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Abstract. It is shown that the familiar description of the completion of a uniform frame
in terms of its Samuel compactification can be extended to arbitrary nearness frames.
This is achieved by means of the following new notion, a variant of compactness, for regu-
lar frames: such a frame will be called near-compact if it is complete in some totally
bounded nearness. This leads to a natural concept of the Samuel near-compactification for
arbitrary nearness frames which is then shown to play exactly the same rôle in the general
setting which the Samuel compactification plays for uniform frames.
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Introduction

There are fundamental di¤erences between the descriptions of the completion of

(1) uniform frames by means of their Samuel compactification ([4]), and

(2) general nearness frames directly as a quotient of their down-set frame ([5], see

also [12]).

Most obviously, (1) is a two-stage process, involving, first, a suitable compactifica-

tion and then a certain modification of that, while (2), which presents the comple-

tion in terms of certain downsets of the underlying frame, produces the result in

one step.

Note. In fact (1) can be viewed as a three-stage process: the compactification con-

sists of, first, taking the ideal frame, which is a quotient of the down-set frame and
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next the subframe of strongly regular ideals; then one modifies that as a quotient

again. Thus the procedure follows the pattern

quotient frame > subframe > quotient frame:

In (2) the whole procedure is just taking a quotient, without any subframe con-

struction involved. But this is only a technical a¤air, not really important.

A more fundamental and seemingly unsurpassable di¤erence lies in the use of a

compactification, specific for uniformities carried by completely regular frames.

More general nearnesses are carried by general regular frames for which there is

no suitable compactification (for obvious reasons: representing a regular frame L

as a quotient of a compact regular frame makes L completely regular).

The following account shows, however, that both the above descriptions can

be dealt with as one procedure, the first being a special case. The key to this lies

in a natural notion generalizing compactness to suit mere regular frames. Recall

the classical characteristics of compact metric spaces as the complete totally

bounded ones (which in a sense precedes the cover definition). Compact regular

frames are indeed precisely those that admit a complete totally bounded

uniformity. If we ask about admitting a complete totally bounded nearness, we

obtain a more general concept which we call near-compactness. Now each near-

ness frame has a canonical near-compactification (we call it the Samuel near-

compactification) that can serve as an intermediate step for a completion of type

(2), providing a modification quite analogous to the procedure in (1). Moreover,

for uniform frames this Samuel near-compactification coincides with the Samuel

compactification (represented, by the way, directly as a quotient of the down-set

frame, surpassing also the technical di¤erence mentioned in the Note above).

1. Preliminaries

1.1. Recall that a frame L is a complete lattice satisfying the distribution law

ð4AÞbb ¼ 4fabb j a a Ag

for all AJL and b a L. A frame homomorphism h : L ! M preserves all finite

meets and all joins. The top of L will be denoted by 1L or simply by 1, the bottom

will be denoted by 0L resp. 0.

We will use the standard notation concerning partially ordered sets such as

#a ¼ fx j xa ag and #M ¼ fx j xam for some m a Mg. In particular, a set M

is called a downset if #M ¼ M. For any frame L we put DL for the frame of all

non-void downsets of L. For any frame homomorphism, h� : M ! L will be its

right (Galois) adjoint, that is, h�ðaÞ ¼ 4fx a L j hðxÞa ag.
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Factorizing a frame L by a congruence leads to a so called ‘‘closure system’’, or

the set of saturated elements, SJL that is, in particular, closed under all meets.

Thus we have for each a a L

nðaÞ ¼ 5fs a S j aa sg a S:

The mapping n : L ! L given by this is usually referred to as the nucleus associ-

ated with the congruence.

For details and more about frames see, e.g., [11], [14] or [15].

1.2. A cover of a frame L is a subset AJL such that 4A ¼ 1. If A, B are

covers we set

AbB ¼ fabb j a a A; b a Bg;

obviously it is a cover as well.

For a cover A of L and an element b a L set

Ab ¼ 4fa a A j abbA 0g

and if B is another cover we write

AB ¼ fAb j b a Bg:

A cover A refines B (notation AaB) if for every a a A there is a b a B such that

aa b. One says that A is a star-refinement of B if AAaB, and writes A �� B.
If A is a system of covers we set

apA b if there is an A a A such that Aaa b;

one speaks of the strong inclusion associated with A.

1.3. A nearness ([8], [5]) A on L is a non-void set of covers such that

(N1) if A a A and AaB then B a A,

(N2) if A;B a A then AbB a A, and

(N3) for each a a L, a ¼ 4fb j bpA ag.

If, moreover,

(U) for every A a A there is a B a A such that BBaA,

one speaks of a uniformity ([10], [9], [5], [15]). Note that

if A is a uniformity then pA interpolates.

The pair ðL;AÞ is then referred to as a nearness resp. uniform frame.
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A frame homomorphism f : L ! M is a uniform homomorphism ðL;AÞ !
ðM;BÞ if for all A a A, f ½A� a B.

We speak of a basis of nearness resp. uniformity A on L if fB jBbA a Ag is a

nearness resp. uniformity. If the nearnesses on L and M are determined by bases

A, B, f is uniform i¤ EA a A bB a B, Ba f ½A�.
For more about uniform and nearness frames see, e.g., [10], [5], [15].

1.4. Recall the notation

a0 b for bc; abc ¼ 0 & b4c ¼ 1;

and

a00 b

if there exist ar for rational r in the unit interval such that

a ¼ a0; b ¼ a1; and r < s ¼) ar 0 as:

A frame L is regular resp. completely regular if

Ea a L; a ¼ 4fb j b0 ag resp: a ¼ 4fb j b00 ag:

A frame admits a nearness i¤ it is regular, and in that case in particular

CL ¼ fC jC a cover of Lg

is a nearness on L, referred to as the fine nearness on L.

A frame admits a uniformity i¤ it is completely regular. Then it has a largest

uniformity

FL ¼ 6fA jA a uniformity on Lg

called the fine uniformity on L. Note that FL is not necessarily CL.

Further, it is a well known and simple fact that apA b ) a0 b and if A

contains all the two-element covers then pA ¼0 (making pA ¼00 whenever

pA interpolates). Moreover, the fine uniformity contains in particular all the

fa�; bg with a00 b where a� is the pseudocomplement of a (see e.g. [15], 12.2.2),

yielding pFL ¼00.

1.5. For a nearness A set

tbA ¼ fA jAbB a A;B finiteg:
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If Axa y with A a A then B ¼ fAx;4fa a A j abx ¼ 0gg is in tbA and

Bx ¼ Axa y; thus, ptbA ¼ pA and hence tbA satisfies (N3) and is a nearness

again.

A nearness A (or the nearness frame ðL;AÞ) is said to be totally bounded if

tbA ¼ A.

By Isbell [9] (the proof in the book—30 on p. 23—is in classical terms, but it

can be obviously modified for the point-free context)

(1.5.1) if A is a uniformity then tbA is a uniformity as well.

The identity carried (uniform) homomorphisms

ðL; tbAÞ ! ðL;AÞ

is the coreflection map from the category of nearness (resp. uniform) frames to

that of totally bounded nearness (resp. uniform) frames.

1.6. Samuel compactification. A compact regular frame L admits precisely one

nearness, namely CL, and it is a uniformity, hence CL ¼ FL ð¼ tbCL ¼ tbFL).

Thus, for such L every frame homomorphism M ! L is a uniform homomor-

phism for any ðM;AÞ. Thus the category of compact regular frames can be

viewed as a full subcategory of the category of uniform frames.

An ideal J in a uniform frame ðL;AÞ is said to be A-regular (briefly, regular)

if

Ea a J; bb a J such that apA b:

The set RðL;AÞ of all regular ideals, ordered by inclusion, is a subframe of the

ideal frame of L and hence it is compact. The homomorphisms

vðL;AÞ ¼ ðJ 7! 4 JÞ : RðL;AÞ ! ðL;AÞ

are uniform and constitute the coreflection maps from the category of compact

uniform frames to that of uniform frames, called the Samuel compactification

(see [4]).

Note. Compare this with the Stone-Čech compactification as constructed in [3].

There, one considers the completely regular ideals J in the sense that for a a J

there is a b a J such that a00 b. Since 00 is just pFL, this means that the

Stone-Čech compactification is the Samuel compactification of ðL;FLÞ.

117Completion and Samuel compactification of nearness and uniform frames



1.7. Recall that a frame homomorphism h is dense if hðaÞ ¼ 0 implies a ¼ 0. For

nearness frames ðL;AÞ and ðM;BÞ, a strict surjection h : ðL;AÞ ! ðM;BÞ (dense
surjection in [5]) is a dense onto uniform homomorphism such that

(1) B ¼ fh½A� jA a Ag, and
(2) fh�½B� jB a Bg, where h� is the right Galois adjoint of h, is a basis of A.

(Note that (2) is automatic in case of uniform frames.)

A nearness frame ðL;AÞ is complete if every strict surjection ðM;BÞ ! ðL;AÞ
is an isomorphism. A completion of ðL;AÞ is a strict surjection g : CðL;AÞ !
ðL;AÞ where CðL;AÞ is complete. It exists and is unique up to isomorphism

([5], [10], [12], [15]).

1.7.1. The completion of a uniform frame ðL;AÞ can be constructed via the

Samuel compactification (see [4]). One takes RðL;AÞ and considers

CðL;AÞ ¼ RðL;AÞ=R

where R is the congruence generated by

��
4fkðaÞ j a a Ag;L

�
jA a A

�
where kðaÞ ¼ fx j xpA ag

(that is, one factorizes so as to make the fkðaÞ j a a Ag covers).

1.7.2. If ðL;AÞ is a general nearness frame one can construct a completion

CðL;AÞ as DL=R where DL is the down-set frame and R is the congruence on L

generated by

��
kðaÞ; #a

�
j a a L

�
A fð4f#a j a a Ag;LÞ jA a Ag

endowed with the nearness A# generated by ff#a j a a Ag jA a Ag. This leads to

CðL;AÞ consisting of the down-sets U satisfying

(R1) kðaÞJU ) a a U , and

(R2) bC a A such that fagbCJU ) a a U .

More precisely, the completion is the strict surjection

gðL;AÞ : CðL;AÞ ! ðL;AÞ

where gðL;AÞðUÞ ¼ 4U , with the right Galois adjoint given by

g�ðaÞ ¼ #a:
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2. Near compactness and Samuel near-compactification

2.1. A regular frame will be called near-compact if it is complete with respect to

some totally bounded nearness. To motivate this terminology recall that for com-

pletely regular frames L,

L is compact i¤ it is complete with respect to some totally bounded uniformity.

Thus we have a natural concept parallel to compactness suitable for general regu-

lar frames. Note, however, that even a completely regular frame can be near-

compact without being compact—see 2.6 below; on the other hand, if a regular

frame is compact then it is actually completely regular.

In a di¤erent direction one has from [1] that

(2.1.1) the completion of a nearness frame is compact i¤ the nearness is a totally

bounded uniformity

and

(2.1.2) a complete nearness frame is compact i¤ it is totally bounded uniform.

2.2. One cannot expect a very nice behaviour of the class of near-compact

frames, mainly because the completion of general nearness frames is not functorial

([2], see 3.3 below), a nearness larger than a complete one is not necessarily

complete, and other anomalies of the non-uniform nearnesses. However, inde-

pendently of functoriality, completion of nearness frames generally preserves

coproducts ([16]). Consequently, we have the counterpart of the point-free

Tychono¤ theorem

any coproduct of near-compact frames is near-compact.

2.3. Extending the concept of surjection ([5]) we call an onto uniform homomor-

phism h : ðM;BÞ ! ðL;AÞ between two nearness frames with B totally bounded

a tb-surjection if the image of B under h is tbA. In this sense we speak of dense

tb-surjection and strict tb-surjection (recall 1.7).

Define

SðL;AÞ ¼ CðL; tbAÞ:

Hence we have the strict tb-surjections

sðL;AÞ : SðL;AÞ ! ðL;AÞ

composing the completion maps gðL; tbAÞ with the identical embeddings

ðL; tbAÞ ! ðL;AÞ.
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2.3.1. Proposition. Up to isomorphism, sðL;AÞ : SðL;AÞ ! ðL;AÞ is the unique
strict tb-surjection h : ðM;BÞ ! ðL;AÞ with ðM;BÞ complete.

Proof. ðM;BÞ is complete and h decomposes as

ðM;BÞ !k ðL; tbAÞ !idL ðL;AÞ:

Now see the uniqueness of completion for k. r

2.3.2. Note that SðL;AÞ is compact uniform whenever ðL;AÞ is uniform (see

(2.1.1)) so that we have obtained an alternative description of the Samuel compac-

tification of uniform frames ([4], 1.7.1).

Consequently we will refer to sðL;AÞ : SðL;AÞ ! ðL;AÞ in the general case as

the Samuel near-compactification of ðL;AÞ.

2.4. An alternative description of Stone-Čech compactification. Recall the

Stone-Čech compactification from [3]. There, for a completely regular frame L,

one took the frame KL of completely regular ideals on L; it turns out that the

map vL ¼ ðJ 7! 4 JÞ : KL ! L is a dense onto frame homomorphism, with right

adjoint

kL ¼ ða 7! fx j x00 agÞ : L ! KL;

and constitutes the compact coreflection map.

Now consider for a completely regular L the fine uniformity FL and its totally

bounded part tbFL. Then CðL; tbFLÞ is compact by (2.1.2) and (1.5.1), and

applying the underlying frame functor j � j to gðL; tbFLÞ : CðL; tbFLÞ ! ðL; tbFLÞ
we obtain gL : jCðL; tbFLÞj ! L, a homomorphism to L from a compact com-

pletely regular frame. Further, for any other such h : M ! L we have the follow-

ing commutative square

CðL; tbFLÞ ����!
gðL; tbFLÞ ðL; tbFLÞ

~hh

x???
x???h

CðM; tbFMÞ ����!
gðM; tbFMÞ

ðM; tbFMÞ

where the bottom map is an isomorphism by compactness. Hence, acting the

functor j � j produces the factorization h ¼ gLh, where h is unique since gL is dense,

showing that gL is the coreflection map from compact completely regular frames.

2.5. For any regular frame L, its fine near-compactification will be the underlying

frame homomorphism of the completion map

gðL; tbCLÞ : CðL; tbCLÞ ! ðL; tbCLÞ;
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denoted by dL : NL ! L. Note this is characterized as a dense frame homomor-

phism h : M ! L for which fh�½A� jA a tbCLg generates a complete nearness

on M.

2.5.1. Remark. It should be emphasized that the Stone-Čech compactification

of a completely regular L is not necessarily its fine near-compactification. Take

a completely regular L that is not normal, and v ¼ vL : KL ! L. Because of the

standard fact that v½A�v½B�a v½AB� each cover of L of the form v½A�, with A

a cover of KL, has a star-refinement. Since L is not normal there exists a finite

cover B of L that has no star-refinement. Thus, v�½B� cannot be a cover because

v½v�½B�� ¼ B.

2.6. Proposition. For any regular L, if its fine near-compactification is normal

then L is normal.

Proof. If a4b ¼ 1 in L then fa; bg is a uniform cover of ðL; tbCÞ, so f#a; #bg is a

cover of NL, hence there exist U ;V a NL such that U BV ¼ #0 and ð#aÞ4U ¼
#1 ¼ #b4V . Then we have for the completion map g : NL ¼ CðL; tbCLÞ !
ðL; tbCLÞ that a4gðUÞ ¼ 1 ¼ b4gðVÞ, gðUÞbgðVÞ ¼ 0, showing L is normal.

r

Corollary. For a regular L that is not normal, NL is not compact. Hence, it is

near-compact but not compact.

2.7. Proposition. A fine near-compact regular frame is compact i¤ it is normal.

Proof. ): Any compact regular frame is normal.

(: Regular and normal implies that0 interpolates, hence the finite cover near-

ness is a uniformity. Thus L is complete in a totally bounded uniformity, and

therefore compact. r

3. More on NL, and comparison of two completions

3.1. The Stone-Čech compactification KL in [3] (see 2.4) was obtained as a sub-

frame of the ideal frame JL. In fact, the NL is also a frame of particular ideals,

although specified di¤erently. We have

Proposition. NL is isomorphic to the frame of the ideals JJL such that

fx j x0 agJ J ¼) a a J: ð*Þ

Proof. We will prove that the down-sets U JL describing CðL; tbLÞ are precisely
the mentioned ideals.
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First note that ptbCL ¼0 (for a0 b consider the cover fa�; bg and the fact

that fa�; bgaa b) so that fx j x0 ag is the corresponding kðaÞ. Now let U satisfy

(R1) and (R2). Then we have ð*Þ (C (R1)); secondly, if a; b a U and x0 a4b

then fx�; a; bg is a finite cover and xbx�, xba, xbb a U so that x a U . Using

ð*Þ again we obtain a4b a U .

On the other hand, if U is an ideal satisfying ð*Þ then it is a downset satisfying

(R1); further, if C ¼ fc1; . . . ; cng is a finite cover and fagbCJU then abci a U

and since U is a ideal a ¼ 4fagbC a U . r

3.1.1. In particular, for a Boolean frame L,

NL ¼ JL ¼ KL

as a0 a here.

3.2. For any completely regular frame L, the general facts about strong nearness

frames and completions supply a uniform homomorphism h : KL ! NL such that

hv� ¼ ðn�Þ� for the completion maps

v : KL ! L and n : NL ! L

where v�ðaÞ ¼ kðaÞ, n�ðaÞ ¼ #a, and

ðn�Þ�ðaÞ ¼ 4fn�ðxÞ j x00 ag ¼ 4f#x j x00 ag ¼ n
�
kðaÞ

�
;

(notation from [2], 2) n being the nucleus (1.1) in JL which determines NL.

Proposition. For any L and any J a NL, hðJÞ ¼ nðJÞ and consequently H is dense.

It is an isomorphism i¤ L is normal.

Proof. For any J a JL,

hðJÞ ¼ 4
�
h
�
kðaÞ

�
j a a J

�
¼ 4fhv�ðaÞ j a a Jg

¼ 4
�
n
�
kðaÞ

�
j a a J

�
¼ nðJÞ:

Thus, J ¼ #0 whenever hðJÞ ¼ #0, that is, h is dense, and hence one-one by com-

pactness and regularity.

Further, if h is an isomorphism then NL is compact and by [1] this makes the

finite cover nearness of L a uniformity which in turn implies L is normal. Con-

versely, for normal L, NL is a Stone-Čech compactification of L and hence h is

an isomorphism. r

Notes. 1. In particular, for compact (completely) regular L, NL ! L is an iso-

morphism i¤ L is normal.

2. Whether the above h is onto remains an open question.
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3.3. The Stone-Čech compactification is functorial, indeed the coreflection from

the subcategory of compact regular frames. The same holds for the Samuel com-

pactification of uniform frames. The question naturally arises as to the functor-

iality of the near-compactification NL ! L. The answer is negative; the result 3.4

in [2] translates in our terminology to

Proposition. The correspondence L 7! NL is not functorial with gL : NL ! L

natural.

Proof. We give an alternative proof which fits better into the present context.

Let N be any regular frame which is extremally disconnected, that is, with

a�4a�� ¼ 1 for all a. As is well known, this makes the Boolean frame

BN ¼ fa a N j a ¼ a��g

a bounded sublattice of N so that the map

BN �������!e¼ðb 7! bÞ
N �������!

ðgLÞ�¼ðb 7! #bÞ
NN

is a bounded lattice homomorphism (note that by 3.1, #ðb4cÞ ¼ #b4#c in NN);

further, such a lattice homomorphism is known to determine a frame homomor-

phism k : JðBNÞ ! NN such that kð#bÞ ¼ #b for all b a BN. Now NM ¼ JM

as noted in 3.1.1, and supposing L 7! NL is functorial as required we have the

following commuting diagram

NN ���!h JðBNÞ

dN

???y
???ydBN

N ���!
bN

BN

with bNðaÞ ¼ a�� and dBNðJÞ ¼ 4 J (in BN). Thus dBNh ¼ bNdN as well as

kðdBNÞ� ¼ ðdNÞ�e and combining these we obtain

dBNðdBNÞ� ¼ idBN ¼ bNe ¼ bNdNðdNÞ�e ¼ dBNhkðdBNÞ�

so that dBN ¼ dBNhk because ðdBNÞ�½BN� generates JðBNÞ. Consequently,

hk ¼ id since dBN is dense and therefore monic, and as h is also dense (bN being

dense) this makes it an isomorphism; hence NN is compact and by 2.6 this

makes N normal. However, there do exist extremally disconnected regular frames

which are not normal, such as the frame of open sets of the Gleason cover X of

the Tychono¤ plank ([7], [6]). r
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3.4. Samuel near-compactifications and completions. We begin with a general

result, to be used as a crucial tool later on.

3.4.1. Lemma. For any nearnesses A and B on a regular frame L such that

BJA and pB ¼ pA there exists a uniform frame homomorphism

h : CðL;BÞ ! CðL;AÞ such that hð#aÞ ¼ #a and h�ð#aÞ ¼ #a.

Proof. For the nuclei lA and lB on DL that determine CðL;AÞ resp. CðL;BÞ the
given condition imply that lBa lA; hence CðL;AÞ is the image of CðL;BÞ under
the action of lA and we can define h as the map induced by this. Then, obviously,

hð#aÞ ¼ #ðaÞ for all a a L and by the definition of the nearness involved it is then

clear that h is a uniform frame homomorphism. Further, hð#aÞ ¼ #ðaÞ means

that gðL;AÞh ¼ egðL;BÞ for the completion maps for ðL;AÞ and ðL;BÞ and the uni-

form homomorphism e : ðL;BÞ ! ðL;AÞ mapping L identically. Consequently

h�ðgðL;AÞÞ� ¼ ðgðL;BÞÞ�e� which says that h�ð#aÞ ¼ #a for all a a L, as claimed. r

3.4.2. For any nearness frame ðL;AÞ, recall from 2.3.2 that its Samuel near-

compactification is

sðL;AÞ ¼ CðL; tbAÞ ���!
gðL; tbAÞ ðL; tbAÞ ���!idL ðL;AÞ:

Note that for uniform ðL;AÞ, this is its Samuel compactification as introduced in

[4]. On the other hand, the Samuel near-compactification of any nearness frame

determines its completion as follows.

3.4.3. Proposition. For any nearness frame ðL;AÞ, if

CðL; tbAÞ ¼ ðM;BÞ,
s ¼ sðL;AÞ : ðM;BÞ ! ðL;AÞ,
~MM ¼ M=Y for the congruence Y on M generated by the pairs ð4 s�½A�; 1Þ,
A a A,

n : M ! ~MM is the corresponding quotient homomorphism,

s ¼ ~ssn, and
~AA is the nearness on ~MM generated by fns�½A� jA a Ag,

then ~ss : ð ~MM; ~AAÞ ! ðL;AÞ is the completion of ðL;AÞ.

Proof. To begin with, it is obvious that s factors as stated and the ns�½A�, A a A

are covers of ~MM: sð4 s�½A�Þ ¼ 4 ss�½A� ¼ 4A ¼ 1 and nð4 s�½A�Þ ¼ 1 by the

definition of n. Further, ~AA is a nearness on ~MM: if xpB a in M so that Bxa a

for some B a B then, by the properties of s, we have s�½C�aB for some

C a tbA, hence also s�½C�xa a which implies ns�½C�nðxÞa nðaÞ, therefore

nðxÞp ~AA nðaÞ, and finally nðaÞ ¼ 4fnðxÞ j nðxÞp ~AA nðaÞg by the properties of B.
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Next, ~ss is a strict surjection: it is obviously dense onto, and strict because

~ssðns�½A�Þ ¼ A and

ns�½A� ¼ nn�ð~ssÞ�½A� ¼ ð~ssÞ�½A�

for each A a A. Now it follows from [1] 3.4 that there exists a strict surjec-

tion g : CðL;AÞ ! ð ~MM; ~AAÞ such that ~ssg ¼ gðL;AÞ. On the other hand, we have

h : ðM;BÞ ! CðL;AÞ with gðL;AÞh ¼ s by the lemma, because ptbA ¼ pA.

Now s� ¼ h�ðgðL;AÞÞ� so that hs� ¼ ðgðL;AÞÞ�, and hence, for any A a A,

hð4 s�½A�Þ ¼ 4 hs�½A� ¼ 4ðgðL;AÞÞ�½A� ¼ 1;

the last step by the properties of completions. Next, by the definition of ð ~MM; ~AAÞ,
there exists l : ð ~MM; ~AAÞ ! CðL;AÞ such that ln ¼ h. As a result,

~ssgln ¼ ~ssgh ¼ gðL;AÞh ¼ s ¼ ~ssn

and hence gl ¼ id because ~ss is dense and n is onto. Finally, since g is dense this

makes it an isomorphism, showing ~ss is the completion of ðL;AÞ. r

3.4.4. Remarks. 1. It is an open question whether the proposition can be proved

without reference to the existence of the completion of ðL;AÞ; of course this was

done in the uniform case ([4]), based on the properties of compact uniform frames,

but whether this is still possible in the general case is not clear.

2. There is a natural generalization of the initial part of the proposition as

follows. Calling a uniform homomorphism h : ðM;BÞ ! ðL;AÞ relatively strict

if B is generated by the h�h½B�, B a B, one readily obtains the following by the

same arguments used in the above proof: Any dense onto relatively strict homo-

morphism h : ðM;BÞ ! ðL;AÞ has a factorization

ðM;BÞ !n ð ~MM; ~AAÞ !
~hh ðL;AÞ;

with the same ~MM, n, ~hh, ~AA as before, where ~hh is a strict surjection. This then applies

to any Samuel near-compactification s : ðM;BÞ ! ðL;AÞ so that one obtains the

strict surjection ~ss : ð ~MM; ~AAÞ ! ðL;AÞ and then also the required g : CðL;AÞ !
ð ~MM; ~AAÞ with ~ssg ¼ gA. Only the remaining step to show g is an isomorphism

requires the particular properties of tbAJA which make the original lemma

applicable.
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