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Uniqueness of entropy solution for
general anisotropic convection-diffusion problems*

Adama Ouédraogo, Mohamed Maliki and Jean De Dieu Zabsonré

Abstract. This work is an attempt to develop the uniqueness theory of entropy solution for
the Cauchy problem associated to a general non-isotropic nonlinear strongly degenerate
parabolic-hyperbolic equation. Our aim is to extend, at the same time, results of [1] and
[11]. The novelty in this paper is the fact that we are dealing with general anisotropic
diffusion problems, not necessarily with Lipschitz convection-diffusion flux functions in
the whole space. Moreover, the source term depends on the unknown function of the
problem. Under an abstract lemma and an additional assumption, we ensure the com-
parison principle which leads us to the uniqueness. In unbounded domains without
Lipschitz condition on the convection and diffusion flux functions, this assumption seems
to be optimal to establish uniqueness (cf. [1], [3], [14]).
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1. Introduction

Let 0 =10, T[x RY with 7> 0, N > 1 and a = (a;), ., ;. y-
We consider the class of Cauchy problems (CP) = (CP)(a, F, f,u):

(cP) {6,14 + V.F(u) — Z;_Yj:l 0, (aij(u)ou) = f(u) in Q,
u(0,.) = ug on RY,
where
Fe C(R,RY), F(0)=0; (1.1)

here a is a N x N symmetric nonnegative matrix with locally integrable coeffi-
cients.

*The referee’s careful reading and remarks improved the paper.
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So we can always write

N
aj(u) =Y on(wop(u), ox € L (R), (1.2)
k=1

and (o (u)) is its square root matrix.

It is well known that the problem (CP) possesses discontinuous solutions and
that weak solutions are not uniquely determined by their initial data: if a =0,
(CP) degenerates to a scalar hyperbolic conservation law where there is no unique-
ness of weak solution in general. So we must interpret it in the sense of entropy
solution. Note that this problem is a model of degenerate anisotropic diffusion-
convection motions of fluid and has important applications as in two phase
flows in porous media (cf. [9] and the references cited therein) and sedimentation-
consolidation processes (cf. [6], [7]). It has received much attention in the last
years. Its solutions are computed by many numerical methods (cf. [12], [13]) and
well-posedness theory must be given. Under various conditions, many authors
have proved uniqueness and existence results of entropy solutions:

For N = 1, well-posedness results in the sense of entropy solution are given by
Wu and Yin [18] and Bénilan and Touré [4].

The multidimensional isotropic problem was treated in [15] using Kruzhkov’s
doubling-of-variables device and a generalization has recently been given by
Andreianov and Maliki in [1]. Both works are based on the approach developped
by Carrillo in [§8]. Other important results have been given by Blanchard and
Porretta in [5] and Andreu, Igbida, Mazén and Toledo in [2].

The general anisotropic diffusion context that we consider is more delicate and
was brilliantly solved by Chen and Perthame in [11]: they suppose that

F'e L (R;RY), o€ L (R),

and introduce a notion of kinetic solution to handle this problem.

In the present investigation, we wish to extend the uniqueness results of [11]
to a more general set of convection functions and diffusion matrix: the derivative
of F is not necessarily bounded, and we do not impose the coefficients of 4 to be
locally Lipschitz continuous functions. Instead of kinetic formulation as done in
[11], we use Kruzhkov’s doubling-of-variables method. Another contribution is
that we upgrade the uniqueness results given in [1] to an anisotropic case. Our
main ingredient is to make some hypothesis on the modulus of continuity of F
and 4. This kind of assumption on the modulus of continuity appeared for
the first time in [3], where Benilan and Kruzhkov show its optimality for the
uniqueness in scalar conservation laws. The outline of this work is as follows.
The Section 1 is the introduction. In Section 2, we present some notations and
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recall the notion of entropy solution as done in [11]. Section 3 is devoted to the
statement of an abstract lemma and our basic well-posedness result.

2. Notion of entropy solution of (CP)

In this section we suppose that the initial data and source term satisfy the hy-
pothesis

{uoeLW(RNqu%RN%

2.1
f € Lip(R) and f(0) = 0. @1
Leti,jelIy={1,2,...,N} and
Ajj(u) = J aj(s)ds, 1<i,j<N. (2.2)
0

In what follows, we make the following assumptions:

e we assume that F; € Wll)"cl (R);

® wy, and of denote respectively the modulus of continuity of 4; and Fj,
ihj=1,...,N;

e we define the operators H, Hy, H}, H? respectively by

L ifs>0, 1 ifs>0
©=q0.1) irs=o, mE={y 170 23
0 if § <0,
1 if 5> ¢, —1 if s < —eg,
Hl(s)=<{sin(Zs) if0<s<e H(s)={sin(Zs) if —e<s<0, (24)
0 if 5 <0, 0 if 5> 0,

and for k£ € R, the corresponding entropy functions by

yel (rk) = HE1 (s — k) ds, yf(r, k) = J ng(s — k) ds,
k

0 = [ His=BE b, 02 = | HA DG b @)

v;’j’l(r7 k) = HE1 (s — k)ay(s) ds, v;:’j’z(r, k) = J Hf(s — k)a(s) ds
k
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for/ € Iy and 7 € C(R), we set p; = (py;,...,py) and p/ = (pl, ..., pk,) with
r r
pa(r) = j ou(t)dzr,  ph(r) = J n(t)oy(t)dr  for all i € Iy;
0 0
e for any convex C? entropy function y : R — R, we define the entropy flux
0=(0):R—R", 0'(r) =

7' () F'(r), (2.6)
v= (1) R—=RYxRY, v(r)=y

"(r)a(r); (2.7)
e we introduce the set
L2(0, T; L2(div; RY)) = {v e (L>((0,T) x RM))™ : div(v) € L?((0, T) x RY)}.
We now consider the Cauchy problem (CP) = (CP)(4, F, f,uo).

Definition 2.1 (Entropy solution of (CP)(4, F, f,uy)). Let uyp and f be such that
(2.1) is fulfilled. An entropy solution of (CP)(A4, F, f,uy) is a measurable function
u : Q — R such that:

(1)
ue L”(0,T; LY (RY)) nL*(0), (2.8)

(i)
p,(u) € L*(0, T; L*(div; RY))  for/=1,...,N, (2.9)

(iii)
divp/(u) = n(u)divp;(u) forl/=1,...,N andne C(R), (2.10)

(iv) For any entropy flux triple (y, 0, v),
Ory(u) + V.0(u Z O3 vi(w) ='W f(w) < —m*" i D'(Q). (2.11)
where

N
“(t, x) X)) > (divp; (u x))?  forye C(R).
=

(v) The initial condition is assumed in the following strong L' sense:

ltlf(r)l [Ju(t,.) = uoll 1 @ry = 0.
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One of the important contributions of Chen and Perthame is to show in [11]
that the chain rule (2.10) must be included in the definition of an entropy solu-
tion for the anisotropic case. They note also that (2.10) is automatically fulfilled
when «a(u) is a diagonal matrix. In this situation, this point can be deleted in the
Definition 2.1. For a deeper discussion on this subject, we refer the reader to [11]
and [17].

3. Existence and uniqueness of entropy solution of (CP)

Here we give an abstract lemma which will be a main ingredient in the proof of
our uniqueness result.

Lemma 3.1. For (i, j) € Iy x Iy, take nonnegative functions wy, o; with the follow-
ing properties:

o (e) + (5(e)* + 2005 (e))

?Eé ‘ — - = +00; (3.1
2 1/2
liminf &'~V [ g e )* + 2ew;(e)) / )} < 40 (3.2)
e—0 .
I<j<N ~i=1

in the case N > 2, or

liminf &'V [EN: )2 + ey (e ))‘/2)} =0 (3.3)

£—
1<j<N ~i=1

in the case N = 2. Let h € L (Q) such that h* = max(h,0) € L'(Q) and consider
Wy e L"(R"Y), W e L*(Q) n L= (0, T; L'(R")), W > 0 satisfying

N
[[ (woc+ > w9 e >+ p0,q) dxar
0 (i.j)elyxIy ' =1 ¢
+JJ hédxdt >0  forany e > 0and ¢ € D(Q), &> 0. (3.4)
Q

Suppose (W (t,.) — W0)+ — 0 in LY(R") for some Wy e L'"(RY), when t — 0
essentially. Then

heL'(Q) and J W(r,x)dxsj Wo(x)dx+J hdxdt  (3.5)
RN

RY o

forre (0,T) a.e with Q, = (0,r) x RV,
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Remark 3.2. One gets (3.1) if for 7 and j at least one of the functions w” ) and %2
goes to infinity as ¢ — 0.

If N = 1, we enter an isotropic problem (cf. [1]) which is of no interest to us in
this paper. So we do not consider it in the above lemma.

Proof of Lemma 3.1. Lets <r. Fora..s,re (0,T), inequality (3.4) is equivalent
to

SJRN W(x)édﬂf(hﬂ( Y. We) ()Iaﬂlfldx)dt

N
i,j)elyxIy

Jr (J i AT, é|dx>dt+J

for any ¢ > 0 and & € D(R"), ¢ > 0. Sending s to 07, this inequality implies that
forany e > 0,0 <¢e D(RY) and r e (0,T) a.e.,

r

J hé dx dt, (3.6)
RV

N

r

[ (vt [ e aeas

SJ Woédx+J htédx dt
RrRY

Or
+J .
R’ (

where 4T = max(h,0) and h=h" —h~.

Note that in a bounded domain, we can end this proof here by taking in (3.7),
a test function & which is identically equal to a positive constant. Of course, that
does not work in the whole space and one of the main difficulties lies in the fact
that the constants are not integrable anymore. So, in the sequel of the proof, our
goal is to construct a test function ¢ which goes to 1 in RY and allow one to drop
the third term of the right-hand side of inequality (3.7). We make a suitable
choice of the test function ¢ by setting

H lp<|x’|> for all x e RY,

1<j<N

(J, W(t,.)dt+er) (wu( )|5x A+ o;(e >|5Y,f|> dx. (3.7)

ielyxly 70

where R; = R;(e,7), ¢, n are constants with # > 1. The same form of test function
is taken in [16]. But here, we have to adapt the choice of R; to the anisotropic
case.
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The function  is %> almost everywhere on R and is subject to the following
conditions:

(i) ¥ e L'(RY), we set Co = [, y(x) dx;
(i) W' <, W' <
(i) 0 <y <linR;
(iv) Y = lin [~1,1].
Thanks to (iii) and (iv) one has

N
&x)=1 forallxe D:=][[-R,R]and0<é<1inRY.  (3.8)
j=1

(For example, one can take y(r) = exp(—(|r| = 1)7).)
We divide the proof into two steps.
Step 1: N > 2. From (ii), we have

1 1
0 &l < — 0% & <
|0, ¢l < ij, |05 &l < RE

g

Replacing the above inequalities in (3.7), we see that

r

JRN (W) + L B (1) di)é dx

gJ Wofdx+J htédx dt
RV 0,

where

=

D :=R"ND = U({lx] > R}}).

J=1

We choose R; as follows. Let R_,j be such that

1 [wie) 1
SR—U< R—lj +OC/(8)>—2
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This implies that

o aj(e) + [ocj(s)2 + 2860,7(8)}1/2
ij .
According to (3.1), if we set
R_ 1 5 1/2
Rij(e,n) = 7 ~ e — (o5(e) + (%(e)” + 2e0;(e)) '7)  and
N
ZR,, en), (3.10)

—_

one can easily check that

. 1 ii
i Rylon) = o0, 05 o (U004 00)) <

())) < (Nn)?.

7;» we show that lim,|o R;(e,%7) = +o0 and

and

0= (3 (¢

Let u(7) = (Nn)*. Since 0 < R%-

(Z%(w%é)”f(e))) < u(n). (3.11)

IA

Defining

K(e) == ZN: (i% (wgf‘) + oc,-(s))) JRN &dx, (3.12)

one can see that

N N
0<K() < 2CONZ<ZRI (“’;f; )) 1 & 313

1<j<N
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and
N2(2Cp)" -
0<K(e) < %81*1\/ ( (&) + (o(e)” + 2860[]'(8))1/2)). (3.14)
n 1<j<N S iml
In view of assumption (3.2), we can extract a subsequence (K(e)) ko1 Of
(K(g)),., such that
lim K(g) < ¢ (3.15)
& —0 k) = 17N72. ’
Since lim, o R;(e,n7) = +o0 and W e L*(Q) n L= (0, T; L1 (RY)),
lim J (J W(t,.) i) dx = 0. (3.16)
a&—0 ) p 0

Replacing (3.11) and (3.12) in (3.9), we send ¢ | 0; due to (iv), (3.15) and (3.16),
we obtain

j (W(r,.)+Jh*(t,.)dt>dng Wodx—i-J h*dxdi+ T NC_Z. (3.17)
RY 0 RY 0, n

So this clearly forces 2~ to be in L'(Q). We finally get (3.5) by sending # | +o0 in
the previous inequality.

Step 2: N = 2. Note that in this case, the constant C in step 1 is 0 and we can
conclude in the same way. O

Remark 3.3. The choice of the finite sequence (R;);_;.y in (3.10) can be im-
proved without affecting the hypothesis and the conclusion of the Lemma 3.1.
To be more precise, if we set

al (&) wiy(e wy;(e
M(g):e\leax{<([x]i )>, Ue(),..., é( )>}, (3.18)
j=1

it is a simple matter to show, with the equivalence between the three standard
norms of R", that the conditions (3.2) and (3.3) are respectively equivalent to

liminf M(¢) < 4+o0 and  liminf M(¢) = 0.

e—0 &e—0

These last conditions are easier to check in practice.
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Notice that if (3.3) holds but (3.1) fails, it is easy to modify «; and w; so that
(3.3) and (3.1) hold.
For instance, if

| [Z(%(sH(aj(e)2+2ewij(g))‘/2)]:KEH

with K > 0 and 0 € (0, 1), it is enough to replace respectively every o; and w;; by a;
and @; with

a;(e) = oci(e)s_g/zN >o(e) and @y (e) = w,-j(e)e_e/N > wj(e).

Unfortunately, (3.2) is not necessarily preserved under such change of «; and
wj;. Therefore, in the context of notations and definitions given in Section 2, we
state the final result as follows:

Theorem 3.4. Suppose that (2.1) holds and the modulus of continuity ar,, w4, sat-
isfy iminf, .o M(e) = 0 where M (¢) is defined by (3.18). Then the Cauchy problem
(CP) has a unique entropy solution in the sense of Definition 2.1.

Proof. The proof falls naturally into two parts:

(1) Uniqueness. We have divided this first part into steps and sequence of
lemmas:

Step 1. In the following lemma, we provide the so called Kato’s Inequality for
two entropy solutions in the anisotropic case.

Lemma 3.5. Let (u, f), (vo,g) satisfy (2.1). Let u, v be entropy solutions of
(CP)(A, F, f,up), (CP)(A, F,g,uvo) respectively. Then

[ =03 - Foes

i=1

N
= > (Ay(u) — A(0)) 0 & — (u— u)a,§> dx dt

ij=1

< J N’(uo —19) T¢(0) dx+J Kk(f(u) — g(v))Edxdt (3.19)
R’ 0

forany k € H(u —v) a.e. and 0 < ¢ € D(Q).

See the Appendix for the proof of Lemma 3.5.
Step 2. We express the comparison and contraction principles as below.
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Lemma 3.6. Let (u, 1), (vo,g) satisfy (2.1) and u, v be entropy solutions with re-
spect to (CP)(A, F, f,up), (CP)(A,F,g,vy). Assume that (3.3) holds. Then

JRN (u(t) — v(1)) " dx < J

for k € H(u —v) a.e. so that

(ug — vo) " dx + J k(f(u) — g(v)) dxds;

RY 0,

t
[u(?) = o)l 1wry < llwo = voll 1) + JO 1/ () = g(0) 1 ) ds-

Proof. Set W= (u—v)", Wo=(up —vo)", h = (f(u) — g(v))+.
Since u, v are entropy solutions of (CP), by Lemma 3.5, we have

o< |, (XNJ IF) = F(1)][04¢]

N
+ 37 1y (u) — Ag(0)] 102, €| + WaE + hé) dx dt,
i=1 o
for any & € D(Q), ¢ > 0 and £(0) = 0.
From the subadditivity of modulus of continuity, for all i, j € Iy, we have

g (¢)

|Aji(u) — Az(v)| < (W +¢) CUAz(g) : (3.20)

|[Fi(u) — Fi(v)| < (W +¢) and

The using of these inequalities in the previous one leads to (3.4). Therefore, the
first inequality follows by application of Lemma 3.1. O

Step 3. We deduce from Lemma 3.6 uniqueness of entropy solution of
(CP)(A7Faf7 I/lo).

Lemma 3.7. Let u and v be entropy solutions with respect to (CP)(A4,F, f,up),
(CP)(A, F, f, ).

Ifug <o a.e. in RY then u <va.e on Q.

If u is an entropy solution of (CP)(A, F, f,uy), then u is unique.

Proof. Suppose that uy < vp a.e. in R". Since f € Lip(R), there exists a positive
constant ¢(f) such that

t

JQ,K(f(u) —f(v)) dxds < c(f)J

J (u—v)"dxds
0 [RN
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for any k € H(u — v) a.e. so from (25) we get

t

| w0 —e0) ax< et |

J (u—v)" dxds.

0 JRY

We deduce by Gronwall’s inequality that u# < v a.e. on Q and uniqueness of en-
tropy solution of (CP)(A, F, f,uo) follows. O

(2) Existence. Existence is given in the same way as in [11]. ]

Remark 3.8. The result of Theorem 3.4 remains true under the slightly weaker
assumption liminf, o M(e) < +oo0, provided N > 2 and all the components F;
and coeflicients A4;; are non-Lipschitz continuous functions. This latter assump-
tion is clearly a technical one and could be removed (see [16] for the isotropic
case).

The assumptions on the modulus of continuity are optimal for the purely hy-
perbolic case. Some relevant counterexamples are indicated in [14] where authors
formulate also anisotropic conditions. In the same way, it has been proved in [3]
that if such assumptions do not hold, there is no uniqueness of entropy solution in
thecase A=0, N=2 F,=r%i=1,2withe; >0and o; + oy < 1. In forthcom-
ing works, in the same framework but with L'-data, we will deal with the well-
posedness of this problem in the sense of renormalized solution. We will also be
interested by the question of the continuous dependence of the solution with re-
spect to the data.

Appendix

Proof of Lemma 3.5. Asin [10] we do the proof of Lemma 3.5 by using the Kruzh-
kov’s method of doubling variables. For any test function ¢ € D(Q) with & > 0,
there exists some open ball B(0, R) in R such that supp(¢) = (0, T) x B(0, R).
Let u, v be entropy solutions of (CP) and

01=(0,T)xB(0,Ry), ©»=(0,T)xB(0,Ry).

Note also that by density, (2.11) is still true with y € W?>*(R). Besides, since we
are working with test functions which have compact supports, we can only ask y to
be W (R). In particular, (2.11) still holds with y!, 72 which are in W2 (R). So
we use:
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oy (u,k) =y} (u(t, p), k) in (2.11); we get

JQ [_Vj (ua k)afé - i@'l (ua k)ay,é
1 i=1
N

+ Z Hal (u — k)ayfAij(u)ayjf - Vgll(”h k)f(u)é:| dydt

ij=1

N
< —J Z div p, (u édydr (3.21)
[

=1

for any k € R and ¢ = &(t, y) € D(Q) with & > 0, supp(¢) = Q.
e »2(v,k) = 92(v(s,z), k) in (2.11); we get

J [—yf(w k)os& — ZN: 02 (v,k)0.,¢
(@) pa

+§:HQU— A5(0)0,¢ = 7! (v, K)g (0)¢] d= dis
N
S—J H (v—k Z div p, (v édzds (3.22)
0 I=1
forany k € Rand & = &(s,z) € D(Q) with & > 0, supp(¢é) = Q-.
We replace k by vin (3.21), k by u in (3.22), we integrate respectively over
(s,2) and (1, ).

In (2.4) and (2.5), we have forallr, k e Randi=1,..., N,

Hsl(r):_ng(_r)a ysl(rvk):ygz(k)r))

0 (r,k) = 02 (k,r),  v'(r.k) = v2(k,r). (3-23)
When ¢ goes to 0,
HE1 (r) — Hy(r) a.e.,
yi (ryk) — y(r,k) = Ho(r — k)(r — k) a.e., (3.24)
0:(r k) — 0(r,k) = Hy(r — k) (F(r) - F(k)) a.e.,
ve(r, k) — v(r,k) = Ho(r — k) (A(r) — A(k)) a.e
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Keeping in mind (3.23), and adding the two resulting inequalities yields:

jQ , {0,000 + 008 = Y 01w, 0) 0y, + 0:)¢ — HY (u = 0)(f (1) — g(0)¢
1X02 i=1

N
Y H = 0)[0y, Ay ()2, E — 0:,4y(0)0,,¢] } dy dr d= ds

ij=1

N
= _JQ 0 H (u—v Z div p, (u(z, J/))) (din,(v(s,z)))z}gdydfdzds
1 X2 =

N
< —ZJ H! (u—v Z div p;(u(r, y)) divp,(v(s,z))Edy drdzds,  (3.25)
01x0s =1

forany k € Rand & = &(z, y,s,z) € D(Q x Q) with supp(¢) < Q1 x 0, £ > 0.
An elementary decomposition of the last term of the left-hand side of (3.25)
gives us

N
jQ » {rh )@+ 2)E =701 w,0)(@), + 0:)¢ = H (u—0) (/ () — ()¢

i=1
N
+ 37 H (1= 0)[6,, Ay (u) — 0, 45(0)](0,, + azf)g} dy dz dz ds
< Ji(u,v) + J5(u,v) + J5(u,v), (3.26)

where J7 (u, v) jQ 0, Ji (W, v)dydrdzds, i=1,2,3, with

N
Ji(u,0) = —2HY (u —v) Z div p; (u(r, y)) div p; (v(s, ))&
=1
N

J3u,0) = H, (u—0)3y, Ay(u)05¢

ij=1
N

Ji(uv) ==Y Hl(u—0)d.,45(v)0,,¢.

i,j=1

Consider 2y, 4 > 0. We take

&(t, 9,8, 2) —¢<T;S,ygz)5/:o(f;s>wz(ygz> (3.27)




Uniqueness of entropy solution for general anisotropic convection-diffusion problems 155

where

0<4eD().  supp(d) = 0100 i)~ o) ()
with
0<0eD(R), o(s)=0d(-s), d(s)=0 for|sfj>1 and J d(s)ds = 1.
R

Using (2.10) and after integration by parts and also the fact that d,,00 = —0,,
we get

jQ o @ 209 = 3 0000y + 0208 = HY = 0) (1) g0

i=1
N PR
- Z vl (u, v)[(ﬁyziyj + aiji);é + (6}2,]_:,, + aizj)qﬂ }52060,1 dy dt dz ds
/:

ij=1
< Ji(u,v) + J5(u,v) + J5 (u,v). (3.28)
We give the following lemma that we will prove later.
Lemma 3.9. A4s5¢ — 0,
Ji(u, ) + j5(u,0) + ji(u,v) =0 in L'(Q1 x Q). (3.29)

Now let & go to 0 in (3.28). With (3.24), (3.27) and (3.29), we obtain

N
jQ o @ 00 =3 0w 010y + 0206 — Holu =) (£ ) — 9(0)#

i=1

N
=Y v )], + 32+ (@), + 32,4l
i,j=1
X 0w, dydrdzds < 0. (3.30)

To end this proof, we make the change of variables

y+z T+ . y—z
= t= = 3.31
X 2 i 2 ) X 2 J 2 ( )

We get the desired inequality in Lemma 3.5 when /o | 0, 4 | 0 respectively in
(3.30). O
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We now give the proof of Lemma 3.9.

Proof of Lemma 3.9. Notice that

Ji(u,v) = =2 JQ . H' (u—v Z div p; (u(r, y)) div p; (v(s, z)) & dy dt dz ds
2| 3 Z dualw) (2 j = D)y (0) e dydrdz s
01x0 =1 i, j=

Set Gji(r =/’ HY (r —ou(¢) dL.
After an integration by parts over z,

N N
S0 =233 | a0 dy e dzs
j 1 X

Since H!" € L*(R) and o; € LZ,(R), we have Gj; € C(R). Thus we can use (2.10)
and integrate by parts over y to obtain

N u
Ji(u,v) 22 Z JleQZJ i (r)au(r )drayzizjédydrdzds.

=1 i,j=1 v
Let ¢ go to 0. We can proof the following lemma.

Lemma 3.10. Let h: R — R be a locally integrable function. For each fixed
b e R,

hfnJ H) (s — a)h(s)ds = Ho(b — a)h(a)  for a.ea e R.
Proof. Set I =]a,b[. Since C*(I) is dense in L'(I), let h, € C*(I) such that
he — h in L'(I) when ¢ | 0. After integration by parts of j: HY (s — a)h.(s) ds,
result follows by using the convergence dominated theorem. O

From Lemma 3.10,

G4

() — —Ho(r —v)ou(r) foraereR.

By the convergence dominated theorem, we deduce that
N

N u
hm Ji(u,v) =2 Z Z J (J Hy(r — v)ou(r)o(r) dr) aii_,jé dy dr dz ds.
01x0>

i=1 i,j=1 v
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In the same way, we can show that

N N u
133]1 Tiuv) ==Y %" JQ , (J Ho(r — v)a(r)ay(r) dr) 0y, & dy dudz ds
: 1 X

N N u
1%1 i) ==Y J (J Ho(r — v)ay(r)au(r) dr) 0y Edydrdzds.
é 01x0> ’

lim (7 (1, 0) + J3(u,0) + J§(a,0)) = 0. O
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