SkwðnÞ is the collection of skew symmetric linear transformations.

The space of applied point forces F0 HF is the collection of equilibrated forces

with finite support. If f is an element of F0, then there is a finite set A and vectors

f faga AA in Rn so that

f ¼
X
a AA

fada;
X
a AA

Wða� zÞ � fa ¼ 0 for all W a SkwðnÞ; z a Rn; ð4Þ

where da is the Dirac measure supported at a. If f a F , then its mass is defined

by k f k ¼ j f jðRnÞ, the variation measure of the whole space. In particular, if

f ¼
P

a AA fada a F0, then,

k f k ¼
X
a AA

j faj:

A truss s a T balances f a F if div sþ f ¼ 0 in the sense of distributions.

This means that for all smooth, compactly supported vector fields f,

ð
Rn

‘f : ds ¼
Xn
i; j¼1

ð
Rn

qfi
qxj

dsij ¼
Xn
i¼1

ð
Rn

fi dfi ¼
ð
Rn

f � df : ð5Þ

If s ¼
P

i A I lisxi yi is a finite truss and f ¼
P

j A J fjdxj is an equilibrated applied

point force, then (5) is equivalent to the statement

X
i A I

li
xi � yi

jxi � yij
� ½fðxiÞ � fðyiÞ� ¼

X
i A J

fi � fðxiÞ; ð6Þ

for all f a C0ðRn;RnÞ. A truss s is minimal if kska ktk for all t a T such that

div t ¼ div s.
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As an illustration, consider the Michell bridge truss. The bridge truss, intro-

duced in [9], is an example of a minimal truss which is infinite, curved, and has

members under compression and members under tension. To describe the truss,

let g be the arc-length parametrized curve in R2 ¼ C consisting of the line seg-

ment ½
ffiffiffi
2

p
; eip=4�, the circular arc eiy for p=4 < y < 3p=4 and the line segment

½ei3p=4;�
ffiffiffi
2

p
�. Let ĝg be the reflection of g across the real axis. Define sM a T by

dsM ¼ g 0 n g 0 dg� eia n eia dr dy� ĝg 0 n ĝg 0 d ĝgþ eib n eib dr dy;

where p=4 < a, b � p < 3p=4 and 0 < r < 1. One verifies by direct calculation

that sM satisfies the weak formulation (5) for the applied point force

f ¼ i
ffiffiffi
2

p
ðd ffiffi2p þ d�

ffiffi
2

p � 2d0Þ:

Both f and s are depicted in Figure 1. Solid lines represent bars while dashed

lines represent cables. The force vectors are scaled for clarity. The mass of the

bridge truss is 4þ 2p. Using a duality argument [4], sM was shown to be minimal.

Definition 2.1. Let s a T with div s a F . Then a point p is a corner if p lies in the

support of s and there are r > 0, y > 0, and v a Sn�1 such that jdiv sj
�
BrðpÞ

�
¼ 0

and jsjðfx : ðx� pÞ � v < yjx� pj; jx� pj < rgÞ ¼ 0.

3. Main results

The following result gives a necessary condition for the minimality of finite planar

trusses.

Theorem 3.1. Let s a T0 on R2. If s possesses a corner, then s is not minimal.

Remark 3.2. The conclusion of Theorem 3.1 is independent of the angle of the

corner.

Figure 1. The Michell Bridge Truss.
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The next result establishes the existence of a minimizing sequence. It states

that an applied point force is equilibrated if and only if it is balanced by a truss.

Theorem 3.3. Let f a F0 be an applied point force on Rn. There exists a truss

s a T0 with div sþ f ¼ 0 and

SuppðsÞH 7
q AA

BDiamðAÞðqÞ;

kskaKn

�
DiamðAÞ þ 1

�2kðjxj þ 1Þ f k;

where A ¼ Suppð f Þ and where Kn ¼ 8n
ffiffiffiffi
n!

p
.

4. Cutting corners

In the remainder of the section, p is a corner of a finite truss s a T0. Lemma 4.1

states that the members of the truss meeting the corner lie inside a strict cone and

that the net force on the corner is zero. Proposition 4.2 determines the behavior

of weights when the members meeting the corner are duplicated and shifted in

independent directions.

Lemma 4.1. There exists a finite set YHRn, y > 0, and v a Sn�1 with

s ¼ tþ t̂t; t ¼
X
y AY

k0ysyp; t̂t ¼
X
j A J

kjsxj yj ; p B fxj; yjgj A J ð7Þ

where X
y AY

k0y
y� p

jy� pj ¼ 0; ðy� pÞ � vb yjy� pj for all y a Y : ð8Þ

Proof. Let s ¼
P

i A I kisxi yi . Let K be the collection of k in I for which

p a ½xk yk�. Since p lies in the support of s, K is nonempty. If k a K , then

p ¼ hxk þ ð1� hÞyk for some h a ½0; 1�. By definition, there are y > 0, r > 0,

and v a Sn�1 for which jsj
�
Br;y; vðpÞ

�
¼ 0 where Br;y; vðpÞ ¼ fx : ðx� pÞ � v <

yjx� pj; jx� pj < rg. Thus, by (2),

jkkjm
�
½xk yk�BBr;y; vðpÞ

�
a
X
i A I

jkijm
�
½xi yi�BBr;y; vðpÞ

�
¼ jsj

�
Br;y; vðpÞ

�
¼ 0:

Since kk is nonzero, it follows that ðqh � pÞ � vb yjqh � pj when qh ¼ hxk þ
ð1� hÞyk, h a ½0; 1�, and jqh � pj < r. Expanding the previous inequality in terms

of h and h,

ðh� hÞðxk � ykÞ � v ¼ ðqh � pÞ � vb yjqh � pj ¼ yjh� hj jxk � ykj:
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If h a ð0; 1Þ, then the left-hand side changes sign for h lying in a su‰ciently small

neighborhood of h while the sign of the right-hand side does not change. This is a

contradiction. It follows that h ¼ 0 or h ¼ 1. Suppose that h ¼ 1 so that xk ¼ p.

Choosing h su‰ciently close to but less than 1, whereby ðh� hÞ=jh� hj ¼ �1,

yields

ðyk � pÞ � vb yjyk � pj for all k a K :

In the alternative case h ¼ 0, switch the labels xk and yk. Let Y ¼ fykgk AK ,
J ¼ InK , and k0y ¼ kk whenever y ¼ yk, k a K . By construction, p B 6

j A J ½xj; yj�.
Then, by the definition of corner and (6),

��P
y AY k0y

y�p

jy�pj

��a jdiv sj
�
BrðpÞ

�
¼ 0.

r

For simplicity, assume p ¼ 0. In general this may be achieved by shifting the

truss so that the corner lies at the origin. To describe the corner cutting construc-

tion as applied to planar trusses, define v1 ¼ e1 þ ye2 and v2 ¼ �e1 þ ye2. Here,

ea are orthonormal vectors in R2 and v ¼ e2 where v is the vector in Lemma 4.1.

Consider the system of equations

pa ¼ hva; a ¼ 1; 2; ð9Þ

k0y
y

jyj ¼
X2
a¼1

kay
y� pa

jy� paj
for all y a Y ; ð10Þ

h
p1 � p2

jp1 � p2j
¼
X
y AY

k1y
y� p1

jy� p1j
¼ �

X
y AY

k2y
y� p2

jy� p2j
: ð11Þ

Figure 2. Corner cutting. In two dimensions, the vertex p of the cone is shifted to two
points p1 and p2. The residual force at y is then carried by two members. The residual
force at p1 and p2 vanishes as a consequence of the balance of forces at p.
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Proposition 4.2. There exist functions fkayga¼1;2;y AY , h a C1
�
½0; h0Þ

�
satisfying

(9)–(11) for all h a ð0; h0Þ where h0 ¼ miny AY jyj. In particular, the sums appearing

in (11) are equal and parallel to p1 � p2 for all h a ð0; h0Þ. Moreover,

X2
a¼1

kayð0Þ ¼ k0y;
X2
a¼1

jkayð0Þj ¼ jk0yj; ð12Þ

X2
a¼1

kayð0Þ
jkayð0Þj

k 0
ayð0Þ ¼ 0; ð13Þ

X2
a¼1

jkayð0Þjva ¼
yjk0yjy
y � e2

for all y a Y ; ð14Þ

hð0Þ ¼ y
X
y AY

k0yðy � e1Þ2

2jyjy � e2
: ð15Þ

Proof. For h a ð0; h0Þ and y a Y , define

k1y ¼ k0y
ðy � e2 þ yy � e1Þjy� p1j

2jyjðy � e2 � yhÞ ; k2y ¼ k0y
ðy � e2 � yy � e1Þjy� p2j

2jyjðy � e2 � yhÞ : ð16Þ

The numerator and denominator in the above two expressions is positive. This is

a consequence of the inequality in (8), where p ¼ 0, v ¼ e2, and 0a h <miny AY jyj.
It follows that fkayga¼1;2;y AY a C1

�
½0; h0Þ

�
. Moreover, the sign of kay is indepen-

dent of h and a and is the same as the sign of k0y (by definition, k0y is nonzero).

To see that kay satisfies (10), let y a Y and consider

�
k0y

y

jyj �
X2
a¼1

kay
y� pa

jy� paj

� 2jyjðy � e2 � yhÞ
k0y

¼ 2ðy � e2 � yhÞy� ðy � e2 þ yy � e1Þðy� p1Þ � ðy � e2 � yy � e1Þðy� p2Þ
¼ 2ðy � e2 � yhÞy� 2y � e2ðy� hye2Þ þ 2hyy � e1e1 ¼ 0:

To derive (12), set h ¼ 0 in (16) and add the two expressions and their absolute

value respectively. To derive (13), di¤erentiate (10) with respect to h and evaluate

at h ¼ 0; noting that k0y and y are independent of h,

X2
a¼1

k 0
ayð0Þ

y

jyj � kayð0Þ
va

jyj �
y � vay
jyj3

 !
¼ 0:

The right summands are orthogonal projections onto y?. Forming the inner

product of this expression with y then gives
P2

a¼1 k
0
ayð0Þ ¼ 0, implying (13) since

the sign of kay is independent of a for h a ½0; h0Þ.
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The derivation of (14) follows by evaluation. Using (16), where all terms other

than k0y are positive,

X2
a¼1

jkayð0Þjva ¼
jk0yj
2y � e2

½ðy � e2 þ yy � e1Þðe1 þ ye2Þ þ ðy � e2 � yy � e1Þð�e1 þ ye2Þ�

¼ jk0yj
y � e2

½yy � e1e1 þ yy � e2e2� ¼
yjk0yjy
y � e2

:

To define hðhÞ, note that
P

y AY k1y
y�p1

jy�p1j
is parallel to p1 � p2 for all h a ð0; h0Þ.

To see this, let W ¼ e2 n e1 � e1 n e2. By (8) (with p ¼ 0) and the skew symmetric

property Wy � y ¼ 0,

0 ¼ Wp2 �
X
y AY

k0y
y

jyj ¼
X
y AY

Wðp2 � yÞ � k0y
y

jyj :

Then, expanding k0y
y

jyj using (10),

0 ¼
X2
a¼1

X
y AY

Wðy� p2Þ � kay
y� pa

jy� paj
¼
X2
a¼1

X
y AY

Wðy� pa þ pa � p2Þ � kay
y� pa

jy� paj

¼
X2
a¼1

X
y AY

Wðpa � p2Þ � kay
y� pa

jy� paj
¼
X
y AY

Wðp1 � p2Þ � k1y
y� p1

jy� p1j

¼ 2he2 �
X
y AY

k1y
y� p1

jy� p1j
:

The skew symmetric property Wðy� paÞ � ðy� paÞ ¼ 0 was used in the third

equation. In the fourth equation, the left-hand summand vanishes when a ¼ 2.

The fifth equation follows from the identities We1 ¼ e2 and p1 � p2 ¼ 2he1. The

fact that
P

y AY k1y
y�p1

jy�p1j
is perpendicular to e2 shows that it is also parallel to

p1 � p2. The analogous argument implies that
P

y AY k2y
y�p2

jy�p2j
is parallel to

p2 � p1. Finally, combining (8) and (10),

X
y AY

k1y
y� p1

jy� p1j
þ
X
y AY

k2y
y� p2

jy� p2j
¼
X
y AY

k0y
y

jyj ¼ 0:

The existence of the function hðhÞ for h a ð0; h0Þ is now established since all the

terms appearing in (11) are parallel and two rightmost expressions are equal. In

particular, forming the inner product of (11) with e1 gives

�hðhÞ þ
X
y AY

k1y
y � e1 þ h

jy� p1j
¼ 0:
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This formula shows that hðhÞ extends to a continuously di¤erentiable function on

h a ½0; h0Þ. Setting h ¼ 0 and using (16),

hð0Þ ¼
X
y AY

k0yðy � e2 þ yy � e1Þ
2y � e2

y � e1
jyj ¼ y

X
y AY

k0yðy � e1Þ2

2jyjy � e2
:

Note that the first summands in the middle term vanish due to (8). This last

equality implies (15), thus completing the proof. r

Theorem 3.1 is now a corollary of Proposition 4.2.

Proof of Theorem 3.1. Applying the above notation, let s ¼ tþ t̂t be the decom-

position provided by (7). To show that s is not minimal, there is a one parameter

family of trusses sh for h a ð0; h0Þ and a continuously di¤erentiable function mðhÞ
for h a ½0; h0Þ so that

div sh ¼ div s; mðhÞ ¼ kshk; Eh a ð0; h0Þ;
mð0Þ ¼ ksk; m 0ð0Þ < 0:

Pending the existence of sh and mðhÞ, the proof of the theorem follows since

kshkðhÞ ¼ mðhÞ < mð0Þ ¼ ksk for h su‰ciently small. Thus, s is not minimal.

To define sh, let sh ¼ th þ t̂t where

th ¼ hsp1 p2 þ
X2
a¼1

X
y AY

kaysypa ; h a ð0; h0Þ

and where fkayga¼1;2;y AY and h are found in Proposition 4.2. To define mðhÞ, let

mðhÞ ¼ 2jhðhÞjhþ
X2
a¼1

X
y AY

jkayðhÞj jy� paðhÞj þ kt̂tk; h a ½0; h0Þ:

Proposition 4.2 guarantees that mðhÞ a C1
�
½0; h0Þ

�
while (2) shows that mðhÞ ¼

kshk for h a ð0; h0Þ. Evaluating the function mðhÞ at h ¼ 0,

mð0Þ ¼ 2jhð0Þj0þ
X2
a¼1

X
y AY

jkayð0Þj jy� pað0Þj þ kt̂tk

¼
X
y AY

X2
a¼1

jkayð0Þj jy� pj þ ktk ¼
X
y AY

jk0yð0Þj jy� pj þ kt̂tk ¼ ksk:

Here (15) implies that hð0Þ is finite, the identity pað0Þ ¼ p was used in the second

equation, and (12) was used in the third equation.
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To show that div sh ¼ div s, consider the distributional definition of the diver-

gence (6) of th : for f a C0ðR2;R2Þ,

h
p1 � p2

jp1 � p2j
�
�
fðp1Þ � fðp2Þ

�
þ
X2
a¼1

X
y AY

kay
y� pa

jy� paj
�
�
fðyÞ � fðpaÞ

�

¼
X
y AY

k1y
y� p1

jy� p1j
� fðp1Þ þ

X
y AY

k2y
y� p2

jy� p2j
� fðp2Þ

þ
X2
a¼1

X
y AY

kay
y� pa

jy� paj
�
�
fðyÞ � fðpaÞ

�

¼
X2
a¼1

X
y AY

kay
y� pa

jy� paj
� fðyÞ ¼

X
y AY

k0y
y� p

jy� pj � fðyÞ:

Here, (11) was used to substitute the first term on the left with the two sums on the

right of the first equation and then (10) was used in the third equation. Since f was

arbitrary, this shows that div th ¼ div s� div t̂t, proving the claim div sh ¼ div s.

Finally, to show that the mass of sh increases to the mass of s as h tends to

zero, note that mðhÞ is a di¤erentiable. In particular,

m 0ðhÞ ¼ 2h
h 0

jhj þ 2jhj þ
X2
a¼1

X
y AY

k 0
ay

jkayj
jy� paj � jkayj

y� pa

jy� paj
� va

� �
:

Since h 0ð0Þ is finite, hð0Þ is nonzero and pað0Þ ¼ pð¼ 0Þ,

m 0ð0Þ ¼ 2jhð0Þj þ
X
y AY

�X2
a¼1

k 0
ayð0Þ

jkayð0Þj
jyj �

X2
a¼1

jkayð0Þjva �
y

jyj

�
:

Since jyj is now independent of a, substituting these three expressions using the

identities found in (13), (14), and (15) yields

m 0ð0Þ ¼ 2y
���X
y AY

k0yðy � e1Þ2

2jyjy � e2

���þX
y AY

0jyj � yjk0yjy
y � e2

� y

jyj

� �

a y
X
y AY

jk0yjðy � e1Þ2

jyjy � e2
� jk0yj jyj

y � e2
¼ �y

X
y AY

jk0yj
jyj y � e2 < 0:

The first inequality follows from the triangular inequality while the second equal-

ity uses the identity ðy � e1Þ2 � jyj2 ¼ �ðy � e2Þ2. The final inequality follows from

the positivity of y and the fact that the members of the truss meeting p lie in a

strict cone as defined by (8). r
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5. Existence and mass estimates

In the remainder of the section, f ¼
Pk

i¼1 fidai a F0 for fi; ai a Rn. By rotation

and translation, we assume without loss of generality that ak ¼ 0 and fk is parallel

to en. Here, e1; e2; . . . ; en are the orthonormal basis vectors of Rn. We will write

A ¼ fa1; a2; . . . ; akg to denote the points of application of the applied force f . We

will use the natural identification of the hyperplanes of Rn,

f0gHRHR2 H � � �HRn:

For v a Rn, we write v ¼ vH þ v? where vH a Rn�1 and v? is parallel to en. The

following constructions were suggested by Wilfrid Gangbo (personal communi-

cation).

Lemma 5.1. Assume either

(i) ai; fi HR for i ¼ 1; . . . ; k or

(ii) ai a Rn�1 with fi parallel to en for i ¼ 1; . . . ; k.

Then there exists a truss s with div s ¼ f and

SuppðsÞHBDiamðAÞð0Þ; ð17Þ
kska 2DiamðAÞkðjxj þ 1Þ f k: ð18Þ

Proof. Assume (i). Then there are real numbers li so that fi ¼ �lie1 and ai � 0 is

parallel to e1 for i ¼ 1; . . . ; k. Using (4), note that

f ¼
Xk
i¼1

fidai � 0d0 ¼
Xk
i¼1

fiðdai � d0Þ

¼ �
Xk
i¼1

lie1ðdai � d0Þ ¼ �
Xk
i¼1

li
ai � 0

jai � 0j ðdai � d0Þ:

Letting xi ¼ ai and yi ¼ 0, the above equation along with (6) shows s :¼Pk
i¼1 oisxi yi satisfies div s ¼ f . Moreover,

ksk ¼
Xk
i¼1

jlij jxi � yij ¼
Xk
i¼1

j fij jaij ¼ kðjxj f Þk

as claimed.
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Now assume (ii). Let x ¼ ð0; . . . ; 0; aÞ be a point on the line perpendicular to

Rn�1. Let fi ¼ fien. We decompose the force vectors as follows,

fi ¼ f o
i þ f

p
i :¼ fi �

fi
a
ai

� �
þ fi

a
ai; i ¼ 1; . . . ; k:

Note that in this way, f
p
i is parallel with ai � ak (we’re assuming ak ¼ 0) and

f o
i ¼ fi

a
ðx� aiÞ. We claim that the linear moment of f o

i as well as the linear

moment of f
p
i vanish. For the moment, assume this to be true. Then

f ¼
Xk
i¼1

ð f o
i þ f

p
i Þdai ¼

�Xk
i¼1

f o
i ðdai � dxÞ

�
þ
�Xk

i¼1

f
p
i ðdai � d0Þ

�

¼ �
�Xk

i¼1

jx� aijfi
a

ai � x

jai � xj ðdai � dxÞ
�
þ
�Xk

i¼1

jaijfi
a

ai � 0

jai � 0j ðdai � d0Þ
�
:

For i ¼ 1; . . . ; k, letting

li ¼
jx� aijfi

a
; xi ¼ ai; yi ¼ x; ~lli ¼ � jaijfi

a
; ~xxi ¼ ai; ~yyi ¼ 0;

we see that s ¼
Pk

i¼1 lisxi yi þ
Pk

i¼1
~llis~xxi ~yyi satisfies div s ¼ f . Moreover,

ksk ¼
Xk
i¼1

jlij jxi � yij þ j~llij j~xxi � ~yyij ¼
1

a

Xk
i¼1

j fijðjx� aij2 þ jaij2Þ:

Letting a ¼ DiamðAÞ, the triangular inequality gives (17) and (18).

It remains to be shown that the linear moment of f o
i as well as the linear mo-

ment of f p
i vanish. This is proved using the vanishing angular and linear moment

of f . Let v a Rn�1 and define the skew symmetric matrix W ¼ vn en � en n v a
SkwðnÞ. By (4),

0 ¼
Xk
i¼1

Wai � fi ¼ v �
Xk
i¼1

fiai ¼ av �
Xk
i¼1

f
p
i :

Furthermore, en �
Pk

i¼1 f
p
i ¼ 0. Since v was arbitrary, this shows that

Pk
i¼1 f

p
i ¼ 0.

Note that one consequence of (4) is the identity
Pk

i¼1 fi ¼ 0. The claim now

follows since two out three of the linear moments vanish. r
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Lemma 5.2. There exist equilibrated point forces h ¼
Pðn�1Þk

i¼1 hidyi and g ¼Pnk
i¼1 gidzi and a truss t with

(i) hi; yi a Rn�1,

(ii) zi a Rn�1 and gi parallel to en,

f ¼ div t� h� g and

DiamðYÞaDiamðAÞ; DiamðZÞaDiamðAÞ; ð19Þ

kðjxj þ 1Þhka 2
ffiffiffi
n

p
kðjxj þ 1Þ f k; ð20Þ

kðjxj þ 1Þgka 3
ffiffiffi
n

p �
DiamðAÞ þ 1

�
kðjxj þ 1Þ f k; ð21Þ

SuppðtÞHBDiamðAÞðakÞ; ð22Þ

ktka 2
ffiffiffi
n

p �
DiamðAÞ þ 1

�
kðjxj þ 1Þ f k; ð23Þ

where Y ¼ fy1; . . . ; yðn�1Þkg and Z ¼ fz1; . . . ; znkg.

Proof. For i ¼ 1; . . . ; k � 1, define

ai ¼ a?i þ aH
i ;

xia ¼ aH
i þ ea; a ¼ 1; . . . ; n� 1;

ti ¼
Xn�1

a¼1

fi � eajxia � aijsxiaai �
�Xn�1

a¼1

fi � eaja?i j þ fi � en
�
saiaH

i
:

We may, without loss generality, assume a?i � enb 0 and aH
i � eaa 0 so that

ja?i jen ¼ a?i and jak � xiaja jaij. Then, using (6),

div ti ¼ ð fidaiÞ þ
�
�
Xn�1

a¼1

fi � eaeadxia
�

þ
�Xn�1

a¼1

fi � eaja?i jendxia �
hXn�1

a¼1

fi � eaja?i j þ fi � en
i
endaH

i

�
:

Note that of the three parenthetical expressions in the last expression, the first is

simply the force f applied to ai, the second are horizontal forces with points of

application in Rn�1 while the third are perpendicular forces with points of applica-

tion in Rn�1. Accordingly we define
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t ¼
Xk
i¼1

ti; ðtk ¼ 0Þ;

h ¼
Xk
i¼1

Xn�1

a¼1

fi � eaeadxia ;

g ¼
Xk
i¼1

Xn�1

a¼1

fi � eaja?i jendxia �
hXn�1

a¼1

fi � eaja?i j þ fi � en
i
endaH

i
:

The above shows that

f ¼ div t� h� g:

We claim g and h are equilibrated. Note that div t is equilibrated. By assump-

tion, f is equilibrated. Therefore it su‰ces to only prove that h is equilibrated.

Clearly, if v a Rn�1,

v �
ð
Rn

dh ¼
Xk
i¼1

Xn�1

a¼1

fi � eav � ea ¼
Xk
i¼1

fi � v ¼ 0:

Since h is a horizontal force, this shows that the linear moment of h vanishes. To

prove the angular moment also vanishes, let W a SkwðnÞ. Since h is horizontal, we

may restrict ourselves to the cases when Wen ¼ 0. Consider

ð
Rn

Wx � dhðxÞ ¼
Xk
i¼1

Xn�1

a¼1

fi � eaWxia � ea

¼
Xk
i¼1

Xn�1

a¼1

fi � eaWea � ea þ
Xk
i¼1

Xn�1

a¼1

fi � eaWaH
i � ea

¼ 0þ
Xk
i¼1

Wah
i � f H

i ¼
Xk
i¼1

Wai � fi ¼ 0:

Note that the first sum vanished because W is skew symmetric while in the second

sum adding the perpendicular component of fi and ai leaves the summands

unchanged. This proves the claim.

Using the estimates
Pn

i¼1 jx � eija
ffiffiffi
n

p
jxj and jxia � aij2 ¼ 1þ ja?i j

2, it is

straightforward that

ktka
Xk
i¼1

ffiffiffi
n

p
ð2jaij2 þ jaij þ 1Þj fija 2

ffiffiffi
n

p �
DiamðAÞ þ 1

�
kðjxj þ 1Þ f k:
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Writing h ¼
Pðn�1Þk

i¼1 hidyi and g ¼
Pnk

i¼1 gidzi ,

kðjxj þ 1Þhk ¼
Xk
i¼1

Xn�1

a¼1

ðjxiaj þ 1Þj fi � eaja
ffiffiffi
n

p Xk
i¼1

ðjaij þ 2Þj fij

a 2
ffiffiffi
n

p
kðjxj þ 1Þ f k:

and

kðjxj þ 1Þgk ¼
Xk
i¼1

�Xn�1

a¼1

ja?i jðjxiaj þ jah
i j þ 2Þj fi � eaj

�
þ ðjah

i j þ 1Þj fi � enj

a
ffiffiffi
n

p Xk
i¼1

ðjaij þ 1Þð2jaij þ 3Þj fij

a 3
ffiffiffi
n

p �
DiamðAÞ þ 1

�
kðjxj þ 1Þ f k: r

With the help of Lemmas 5.1 and 5.2, we have the following result.

Proof of Theorem 3.3. The proof proceeds by induction. The inductive hypothesis

reads as follows:

If h ¼
Xl

i¼1

hidyi a F0 with hi; yi a Rm; then there exists sH a T0

with div sH ¼ h; SuppðsHÞH 7
q AY

BDiamðYÞðqÞ;

ksHkaKm

�
DiamðYÞ þ 1

�2kðjxj þ 1Þhk:

Here Y ¼ fy1; . . . ; ylg. We conclude the case m ¼ 1 from part 1 of Lemma 5.1.

We assume the inductive hypothesis to hold true for m ¼ n� 1. Let f ¼Pk
i¼1 fidai be a equilibrated applied force with forces and points of application in

Rn. Choose p a A ¼ fa1; . . . ; akg. Reordering if neccesary, we assume without

loss of generality that p ¼ ak. Let

f ¼ div t� ~hh� g ð24Þ

be the decomposition given by Lemma 5.2. The given g has points of application

Z in Rn�1 with forces parallel to en. Applying Lemma 5.1 to g, there is a truss s?

satisfying

div s? ¼ g; Suppðs?ÞHBDiamðZÞðpÞ;

ks?ka 2DiamðZÞkðjxj þ 1Þgk:
ð25Þ
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The given ~hh has points of application ~YY in Rn�1 with forces also in Rn�1. Let

h :¼ ~hhþ 0dp and Y :¼ ~YYA fpg. Note that from the construction in Lemma 5.1,

DiamðYÞ ¼ Diamð ~YYÞ. Applying the inductive hypothesis to h, there is a truss sH

with

div sH ¼ h; Suppðs?ÞHBDiamðYÞðpÞ;

ksHkaKn�1

�
DiamðYÞ þ 1

�2kðjxj þ 1Þhk:
ð26Þ

Setting s ¼ s? þ sH � t and applying (24), we have shown that there exists a

truss s equilibrating f , namely div sþ f ¼ 0.

Using estimates (19–21) and (25),

ks?ka 6
ffiffiffi
n

p �
DiamðAÞ þ 1

�2kðjxj þ 1Þ f k;
ksHka 2

ffiffiffi
n

p
Kn�1

�
DiamðAÞ þ 1

�2kðjxj þ 1Þ f k:

In total, along with the estimate (23) for ktk,

kska ð8
ffiffiffi
n

p
þ 2

ffiffiffi
n

p
Kn�1Þ

�
DiamðAÞ þ 1

�2kðjxj þ 1Þ f k:

Furthermore,

SuppðsÞHBDiamðZÞðpÞABDiamðYÞðpÞABDiamðAÞðpÞHBDiamðAÞðpÞ:

Since p a A was arbitrary, we conclude the inductive hypothesis for the case

m ¼ n as well. r

6. Conclusion

It has been shown that any finite, planar truss containing corners cannot be the

cost-minimizing solution to the Michell Truss Problem, irrespective of the angle.

A process is presented which always has a negative e¤ect on the cost function of

the parent truss. The method can potentially be applied to more complicated cost

functions.

The corner cutting construction explicitly defines a topological perturbation

of a truss and therefore does not rely on duality arguments in the optimization

procedure. A generalization to dimensions three and higher seems plausible.

In Problem 5.2 of [4], it is conjectured that a minimizing truss is supported in

a bounded region. Theorem 3.3 of the present work merely guarantees the exis-

tence of a minimizing sequence. As described in the introduction, the Michell

bridge truss is not included in the convex hull of the applied force. In future

work, the role of corner cutting in forming barriers as to define a priori bounds

on the support of a minimizing sequence will be investigated.
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