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1. Introduction

In this note, we consider the problem of the existence of periodic (harmonic and

subharmonic) solutions to the planar Hamiltonian system

Jz 0 ¼ ‘zHðt; zÞ; z ¼ ðx; yÞ a R2; ð1:1Þ

being J ¼
�
0 �1
1 0

�
the standard symplectic matrix and H : R� R2 ! R a (regular

enough) function which is T-periodic in the first variable. We focus on the case

in which the vector field ‘zHðt; zÞ satisfies a superlinearity condition at infinity.

Superlinear planar problems have been widely investigated dealing with the

scalar undamped second order equation

u 00 þ gðt; uÞ ¼ 0; u a R; ð1:2Þ

with gðt; xÞ satisfying the classical superlinearity condition at infinity, namely

lim
jxj!þl

gðt; xÞ
x

¼ þl; uniformly in t a ½0;T �:

Classical results in this setting—[14], [15] for the ‘‘unforced’’ case gðt; 0ÞC 0 (see

Section 4) and [7], [8], [12], [19], [20] for the general one—guarantee the existence



of infinitely many periodic, harmonic and subharmonic, solutions. The proofs are

performed via some refined versions of the Poincaré–Birkho¤ fixed point theorem

and, as a consequence, the solutions found are accompanied by a sharp nodal

characterization. We emphasize the fact that such a technique of proof, based

on the Poincaré–Birkho¤ theorem, provides a unifying setting to deal at the

same time with harmonic and subharmonic solutions.

In the case of a general (superlinear) Hamiltonian system (1.1), far fewer re-

sults are available in literature. Due to the variational structure of the equation,

critical point theory can be successfully applied (even in dimension greater than

two) leading to the existence of infinitely many T-periodic solutions (we cite [1],

[17] for the first works in this direction). Despite the great range of applicability

from the point of view of the space dimension, however, results obtained via

critical point techniques, when applied to planar problems, do not provide in-

formation about the nodal properties of the solutions and, as a major drawback,

they usually do not consider (at least in a direct way) the problem of subharmonic

solutions.

We finally remark that, when dealing with first order di¤erential systems (and,

of course, with an Hamiltonian system like (1.1)), there is not a standard definition

of superlinearity (incidentally, notice also that when Hamiltonian systems are

considered the term ‘‘superquadraticity’’ is sometimes preferred, referring to the

assumption on Hðt; zÞ). In particular, it is worth noticing that most of the super-

linearity conditions considered in literature (like the Ambrosetti-Rabinowitz one

(2.8), see Remark 2.4) require both the components of the vector field J‘zHðt; zÞ
to be superlinear. As a consequence, results concerning superlinear Hamiltonian

systems often do not apply to superlinear second order equations (1.2), which are

written in Hamiltonian form as

x 0 ¼ y; y 0 ¼ �gðt; xÞ:

Here, as our starting point, we take the paper [5], where, for a (possibly) non-

Hamiltonian planar system, a suitable superlinearity condition is introduced

and used in order to prove the existence of at least one T-periodic solution

([5], Theorem 4). Such a superlinearity condition, which is suggested by the use

of some systems of modified polar coordinates in the plane, is fulfilled in the

case of superlinear second order equations (see Remark 2.4). The proof of

([5], Theorem 4) exploits topological degree arguments and, as remarked in ([5],

p. 389), the result is optimal from the point of view of the multiplicity, since in

the general (non-Hamiltonian) case no more than one T-periodic solution can be

expected.

The aim of this brief note is to show that, in the Hamiltonian case (1.1),

the (essentially) same assumptions of [5] imply the existence of infinitely many

kT-periodic solutions, for every integer kb 1. Information about the nodal
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properties of the solutions is provided, too. We refer to Section 2 for the precise

statement of the main result, Theorem 2.3.

The proof (see Section 3) is performed via the Poincaré–Birkho¤ fixed point

theorem (in the version by W. Y. Ding [10]), similarly as in [8], [12], dealing with

the second order case. In view of the previous discussion, hence, our Theorem 2.3

includes some classical results concerning superlinear scalar equations and extends

them to a general planar Hamiltonian system (1.1).

In Section 4, we finally give some further remarks about the unforced case,

namely ‘zHðt; 0ÞC 0.

Notation. If z1; z2 a R2, we will write 3z1 j z24 to denote the Euclidean scalar

product of z1, z2, and jz1j to denote the Euclidean norm in R2.

2. Preliminaries and statement of the main result

Throughout the paper, we will denote by P the class made up by the C1-functions

V : R2 ! R which are positive and positively homogeneous of degree 2, i.e. for

every l > 0 and zA 0,

0 < VðlzÞ ¼ l2VðzÞ:

For V a P, we set

AV :¼
ð
fVðx;yÞa1g

dx dy:

Such a class of functions appears in the formulation of the superlinearity condi-

tion, for ‘zHðt; zÞ, at infinity (see assumption ðH2Þ of Theorem 2.3 below).

Moreover, it allows the definition of suitable systems of deformed polar coor-

dinates and of a modified rotation number, which plays an essential role in our

proof. We recall here the precise definition, as given in ([23], p. 17).

Definition 2.1. Let V a P and let z : ½t1; t2� ! R2 be an absolutely continuous

path, with zðtÞA 0 for every t a ½t1; t2�. The V -modified rotation number of zðtÞ
is defined as

RotV
�
zðtÞ; ½t1; t2�

�
:¼ 1

2AV

ð t2

t1

3Jz 0ðtÞ j zðtÞ4
V
�
zðtÞ

� dt:

It is clear that the standard (clockwise) rotation number (that is, the normal-

ized clockwise angular displacement of the curve zðtÞ around the origin, in the
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time interval ½t1; t2�) corresponds to the choice VðzÞ ¼ jzj2, and it will be simply

denoted by Rot.

We remark that such a modified rotation number is implicitly used already in

[5], to count the number of revolutions of some closed paths. In this paper, we will

estimate modified rotation numbers of non-closed paths also, so that we need

the following crucial extra property, which is proved in ([2], Proposition 2.1) as a

consequence of some ideas developed in [23].

Proposition 2.2. Let V a P and let z : ½t1; t2� ! R2 be an absolutely continuous

path, with zðtÞA 0 for every t a ½t1; t2�. Then, for every j a Z,

RotV
�
zðtÞ; ½t1; t2�

�
> j () Rot

�
zðtÞ; ½t1; t2�

�
> j

RotV
�
zðtÞ; ½t1; t2�

�
< j () Rot

�
zðtÞ; ½t1; t2�

�
< j:

Roughly speaking, despite the fact that, in general, the values (on the same

path) of RotV and Rot are di¤erent one from the other, RotV counts the same

number of complete clockwise turns around the origin as Rot.

We are now ready to state our main result, concerning the existence of har-

monic and subharmonic solutions to the planar Hamiltonian system

Jz 0 ¼ ‘zHðt; zÞ z ¼ ðx; yÞ a R2: ð2:1Þ

We will always assume that H : R� R2 ! R is T-periodic in the first variable

(with T > 0 fixed) and di¤erentiable in the second one, with ‘zHðt; zÞ an L1-

Carathéodory function, that is to say, ‘zHðt; �Þ is continuous for a.e. t a ½0;T �,
‘zHð�; zÞ is measurable for every z a R2 and for every r > 0 there exists zr a
L1ð0;TÞ such that j‘zHðt; zÞja zrðtÞ for a.e. t a ½0;T � and for every z a R2 with

jzja r.

Theorem 2.3. Assume that the uniqueness for the solutions to the Cauchy problems

associated with (2.1) is guaranteed. Moreover, suppose that:

ðH1Þ there exists a C1-function K : R� R2 ! R, T-periodic in the first variable,

with Kðt; zÞ > 0 for every t a R and z a R2 and such that

lim
jzj!þl

Kðt; zÞ ¼ þl; uniformly in t a ½0;T �;

satisfying the following condition: for every t1; t2 a R and for every

z : �t1; t2½ ! R2 solving (2.1), there exists c a L1ðt1; t2Þ such that, for a.e.

t a �t1; t2½,

d

dt
K
�
t; zðtÞ

�����
����a cðtÞK

�
t; zðtÞ

�
; ð2:2Þ
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ðH2Þ there exist sequences ðVnÞn HP, ðanÞn HL1ð0;TÞ such that, for every n a N0,

lim inf
jzj!þl

3‘zHðt; zÞ j z4
VnðzÞ

b anðtÞ; uniformly for a:e: t a ½0;T �; ð2:3Þ

and

lim
n!þl

Ð T

0 anðtÞ dt
AVn

¼ þl: ð2:4Þ

Then, for every integer kb 1, equation (2.1) has infinitely many kT-periodic

solutions. More precisely, for every integer kb 1, there exists an integer j �k such

that, for every integer jb j �k , equation (2.1) has two kT-periodic solutions z
ð1Þ
k; jðtÞ,

z
ð2Þ
k; jðtÞ such that, for i ¼ 1; 2,

Rot
�
z
ðiÞ
k; jðtÞ; ½0; kT �

�
¼ j: ð2:5Þ

Moreover, for every kb 1 and i ¼ 1; 2,

lim
j!þl

jzðiÞk; jðtÞj ¼ þl; uniformly in t a ½0;T �: ð2:6Þ

Initial values, at time t ¼ 0, of such kT-periodic solutions will be provided as

fixed points of the k-th iterate of the Poincaré map C associated with (2.1) (see

Section 3 for the details); formula (2.5), of course, has to be meant as an informa-

tion about the nodal properties of the periodic solutions found.

For k ¼ 1, Theorem 2.3 in particular gives the existence of infinitely many

T-periodic solutions (i.e., harmonic solutions) to the planar Hamiltonian system

(2.1). On the other hand, when k > 1, it is easy to see that (see, for instance, [9],

pp. 523–524), whenever k, j are relatively prime integers (namely, their greatest

common divisor is 1), then the kT-periodic solutions z
ð1Þ
k; jðtÞ, z

ð2Þ
k; jðtÞ are not

lT-periodic for any integer l ¼ 1; . . . ; k � 1. In this case, z
ð1Þ
k; jðtÞ, z

ð2Þ
k; jðtÞ are said to

be subharmonic solutions of order k to (2.1) and they correspond to fixed points

of Ck which are not fixed points of C l for any l ¼ 1; . . . ; k � 1. Notice that,

if we restrict ourselves to the pairs ðk; jÞ with k, j relatively prime, the periodic

solutions provided by Theorem 2.3 are pairwise distinct.

We finally remark that, as pointed out in the proof of ([22], Theorem 5), it is

possible to show that the subharmonic solutions z
ð1Þ
k; jðtÞ, z

ð2Þ
k; jðtÞ do not belong to the

same periodicity class, i.e. z
ð1Þ
k; jð�Þ2 z

ð2Þ
k; jð� þ lTÞ for every integer l ¼ 1; . . . ; k � 1.

This corresponds to the fact that the orbits of z1 :¼ z
ð1Þ
k; jð0Þ and z2 :¼ z

ð2Þ
k; jð0Þ,

namely O1 :¼ fz1;Cðz1Þ; . . . ;Ck�1ðz2Þg and O2 :¼ fz2;Cðz2Þ; . . . ;Ck�1ðz2Þg, are
disjoint.
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We now make some comments about the assumptions and the range of ap-

plicability of Theorem 2.3. When we refer to the scalar undamped second order

equation

u 00 þ gðt; uÞ ¼ 0; u a R; ð2:7Þ

with g : R� R ! R a function which is T-periodic in the first variable, we will

always tacitly mean that it is written as the equivalent planar Hamiltonian

system (2.1), with the position Hðt; x; yÞ ¼ 1
2 y

2 þ
Ð x

0 gðt; xÞ dx.

Remark 2.4. Assumption ðH2Þ is a superlinearity condition for ‘zHðt; zÞ at infin-
ity and, as anticipated in the Introduction, it is (essentially) the same condition of

([5], Theorem 4). We also notice that the dual version of it (i.e., a sublinearity con-

dition) has been recently used, together with the Poincaré–Birkho¤ fixed point

theorem, in ([2], Theorem 3.1).

For what concerns the range of applicability of ðH2Þ, here we just limit our-

selves to emphasize that it is more general than the Ambrosetti-Rabinowitz condi-

tion (0 < k < 1=2, Rb 0)

0 < Hðt; zÞa k3‘zHðt; zÞ j z4; for every t a ½0;T �; jzjbR; ð2:8Þ

which is often employed when system (2.1) is treated with variational techniques

(see for instance [1], [17]). Indeed, from (2.8) we get that Hðt; zÞb ajzj1=k for

every t a ½0;T ], jzjbR (with a > 0), so that ðH2Þ is satisfied with VnðzÞ ¼ jzj2
and anðtÞC n. It is also worth mentioning that from the proof of Theorem 2.3 it

will be clear that condition (2.3) of ðH2Þ can be weakened to hold in an L1 sense.

Precisely, we can require the following:

for every e > 0, there exist Re > 0 and he a L1ð0;TÞ, with
Ð T

0 jheðtÞj dta e, such

that, for almost every t a ½0;T �, and every jzjbRe,

3‘zHðt; zÞ j z4
VnðzÞ

b anðtÞ � heðtÞ:

In particular, if (2.1) comes from the second order equation (2.7), then (this

weaker version of ) ðH2Þ is satisfied whenever gðt; xÞ is L1-Carathéodory and ful-

fills the standard superlinearity condition, namely

lim
jxj!þl

gðt; xÞ
x

¼ þl; uniformly for a:e: t a ½0;T �: ð2:9Þ

Indeed, in this case it is easy to see that, for every integer n, there exists

rn a L1ð0;TÞ such that, for every z ¼ ðx; yÞ a R2

3‘zHðt; zÞ j z4b nx2 þ y2 � rnðtÞ;
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so that ðH2Þ holds true with the choices Vnðx; yÞ ¼ nx2 þ y2 and anðtÞC 1. We

refer to ([5], Example 4) for a similar computation. Notice that, when gðt; xÞ is

continuous, then rnðtÞC rn so that ðH2Þ su‰ces.

Remark 2.5. We now turn our attention to assumption ðH1Þ. First of all, observe

that, since Kðt; zÞ is of class C1 and z : �t1; t2½ ! R2 is (locally) absolutely contin-

uous, then K
�
t; zðtÞ

�
is (locally) absolutely continuous too, with, for a.e. t a �t1; t2½,

d

dt
K
�
t; zðtÞ

�
¼ q

qt
K
�
t; zðtÞ

�
þ
�
‘zK

�
t; zðtÞ

�
j z 0ðtÞ

�

Condition ðH1Þ is used here to get the global continuability for the solutions to

(2.1). Indeed, it is well known that, when ‘zHðt; zÞ satisfies the superlinearity con-

dition ðH2Þ, the global continuability can fail, even when (2.1) comes from the sec-

ond order equation (2.7) (see [6]). On the other hand, it is worth noticing that

when, roughly speaking, Hðt; zÞ ! þl for jzj ! þl, then ðH1Þ is often satisfied.

In particular, we emphasize the following special cases.

1) If Hðt; zÞ is regular and, uniformly in t a ½0;T �,

lim
jzj!þl

Hðt; zÞ ¼ þl; ð2:10Þ

then assumption ðH1Þ is satisfied, provided that there exists c;M > 0 such that, for

every t a R and jzjbM,

q

qt
Hðt; zÞ

����
����a cHðt; zÞ: ð2:11Þ

In this case, the natural choice is Kðt; zÞ ¼ Hðt; zÞ þ d, for some positive constant

d large enough. Indeed, by (2.10) we have that Hðt; zÞ is bounded from below, so

that Kðt; zÞ > 0 if d is suitably chosen. As a consequence, by possibly enlarging

the constant c appearing in (2.11), we have that for every t a R and z a R2,

q

qt
Kðt; zÞ

����
����a cKðt; zÞ:

Hence, for every z : �t1; t2½ ! R2 solving (2.1), we have that

d

dt
K
�
t; zðtÞ

�����
���� ¼ q

qt
H
�
t; zðtÞ

�
þ
�
‘zH

�
t; zðtÞ

�
j z 0ðtÞ

�����
����

¼ q

qt
K
�
t; zðtÞ

�
þ 3Jz 0ðtÞ j z 0ðtÞ4

����
����

¼ q

qt
K
�
t; zðtÞ

�����
����;

so that ðH1Þ is satisfied.
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For the second order equation (2.7), with
Ð x

0 gðt; xÞ dx ! þl for jxj ! þl,

such a choice leads (modulo regularity assumptions) to

ð x

0

q

qt
gðt; xÞ dxa c

ð x

0

gðt; xÞ dx; for every jxjbM: ð2:12Þ

Hence, Theorem 2.3 applies to the superlinear second order equation (2.7) (i.e.,

with gðt; xÞ satisfying (2.9)), provided that (2.12) is fulfilled, including ([15], Theo-

rem 1 0). We remark that is seems to be an open problem to prove the same result

for (2.7) with gðt; xÞ satisfying only the superlinearity assumption (2.9).

2) If ‘zHðt; zÞ ¼ ‘SðzÞ þ f ðtÞ for a C1-function S : R2 ! R such that

lim
jzj!þl

SðzÞ ¼ þl;

then ðH1Þ is satisfied provided that there exists c a L1ð0;TÞ and M > 0 such that,

for every t a R and jzjbM

j3 f ðtÞ j J‘SðzÞ4ja cðtÞSðzÞ: ð2:13Þ

In such a case the choice is given by Kðt; zÞ ¼ SðzÞ þ d, for db 0 large enough

and the proof of this fact goes similarly as before. Indeed, this is precisely the as-

sumption required in ([5], Theorem 4) in order to ensure the validity of the elastic

property (see condition ðEÞ in the proof of Theorem 2.3).

We finally observe that the situation considered here includes as a special case

the forced Du‰ng equation

u 00 þ hðuÞ ¼ pðtÞ; ð2:14Þ

with
Ð x

0 hðxÞ dx ! þl for jxj ! þl. Indeed, with the choice SðzÞ ¼ 1
2 y

2 þÐ x

0 hðxÞ dx and f ðtÞ ¼
�
pðtÞ; 0

�
, relation (2.13) is easily seen to be satisfied (we

refer to [8], p. 334 for a similar computation). Hence, Theorem 2.3 applies

to the forced superlinear Du‰ng equation (2.14) (i.e., with hðxÞ=x ! þl for

jxj ! þl), including [7]. It has to be noticed, however, that in such a case a

more general result, replacing the superlinearity condition on hðxÞ with a weaker

assumption on the time map of the autonomous equation u 00 þ hðuÞ ¼ 0, has been

proved in [8].

3. Proof of the main result

As a first step, we show that assumption ðH1Þ implies the global continuability for

the solutions to the di¤erential system (2.1). To this aim, let zðtÞ be a solution of
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(2.1) and let JHR be its maximal interval of definition. We are going to show

that sup J ¼ þl; for the backward continuability, the argument is the same.

Suppose by contradiction that sup J < þl and choose t� a J; in view of (2.2),

Gronwall’s lemma implies that, for every t a JB �t�;þl½,

K
�
t; zðtÞ

�
aK

�
t�; zðt�Þ

�
e
Ð t

t� cðsÞ ds:

We deduce that K
�
t; zðtÞ

�
is bounded in any (left) neighborhood of sup J; since

Kðt; zÞ ! þl for jzj ! þl, uniformly in t a ½0;T �, jzðtÞj turns out to be bounded

too, a contradiction.

As a consequence, we can define the Poincaré map C associated with the dif-

ferential equation (2.1), that is,

C : R2 C z 7! zðT ; zÞ;

where zð�; zÞ means the solution to (2.1) such that zð0; zÞ ¼ z. It is well known

that, in view of the T-periodicity of ‘zHð�; zÞ, (initial values, at time t ¼ 0, of )

kT-periodic solutions to (2.1) (for every integer kb 1) correspond to fixed points

of Ck, the k-th iterate of C. To find fixed points of Ck, we will use a suitable

version of the Poincaré–Birkho¤ fixed point theorem, following closely the argu-

ment in [12]. Indeed, we have that Ck is a global homeomorphism of the plane

onto itself; moreover, in view of the Hamiltonian structure of (2.1), Liouville’s

theorem implies that Ck is area preserving. We thus have to show that a ‘‘twist

condition’’ is satisfied for a suitable annulus.

From now on, kb 1 is a fixed integer. As a preliminary step for our argument,

we recall that the global continuability for the solutions to (2.1) implies the follow-

ing ‘‘elastic property’’ (see for instance [12], Proposition 3.2):

ðEÞ for every t1b 0 and for every M1 > 0, there exists M2 > M1 such that

jzðt; zÞjbM1 for every t a ½0; t1� and for every jzjbM2.

According to ðEÞ, fix a constant r > 0 such that, for jzjb r, then zðt; zÞA 0 for

every t a ½0; kT � and define j �k as the smallest integer such that

Rot
�
zðt; zÞ; ½0; kT �

�
< j �k ; for every jzj ¼ r ð3:1Þ

(in view of the continuous dependence of the solutions to (2.1) from the initial con-

ditions, Rot
�
zðt; �Þ; ½0; kT �

�
is a continuous function).

Fix now an integer jb j �k : we claim that there exists R > r such that

Rot
�
zðt; zÞ; ½0; kT �

�
> j; for every jzj ¼ R: ð3:2Þ
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Indeed, in view of (2.4), let n a N0 and hn > 0 be such that

k

2AVn

� ðT

0

anðtÞ dt� hnT
�
> j:

By condition (2.3), there exists ~RRb r such that, for a.e. t a ½0;T � and jzjb ~RR,

3‘zHðt; zÞ j z4
VnðzÞ

b anðtÞ � hn:

Let us choose (using ðEÞ again) R > ~RR such that, for jzj ¼ R, then jzðt; zÞjb ~RR for

every t a ½0; kT �; then

RotVn

�
zðt; zÞ; ½0; kT �

�
¼ 1

2AVn

ð kT

0

�
‘zH

�
t; zðt; zÞ

�
j zðt; zÞ

�
Vn

�
zðt; zÞ

� dt

b
k

2AVn

ðT

0

anðtÞ dt�
hnkT

2AVn

> j:

In view of Proposition 2.2, we have that (3.2) holds true, as claimed.

Taking into account (3.1) and (3.2), the existence of two kT-periodic solutions

z
ð1Þ
k; jðtÞ, z

ð2Þ
k; jðtÞ to (2.1) satisfying (2.5) follows from the Poincaré–Birkho¤ fixed

point theorem, in the version given in [10] (see Remark 3.1). Finally, (2.5) and

the continuity of the rotation number imply that limj!þl jzðiÞk; jð0Þj ¼ þl (for

i ¼ 1; 2) so that, using again ðEÞ, relation (2.6) holds true.

Remark 3.1. It is worth noticing that we are referring, here, to the paper [10],

which establishes a version of the Poincaré–Birkho¤ theorem for a standard

annulus, and not to the most known [11], dealing with some topological annuli

also. Indeed, such a more general version of the Poincaré–Birkho¤ theorem hides,

probably, some di‰culties, in view of the recent counterexamples given in [16] (see

[13] for more information about this point). The result for a standard annulus, on

the other hand, seems to be well established and we refer also to the paper [21],

where an independent proof is given (see in particular [21], Corollaries 2 and 3

for a detailed description of the application of the Poincaré–Birkho¤ theorem to

planar Hamiltonian systems).

4. Further remarks for the unforced case

We conclude the paper with some remarks dealing with the ‘‘unforced case’’,

namely when

‘zHðt; 0ÞC 0: ð4:1Þ
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For the second order equation (2.7), such a situation has been considered first by

Hartman [14] and Jacobowitz [15], by the use of suitable versions of the Poincaré–

Birkho¤ theorem again.

As it is clear, condition (4.1) is not in contradiction with ðH1Þ and ðH2Þ, so
that Theorem 2.3 can still be applied, giving the existence of infinitely many kT-

periodic solutions for every kb 1. On the other hand, in the unforced case, typi-

cal results are obtained by exploiting some kind of gap between the behavior of

the nonlinearity at zero and at infinity. In particular, when the Poincaré–Birkho¤

fixed point theorem is employed, one can choose the inner boundary of the annu-

lus (that is, r > 0 in formula (3.1)) in order to reflect the behavior of small-norm

solutions, leading to a more careful estimate of j �k . For instance, we can state the

following:

assume that there exists b a L1ð0;TÞ such that

lim sup
jzj!0

3‘zHðt; zÞ j z4
jzj2

a bðtÞ; uniformly for a:e: t a ½0;T �; ð4:2Þ

then j �k aEþ�k=ð2pÞ Ð T

0 bðtÞ dt
�
, where, for a a R, by EþðaÞ we mean the least inte-

ger strictly greater then a.

Notice that (4.2) is satisfied if Hðt; zÞ is twice di¤erentiable in the second variable,

with D2
zHðt; zÞ an L1-Caratheodory function. Other estimates for j �k could be

given in terms of the Maslov index of the linear system Jz 0 ¼ D2
zHðt; 0Þz, on the

lines of [18].

Remark 4.1. It is worth noticing that, in order to satisfy ðH1Þ, the second possi-

bility described in Remark 2.5 is now no longer possible (unless f ðtÞC 0, i.e. the

problem is autonomous). Hence, the more natural condition of global continu-

ability comes here from (2.10) and (2.11). Observe in particular that, in the special

case of a scalar second order equation with weight like

u 00 þ qðtÞ f ðuÞ ¼ 0; ð4:3Þ

being f ðxÞx > 0 for every xA 0, assumption ðH1Þ is always satisfied whenever

qðtÞ is of class C1 and qðtÞ > 0 for every t a R. Indeed, with the usual position

Hðt; x; yÞ ¼ 1
2 y

2 þ qðtÞF ðxÞ, being FðxÞ ¼
Ð x

0 f ðxÞ dx, we have, for a suitable con-

stant c > 0,

q

qt
Hðt; zÞ

����
����¼ jq 0ðtÞFðxÞja cqðtÞFðxÞa cHðt; zÞ:

(As shown in [6], qðtÞ locally of bounded variation turns out to be su‰cient for the

global continuability of the solutions to (4.3).)
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On the other hand, it has to be remarked that the hypothesis of global continu-

ability is avoided in [14] using a priori-bounds techniques and a truncation argu-

ment, which are possible in view of (4.1). We do not know if this is the case for a

general planar Hamiltonian system, without further conditions.

Remark 4.2. For a planar Hamiltonian system satisfying (4.1) the existence of

infinitely many Dirichlet solutions (i.e., xð0Þ ¼ xðTÞ ¼ 0), with the same nodal

characterization of Theorem 2.3, has been recently proved in [4], assuming ðH1Þ
of Theorem 2.3 (precisely, (2.10) and (2.11) in Remark 2.5) and D2

zHðt; zÞ positive
definite, with

lim
jzj!þl

mmin

�
D2

zHðt; zÞ
�
¼ þl; uniformly in t a ½0;T �:

Here by mminðAÞ we mean the least (real) eigenvalue of a (real) symmetric matrix

A. It is easily seen that such a condition implies ðH2Þ of Theorem 2.3; indeed,

3‘zHðt; zÞ j z4 ¼
D� ð1

0

D2
zHðt; szÞ ds

�
z j z

E

bmmin

� ð1

0

D2
zHðt; szÞ ds

�
jzj2;

so that ðH2Þ holds true with VnðzÞ ¼ jzj2 and anðtÞC n.

Actually, it is possible to see that ([4], Theorem 2.1) holds true also assuming

the weaker condition ðH2Þ. On the other hand, the proof in [4], which is based on

global bifurcation techniques, works also for some classes of non-Hamiltonian

planar systems (see [4], Remark 2.4 as well as the generalization to planar Dirac-

type system given in [3]).
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