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Smooth maps to the plane and Pontryagin classes
Part I: Local aspects

Rui Reis and Michael S. Weiss*

(Communicated by Rui Loja Fernandes)

Abstract. We classify the most common local forms of smooth maps from a smooth man-
ifold L to the plane. The word local can refer to locations in the source L, but also to
locations in the target. The first point of view leads us to a classification of certain germs
of maps, which we review here although it is very well known. The second point of view
leads us to a classification of certain multigerms of maps.
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1. Introduction

Our goal is to investigate locally uncomplicated smooth maps from a smooth

manifold L of dimension nþ 2 to the plane R2. Where we use the word local, as

in locally uncomplicated, we sometimes refer to locations in the source L, some-

times to locations in the target R2. The emphasis is on families of smooth maps;

this is in contrast to Morse theory, where the study of individual (locally uncom-

plicated) smooth maps from a manifold to R is a central topic. We are guided by

two observations.

(i) Let X be an open subspace of the space of all smooth maps L ! R2 defined

by prohibiting certain singularities. It is a special case of a theorem due to Vassi-

liev [7], [8] that X has an accessible homotopy type or homology type if, loosely

speaking, every smooth map L ! R2 can be approximated by a map which be-

longs to X , and moreover every smooth one-parameter family of smooth maps

L ! R2 can be approximated by a path in X . Therefore we are inclined to define
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notions of locally uncomplicated map L ! R2 by prohibiting certain singularities

or singularity types corresponding to a subset of an appropriate jet space whose

codimension in the jet space is at least nþ 4.

(ii) More restrictive notions of locally uncomplicated map L ! R2 can be

obtained by prohibiting, for every rb 1, certain configurations of r singularities

(multigerms) in the source L, with the same image point in R2. The Vassiliev the-

orem mentioned above can be adapted to this setup [5], although it is considerably

harder to say which multigerms can be prohibited without making the resulting

space of locally uncomplicated smooth maps L ! R2 homologically or homotopi-

cally inaccessible.

These two observations raise two elementary classification problems, one for

uncomplicated germs and one for uncomplicated multigerms. The solution of

the first problem is well known, but we review it. In the second problem, it is

not straightforward to come up with a manageable interpretation of classification.

We propose one and describe our solution.

2. Germs of maps from the plane to the plane

The classification of the most common map germs from plane to plane up to left-

right equivalence is well known. See for example [4]. (We are talking about

smooth map germs f from ðR2; 0Þ to ðR2; 0Þ. Two such germs f0, f1 are left-

right equivalent if there exist di¤eomorphism germs c : ðR2; 0Þ ! ðR2; 0Þ and

s : ðR2; 0Þ ! ðR2; 0Þ such that f1 ¼ sf0c
�1.) We will repeat it here nevertheless

and see some normal forms and tell the story of each singularity type.

2.1. Classification. There are six types that we consider worthy of attention:

regular, fold, cusp, swallowtail, lips and beak-to-beak. The regular (alias nonsingu-

lar) type is well understood. The remaining five types are of rank 1, that is, the

derivative at the origin has rank 1. (The cases where the derivative has rank 0

are uninteresting to us because their codimension is at least 4.) Among these, it

is natural to distinguish between those for which the 1-jet prolongation is trans-

verse to the rank 1 stratum (fold, cusp and swallowtail) and those for which it is

not (lips and beak-to-beak). In the transverse case, the singularity set in the source

is a smooth curve in the plane, passing through the origin; in the non-transverse

case, it is in some way or other a singular curve, as we will see.

Fold: The normal form is f ðx; yÞ ¼ ðx; y2Þ. The singularity set in the source is

a line (in the normal form, the x-axis) and the singularity set in the target is also

a line (in the normal form, again the x-axis). The intrinsic second derivative [2]

at the origin is a nondegenerate quadratic form (defined on the kernel of the first

derivative, and with values in the cokernel of the first derivative).
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Cusp: Normal form f ðx; yÞ ¼ ðx; y3 þ xyÞ. The derivative matrix for the nor-

mal form is

df ðx; yÞ ¼ 1 0

y 3y2 þ x

� �

with determinant ðx; yÞ 7! 3y2 þ x. Hence the singularity set S in the source is the

trajectory of t 7! ð�3t2; tÞ, a parabola. The singularity set in the target is the

trajectory of t 7! ð�3t2;�2t3Þ.
Swallowtail: Normal form f ðx; yÞ ¼ ðx; y4 þ xyÞ. The singularity set S in the

source is the trajectory of t 7! ð�4t3; tÞ. The singularity set in the target is the

trajectory of t 7! ð�4t3;�3t4Þ.
Lips: Normal form f ðx; yÞ ¼ ðx; y3 þ x2yÞ. The singularity set in the source is

the set of zeros of the quadratic form ðx; yÞ 7! x2 þ 3y2, that is, a single point. It

is a manifold but it does not have dimension 1.

Beak-to-beak: Normal form f ðx; yÞ ¼ ðx; y3 � x2yÞ. The singularity set in

the source is the set of zeros of the quadratic form ðx; yÞ 7! x2 � 3y2, that is, the

union of the lines described by x ¼ cy and x ¼ �cy, where c ¼ 31=2. It has dimen-

sion 1 but it is not a manifold. The singularity set in the target is the union of the

trajectories of

t 7! ðct;�2t3Þ; t 7! ð�ct;�2t3Þ:

Remark 2.1. In all these formulae, the first coordinate f1 of f is ðx; yÞ 7! x. The

best way to understand the classification is to regard the second coordinate f2 of f

as an unfolding of a germ g : ðR; 0Þ ! ðR; 0Þ, with unfolding parameter x. The

formula for g can be seen by setting x ¼ 0. This gives gðyÞ ¼ y for the regular

case, gðyÞ ¼ y2 for the fold, gðyÞ ¼ y3 for cusp, lips and beak-to-beak, and

gðyÞ ¼ y4 for the swallowtail.1 Each of the unfoldings can be pulled back from a

miniversal unfolding with parameter space V . The miniversal unfoldings are as

follows:

gðyÞ ¼ y2 : y2;

gðyÞ ¼ y3 : y3 þ uy;

gðyÞ ¼ y4 : y4 � uy2 þ vy:

ð2:1Þ

This is essentially in the notation of [1, ch. 15], although we use y where [1] has x.

The decisive features of the germs f are therefore as follows:

1Catastrophe theory has names for these germs g which sometimes clash with our names for the
corresponding maps f . The catastrophe theory names tend to describe the projection from the fiberwise
singularity set of the miniversal unfolding of g to the parameter space of the unfolding.
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(i) the corresponding germ g : ðR; 0Þ ! ðR; 0Þ obtained by setting x ¼ 0 in the

formula for f2;

(ii) the smooth map e : ðR; 0Þ ! ðV ; 0Þ (where V parametrizes the miniversal

unfolding of the appropriate g) such that f2 as an unfolding is isomorphic to

e� of the miniversal unfolding. This e is in most cases far from unique.

For us, V ¼ R or V ¼ R2. In the notation of [1], ch. 15, the maps e are as follows:

eðxÞ ¼ x a R for the cusp, eðxÞ ¼ ð0; xÞ a R2 for the swallowtail, eðxÞ ¼ x2 a R

for the lips and eðxÞ 7! �x2 a R for beak-to-beak.

It is not completely trivial to justify this classification. What the above argu-

ments prove beyond doubt is that we have a surjective map from isomorphism

classes of 1-parameter unfoldings of germs g (such as gðyÞ ¼ yn, with n ¼
1; 2; 3; 4) to the set of left-right equivalence classes of germs f : ðR2; 0Þ ! ðR2; 0Þ
whose derivative at 0 has rank 1. What remains to be done is roughly the fol-

lowing:

(i) to produce a ‘‘su‰ciently big’’ list of some of the 1-parameter unfoldings of

the germs g, and to determine the corresponding left-right equivalence classes

of map germs f : ðR2; 0Þ ! ðR2; 0Þ;
(ii) to show that each of these left-right equivalence classes has codimensiona 3

and that all remaining germs ðR2; 0Þ ! ðR2; 0Þ taken together make up a sub-

set of codimensionb 4.

2.2. Unfoldings. We start with the list of unfoldings. Every 1-parameter unfold-

ing of a smooth function germ g : ðR; 0Þ ! ðR; 0Þ with nonzero Taylor series is

isomorphic to e� of the miniversal unfolding, where

e : ðR; 0Þ ! ðV ; 0Þ

is smooth and V ¼ Vg is the parameter space for the miniversal unfolding of g.

The fact that e is usually not unique makes the classification di‰cult. However,

some special cases are easy.

If gðyÞ ¼ y2, then Vg is zero-dimensional.

If gðyÞ ¼ y3, then Vg is 1-dimensional. The proposed normal forms for e are

eðxÞ ¼ x, eðxÞ ¼ x2 and eðxÞ ¼ �x2. If q : ðR; 0Þ ! R ¼ Vg has nonzero first de-

rivative, then we can find an invertible h : ðR; 0Þ ! ðR; 0Þ such that q ¼ eh where

eðxÞ ¼ x, and that can be used to produce the required isomorphism. Similarly, if

q has zero first derivative but strictly positive second derivative, then we can find

an invertible h : ðR; 0Þ ! ðR; 0Þ such that q ¼ eh where eðxÞ ¼ x2. Similarly, if q

has zero first derivative but strictly negative second derivative, then we can find an

invertible germ h : ðR; 0Þ ! ðR; 0Þ such that q ¼ eh where eðxÞ ¼ �x2.
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So in fact the only di‰cult case is the case where gðyÞ ¼ y4. We use the mini-

versal unfolding given by (2.1). Hence V ¼ Vg is 2-dimensional. We want to

focus on map germs e : ðR; 0Þ ! ðV ; 0Þ with nonzero first derivative, not parallel

to the u-axis. (The u-axis is a distinguished direction in V because it is parallel to

the cusp in V obtained by projecting the fiberwise singularity set of the unfolding

to V .) The corresponding 1-parameter unfolding of gðyÞ ¼ y4 then has the form

y4 þ e1ðxÞy2 þ e2ðxÞy with e 02ð0ÞA 0. Using e2 to transform the source of e, we

can reduce to a situation where e2ðxÞ ¼ x. So we have

ðx; yÞ 7! y4 þ px y
2 þ xy

where px ¼ e1ðxÞ. From Example 5.11 we know that this is left-right equivalent to

ðx; yÞ 7! ðy4 þ xyÞ, which is the swallowtail normal form.

The rest of our classification task is easier. The five singularity types, repre-

sented by the five normal forms above, are easy to distinguish by geometric prop-

erties which are invariant under left-right equivalence.

For the fold type, the singularity set S in the source is a smooth submanifold of

dimension 1, and f jS is an immersion (near 0).

For the cusp and swallowtail, the singularity set S in the source is still a

smooth submanifold of dimension 1, but f jS is not an immersion near 0. To

distinguish cusp and swallowtail, it is enough to show that the curves

t 7! ð�3t2;�2t3Þ; t 7! ð�4t3;�3t4Þ

are not left-right equivalent. This is obvious by looking at the second (intrinsic)

derivative [1], [2] at the origin, which is nonzero in the cusp case, zero in the swal-

lowtail case.

For the lips and beak-to-beak, the singularity set in the source is not a smooth

submanifold of dimension 1; it is a point in the lips case and a ‘‘node’’ (two cross-

ing lines) in the beaks-to-beaks case.

2.3. Codimension and stratification. We turn to the codimension and stratifica-

tion analysis. Among other things we want to determine the codimension of each

of the six types described above, and we want to show that all remaining singular-

ity types taken together constitute a set of codimension > 3. We start by summa-

rizing the analytic characterizations of the six types. We can always assume that

f : ðR2; 0Þ ! ðR2; 0Þ has the form

ðx; yÞ 7!
�
x; f2ðx; yÞ

�
and qf2=qx vanishes at 0. In the singular case, we also assume that qf2=qy vanishes

at 0. The following table describes the six types by means of conditions on the 4th

Taylor polynomial of f2. The conditions typically state that some term in the
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Taylor polynomial has to be zero (z) or nonzero (n). For example, the table states

that in the case of a cusp, the coe‰cients of y and y2 must be zero while the coef-

ficients of xy and y3 must be nonzero (and there are no further conditions).

In the ‘‘other conditions’’ column of the table, b3, d1 and d2 are the coe‰cients

of y3, xy2 and x2y respectively. The expression 3b3d2 � d 2
1 arises when we trade

xy2 terms for x2y terms, composing with a di¤eomorphism germ (in the source) of

the form ðx; yÞ 7! ðx; y� kxÞ for some constant k.

y y2 y3 y4 xy other conditions Name

n regular

z n fold

z z n n cusp

z z n z 3b3d2 � d 2
1 > 0 lips

z z n z 3b3d2 � d 2
1 < 0 beak-to-beak

z z z n n swallowtail

Definition 2.2. Let P� be the real vector space of polynomial maps R2 ! R2

(viewed as jets), of degreea 4, with vanishing constant term. We write

P� ¼ P2
� AP1

� AP0
�

where Pi
� consists of all those elements of P� whose linear term has rank i. Let

WP� HP� consist of the polynomials whose germ at the origin belongs to one of

the types regular, fold, cusp, swallowtail, lips or beak-to-beak. Thus

P2
� HWP� HP1

� AP2
� :

Let us also introduce NHP1
� , the submanifold of those f which have the form

f ðx; yÞ ¼
�
x; f2ðx; yÞ

�
where f2 has vanishing first derivative.

For P2
� we also write G, because it is a Lie group. The group G acts on the left

and right of WP� by composition of polynomial mappings (followed by truncation

to degreea 4). In other words, G � Gop acts on WP� by ðj;cÞ � f ¼ jfc, for

j;c a G and f a WP� .

Our classification attempts so far describe some orbits of this action of G � Gop

on WP� . (In particular our classification of some germs f : ðR2; 0Þ ! ðR2; 0Þ up
to left-right equivalence can be formulated in terms of Taylor expansions at the

origin, up to degree 4 at most.) We now wish to show that WP� is open, to deter-

mine the codimensions in WP� of the six orbits, and show that the complement of
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WP� has codimensionb 4 in P�. We have already convinced ourselves that every

g a P1
� is left-right equivalent to some f a N. In other words, the restricted action

map G �N � G ! P1
� is onto. The following lemma makes this more precise:

Lemma 2.3. The restricted action map G �N � G ! P1
� is a fiber bundle.

Proof. Let EHG � P1
� be the smooth submanifold consisting of all pairs ðj; gÞ,

with j a G and g a P1
� , such that the first derivative of j�1g at the origin has

image equal to the x-axis. We write our map as a composition

G �N � G ! E ! P1
�

where the first map is given by ðj; f ;cÞ 7! ðj; jfcÞ and the second map is given

by ðj; gÞ 7! g. Clearly the second of these maps is a fiber bundle. To understand

the first map, we fix some ðj; gÞ a E. The portion of G �N � G mapping to that

is identified with the set of all c a G such that j�1gc�1 a N. This condition on

c can also be described as saying that the following commutes up to terms of

orderb 5:

R2 ���!c�1

R2???yp

???ypj�1g

R ���!¼ R

where pðx; yÞ ¼ x. If we select one such c, and we can, then all others can be

obtained from the selected one by multiplying on the left with an element of

H ¼ fg a G j pg ¼ pg;

a subgroup of G. Hence our map G �N � G ! E is a principal bundle with

structure group H. r

Lemma 2.4. Suppose that a Lie group L acts smoothly on a smooth connected

manifold M. Let NHM be a smooth submanifold, closed as a subset of M. Sup-

pose that the restricted action map L�N ! M is a smooth surjective submersion.

Then the partition of M into L-orbits is locally di¤eomorphic to the induced parti-

tion of N, multiplied with Rk where k ¼ dimðMÞ � dimðNÞ.

Proof. Given z a M, choose ðg; xÞ a L�N such that gx ¼ z. By assumption the

di¤erential of the action map a : L�N ! M at ðg; xÞ is a (linear) surjection

daðg;xÞ : TgL� TxN ! TzM. Its restriction to TxN is injective since it is the dif-

ferential of an embedding N ! M. Hence there exists a k-dimensional subspace

V HTgL such that daðg;xÞ restricts to a linear isomorphism V � TxN ! TzM.

47Maps to the plane I



Now choose a smooth embedding germ s : ðV ; 0Þ ! ðL; gÞ such that the di¤eren-

tial of s at 0 is the inclusion V ! TgL. Then the germ of

h : V �N ! M; hðv; zÞ ¼ sðvÞz;

at ð0; xÞ is a di¤eomorphism germ. Clearly, for ðv1; z1Þ and ðv2; z2Þ in V �N, the

elements hðv1; z1Þ and hðv2; z2Þ are in the same L-orbit if and only if z1 and z2 are

in the same L-orbit. r

Putting the two lemmas together, we see that in order to understand (some of )

the decomposition of P1
� into G � Gop-orbits, it is su‰cient to understand (some

of ) the induced decomposition of NHP1
� . But this is already obvious from the

list above. The decomposition of the a‰ne space N can be described in terms of

several linear forms on N (and a quadratic form). The linear forms are given by

the coe‰cients b2, b3, b4, c, d1, d2 of y2, y3, y4, xy, xy2, x2y, respectively. The

quadratic form is q ¼ 3b3d2 � d 2
1 . Let B2;B3;B4;C;QHN be the zero sets of b2,

b3, b4, c, q respectively. Now we can describe the ‘‘relevant’’ strata (intersected

with N) as follows:

• fold: NnB2,

• cusp: B2nðB3ACÞ,

• swallowtail: ðB2BB3ÞnðB4ACÞ,

• lips: ðB2BCÞnQ (and q > 0),

• beak-to-beak: ðB2BCÞnQ (and q < 0).

The points of N which are not in any of these strata form a closed codimension 3

algebraic subset:

NnWP� ¼ ðB2BB3BB4ÞA ðB2BB3BCÞA ðB2BCBQÞ:

Proposition 2.5. The complement of W P� in P� is closed, algebraic and of

codimensionb 4. The stratification of W P� by the six strata (alias G � Gop-orbits)

is in fact a filtration by smooth submanifolds (of codimensions 0,1,2,3) as indicated

in the following diagram:

regularA foldA cuspA swallowtailA lipsAbeak-to-beak���
foldA cuspA swallowtailA lipsA beak-to-beak���

cuspA swallowtailA lipsAbeak-to-beak���
swallowtail

‘
lips

‘
beak-to-beak:
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Proof. The set P1
� BWP� ¼ GðNBWP� ÞG is open in P1

� because NBWP� is

open in N. Hence WP� ¼ P2
� A ðP1

� BWP�Þ is open in P2
� AP1

� which in turn is

open in P�. The same argument shows that WP� is algebraic in P�, given that

the two actions of G on P� are algebraic. The codimension of GðNnWP� ÞG ¼
P1
�nWP� in P1

� is b 3 by Lemma 2.4. Hence the codimension of P1
�nWP� in P�

isb 4. The codimension of P0
� in P� is also 4.

The second statement follows from our analysis of the stratification of N,

together with Lemma 2.4. r

Remark 2.6. All elements of WP� are represented by proper maps R2 ! R2

taking the origin to itself, and have a well-defined degree. The degree is 0 in the

case of a fold or swallowtail, but e1 in the case of a regular germ, cusp, lips or

beak-to-beak. This shows that at least four of the six strata in our stratification

of WP� are not connected.

3. Germs of maps from higher dimensional space to the plane

We generalize the results above by investigating (certain) smooth map germs

f : ðRnþ2; 0Þ ! ðR2; 0Þ

for fixed nb 0. It turns out that there is an easy reduction to the case n ¼ 0.

3.1. Classification. We begin with the classification up to left-right equivalence.

Again we exclude the cases where df ð0Þ has rank 0 and note that the rank 2 case is

easy. This leaves the rank 1 case. Using appropriate linear transformations of

source and target, we may assume that

df ð0Þ ¼ 0 0 0 � � � 0 1 0

0 0 0 � � � 0 0 0

� �

so that the image of df ð0Þ is the x-axis. Writing p : R2 ! R for the linear projec-

tion ðx; yÞ 7! x, we can use pf as one of nþ 2 coordinates on the source and so

obtain

f ðz1; . . . ; zn; x; yÞ ¼
�
x; f2ðz1; . . . ; zn; x; yÞ

�

where f2 : ðRnþ2; 0Þ ! ðR; 0Þ has vanishing derivative at 0. Then we require that

the Hessian of f2, restricted to ker
�
df ð0Þ

�
, be not too singular: its nullspace must

have dimensiona 1. (The cases where the nullspace has dimensionb 2 are con-

sidered too rare to be of interest here.) There are two cases to distinguish.
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Case 1: The nullspace of that restricted Hessian has dimension 0. By the Morse

lemma we can assume, after a coordinate transformation in the source (involving

only the coordinates z1; . . . ; zn; y), that f2 restricted to ker
�
df ð0Þ

�
is a quadratic

form alias homogeneous polynomial of degree 2. Then f2 can be viewed as a 1-

parameter deformation of the restriction of f2 to ker
�
df ð0Þ

�
. By the classification

of such deformations, we may assume that the deformation is merely given by

translations in the target (after another coordinate transformation in the source).

Then we have the form

f ðz1; . . . ; zn; x; yÞ ¼
�
x; qðz1; . . . ; zn; yÞ þ gðxÞ

�

where q is a nondegenerate quadratic form in nþ 1 variables. Finally we may

remove the gðxÞ term using a coordinate transformation in the target. This gives

the form

f ðz1; . . . ; zn; x; yÞ ¼
�
x; uðz1; . . . ; zn; yÞ

�

where u is a nondegenerate quadratic form in nþ 1 variables. Using another

linear transformation of the source coordinates z1; . . . ; zn; y and where necessary

a reflection ðx; yÞ 7! ðx;�yÞ in the target, we reduce further to the case where

uðz1; . . . ; zn; yÞ ¼ y2 þ qðz1; . . . ; znÞ for a quadratic form q in the variables

z1; . . . ; zn. Then we have the canonical form

f ðz1; . . . ; zn; x; yÞ ¼
�
x; y2 þ qðz1; . . . ; znÞ

�

where q is a nondegenerate quadratic form in the variables z1; . . . ; zn.

Case 2: The nullspace of that restricted Hessian has dimension 1. We may as-

sume that the nullspace is the y-axis. Let K ¼ fðz1; . . . ; zn; 0; 0ÞgHRnþ2. By the

Morse lemma applied to f2jK , we may assume that f2jK is a nondegenerate qua-

dratic form (after a suitable coordinate transformation in the source involving

only z1; . . . ; zn). Now we can view f as a 2-parameter deformation (parameters

x and y) of f2jK . By the classification of such deformations, we may assume that

the deformation is merely given by translations in the target. Then

f ðz1; . . . ; zn; x; yÞ ¼
�
x; f r

2 ðx; yÞ þ qðz1; . . . ; znÞ
�

where we write f r
2 to indicate a ‘‘reduced’’ form of f2. In words, f2 has the form

of a function germ f r
2 which only depends on the variables x and y, and has van-

ishing first derivative at 0, plus a nondegenerate quadratic form q which depends

only on the other variables z1; . . . ; zn. The second derivative at 0 of f r
2 restricted to

the y-axis is zero, because we are not in ‘‘case 1’’.
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The analysis in case 1 above is fairly complete. We call this type a fold. In

case 2, it is natural to proceed by imposing a condition: namely, that the germ

ðx; yÞ 7!
�
x; f r

2 ðx; yÞ
�

have one of the types cusp, swallowtail, lips or beak-to-beak described earlier in

this section. Then we get the list of normal forms

Fold : f ðz1; . . . ; zn; x; yÞ ¼
�
x; y2 þ qðz1; . . . ; znÞ

�
Cusp : f ðz1; . . . ; zn; x; yÞ ¼

�
x; y3 þ xyþ qðz1; . . . ; znÞ

�
Swallowtail : f ðz1; . . . ; zn; x; yÞ ¼

�
x; y4 þ xyþ qðz1; . . . ; znÞ

�
Lips : f ðz1; . . . ; zn; x; yÞ ¼

�
x; y3 þ x2yþ qðz1; . . . ; znÞ

�
Beaktobeak : f ðz1; . . . ; zn; x; yÞ ¼

�
x; y3 � x2yþ qðz1; . . . ; znÞ

�
:

In these formulae, q is a nondegenerate quadratic form. It is easy to see that the

five types are distinguishable in coordinate free terms. For example, in the cusp

and swallowtail cases, the singularity set in the source is a smooth submanifold

of dimension 1, but in the lips and beak-to-beak cases, it is not. The cusp case

can be distinguished from the swallowtail case because the singularity sets in the

target are not equivalent.

The above reduction procedure extends easily to 1-parameter families. Indeed,

suppose that we have a smooth function germ ðR� Rnþ2; 0Þ ! ðR2; 0Þ which we

want to regard as a 1-parameter family of germs

ft : ðRnþ2; 0Þ ! ðR2; 0Þ

with t a R in a neighborhood of 0. Suppose that the first derivative of each ft at 0

has rank 1, and also that f0 has the ‘‘reduced’’ form

f0ðz1; . . . ; zn; x; yÞ ¼
�
x; f r

0;2ðx; yÞ þ q0ðz1; . . . ; znÞ
�

where q0 is a nondegenerate quadratic form in n variables. Then there exist di¤eo-

morphism germs

ct : ðRnþ2; 0Þ ! ðRnþ2; 0Þ; jt : ðR2; 0Þ ! ðR2; 0Þ

depending smoothly on t, with c0 ¼ id and j0 ¼ id, such that ft ¼ jt ftct is in

reduced form,

ftðz1; . . . ; zn; x; yÞ 7!
�
x; f

r

t;2ðx; yÞ þ qtðz1; . . . ; znÞ
�
:

Here qt is a nondegenerate quadratic form in n variables. Therefore we have

proved Lemma 3.1 below.
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3.2. Codimension and stratification. Let P� be the finite dimensional real vector

space of polynomial maps Rnþ2 ! R2 of degreea 4, with vanishing constant

term. We write

P� ¼ P2
� AP1

� AP0
�

where Pi
� consists of the polynomials whose linear term has rank i. Let G be the

set of polynomial maps of degreea 4 from Rnþ2 to Rnþ2, with vanishing constant

term and invertible linear term. Under composition and truncation, G becomes

a group, and this group acts on the right of P� by composition. Let WP� HP�
be the union of the six strata regular, fold, cusp, swallowtail, lips and beak-to-

beak. Let DHP1
� be the closed subset consisting of the elements whose second

‘‘Porteous’’ derivative has a nullspace of dimension > 1. Let F be the space of

nondegenerate quadratic forms in n real variables z1; . . . ; zn. We write Gol for

the old G of Lemma 2.3, and Nol for the old N of Lemma 2.3.

Lemma 3.1. The restricted action map

Gol �Nol � F � G ! P1
�nD; ðj; f ; q;cÞ 7! jð f þ qÞc;

where f þ q is shorthand for the map

ðz1; . . . ; zn; x; yÞ 7!
�
x; f2ðx; yÞ þ qðz1; . . . ; znÞ

�
;

is a surjective submersion.

This puts us in a position to use Lemma 2.4. Hence the partition of P1
�nD into

Gol � Gop orbits is locally di¤eomorphic to the induced partition of Nol � F . But

the latter is essentially the partition of Nol into Gol � G
op
ol orbits multiplied with a

certain partition of F where each part is a union of path components.

Corollary 3.2. The complement of W P� in P� is closed, algebraic and of

codimensionb nþ 4. The stratification of W P� by the six strata is given by a

nested sequence of smooth algebraic subvarieties of W P� of codimensions 0, nþ 1,

nþ 2, nþ 3, respectively, as indicated in the following diagram:

regularA foldA cuspA swallowtailA lipsAbeak-to-beak���
foldA cuspA swallowtailA lipsA beak-to-beak���

cuspA swallowtailA lipsAbeak-to-beak���
swallowtail

‘
lips

‘
beak-to-beak:
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It is invariant under the action of Gol � Gop. The ‘‘regular’’ stratum is a single orbit

of that action. The ‘‘fold’’ stratum falls into bn=2þ 3=2c orbits, and the ‘‘cusp’’,

‘‘swallowtail’’, ‘‘lips’’ and ‘‘beak-to-beak’’ strata fall into bn=2þ 1c orbits each.

Proof. Most of this has already been established. The left-right equivalence class

counts are obtained by counting components of suitable spaces of nondegenerate

quadratic forms, modulo sign change. In the fold case, we have to look at non-

degenerate quadratic forms in nþ 1 variables. The components are classified

by the signature, which can be nþ 1, n� 1; . . . ;�n� 1. If we allow sign change,

as we must, only the absolute value of the signature remains, so there are

bn=2þ 3=2c types. In the remaining cases, we are looking at nondegenerate qua-

dratic forms in n variables. There are bn=2þ 1c types. r

4. Multigerms of maps

Let L be a smooth manifold and SHL a finite nonempty subset. We are inter-

ested in multigerms of smooth maps f : ðL;SÞ ! ðRm; 0Þ. Such a multigerm is,

strictly speaking, an equivalence class of pairs ðU ; f Þ where U is a neighborhood

of S in L and f : U ! Rm is a smooth map taking all of S to 0. Two such pairs

ðU0; f0Þ and ðU1; f1Þ are equivalent if f0 and f1 agree on some neighborhood of S

contained in U0BU1.

The germs ðL; sÞ ! ðRm; 0Þ for s a S, obtained by restriction or localization

from f , are the branches of the multigerm f : ðL;SÞ ! ðRm; 0Þ. Consequently

jSj is the number of branches.

Definition 4.1. Two multigerms f : ðL;SÞ ! ðRm; 0Þ and g : ðL 0;S 0Þ ! ðRm; 0Þ
are left-right equivalent if there exist a di¤eomorphism germ c : ðL;SÞ ! ðL 0;S 0Þ,
extending some bijection S ! S 0, and a di¤eomorphism germ s : ðRm; 0Þ !
ðRm; 0Þ such that g ¼ sfc�1. The multigerms f and g are right equivalent if

there exists a di¤eomorphism germ c : ðL;SÞ ! ðL 0;S 0Þ, extending some bijection

S ! S 0, such that g ¼ fc�1.

There are similar notions of left-right equivalence and right equivalence for

multijets. We have in mind the finite set Sr ¼ f1; 2; . . . ; rg for rb 1, and two ele-

ments f , g of Y
x ASr

P� ð4:1Þ

where P� is the vector space of polynomial mappings of degreea z from Rl to

Rm, with vanishing constant term, for some z > 0. (Soon we will take z ¼ 4 or

zb 4 and l ¼ nþ 2, m ¼ 2 as in previous sections.) If necessary, we refer to z as

the order of the multijet while r is (still) the number of branches.
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Definition 4.2. The multijets f and g (of order z) are left-right equivalent if there

exist jets (of order z) of di¤eomorphisms c from ðSr � Rl;SrÞ to ðSr � Rl;SrÞ,
extending some permutation of Sr, and s from ðRm; 0Þ to ðRm; 0Þ, such that

g ¼ sfc�1. (We have identified Sr with Sr � f0gHSr � Rnþ2.) The multijets f

and g are right equivalent if there is a jet (of order z) of di¤eomorphisms c

from ðSr � Rl;SrÞ to ðSr � Rl;SrÞ, extending some permutation of Sr, such that

g ¼ fc�1.

Remark 4.3. For the rest of the section we take Rm ¼ R2 as the target manifold

and focus on source manifolds L of dimension nþ 2, unless otherwise stated.

Our goal is to select for each rb 1 an open semi-algebraic subset Xr H
Q

x ASr
P�,

closed under right equivalence, in such a way that a number of desirable conditions

are satisfied. The multijets which belong to Xr, for some r, and the multigerms

ðL;SÞ ! ðR2; 0Þ whose multijets belong to Xr (in multilocal coordinates about

SHL, assuming that S admits a bijection to Sr) are called admissible. Among

the desirable conditions is

(a) Naturality: for an admissible multigerm from ðL;SÞ to ðR2; 0Þ, and any

nonempty subset T of S, the induced multigerm from ðL;TÞ to ðR2; 0Þ is

admissible. More generally, for any admissible multigerm f from ðL;SÞ to
ðR2; 0Þ, there exists a neighborhood U of S in L with the following property.

For any finite nonempty subset T of U such that f jT is constant, the multi-

germ of f at T , minus that constant, is admissible.

Suppose that (a) holds and let f : L ! R2 be a smooth map, where dimðLÞ ¼
nþ 2. We say that f is admissible if, for every finite nonempty subset SHL

such that f jS is constant, the multigerm of f at S, minus that constant, is

admissible. Conditions (b) and (c) below ensure, loosely speaking, that for L as

above the cohomology of the space of admissible smooth maps L ! R2 admits a

description in terms of the cohomology of the spaces of admissible smooth multi-

germs ðL;SÞ ! ðR2; 0Þ, where S runs through the finite nonempty subsets of L.

(We will not explain here how conditions (b) and (c) ensure that; see [5] instead.)

For finite nonempty SHL and a non-admissible germ

g : ðL;SÞ ! ðR2; 0Þ;

a nonempty subset T of S is a minimal bad event if the multigerm ðL;TÞ ! ðR2; 0Þ
obtained from g by restriction is non-admissible and T has no proper nonempty

subset with the same property. A nonempty subset T of S is a bad event for g if

it is a union of minimal bad events for g. The size of g is the maximum cardinality

of a bad event for g. The complexity of g is the maximum of the integers k such

that there exists a chain of bad events T0 HT1 H � � �HTk�1 HTk where Ti ATiþ1

for i ¼ 0; . . . ; k � 1.
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(b) The codimension c�ðsÞ of the set of non-admissible multigerms of size s is at

least snþ 4.

(c) For ka s, the codimension c�ðs; kÞ of the set of non-admissible multigerms

of size s and complexity k satisfies

lim
s!l

�
c�ðs; kÞ � sn� k

�
¼ l:

More precisely: in the multijet space (4.1), the subset of non-admissible multijets

of size s and complexity k (where ka sa r) is a semi-algebraic subset, with a min-

imum codimension which we denote by c�ðs; k; rÞ. Let c�ðs; kÞ ¼ minrfc�ðs; k; rÞg.
It is easy to see that c�ðs; kÞ ¼ c�ðs; k; sÞ. Let c�ðsÞ ¼ minkfc�ðs; kÞg. These

definitions of codimension should be used in conditions (b) and (c). See also

Remark 4.4.

Remark 4.4. Let X be the vector space of all smooth maps to R2 from a smooth

ðnþ 2Þ-manifold L, closed for simplicity. In X � L� � � � � L, form the subset of

all ð f ; x1; . . . ; xsÞ such that x1; . . . ; xs are distinct while f ðx1Þ ¼ � � � ¼ f ðxsÞ ¼: a,

and S ¼ fx1; . . . ; xsg is a bad event of complexity k (and size s) for the multijet

of f � a at S. Multijet transversality theorems imply that this subset has a well

defined minimum codimension which turns out to be

cðs; kÞ :¼ c�ðs; kÞ þ 2ðs� 1Þ:

It is therefore tempting to think, but not obviously meaningful, that the subset of

X consisting of all non-admissible f which have some bad event of size s and com-

plexity k has codimension at least

Cðs; kÞ :¼ cðs; kÞ � sðnþ 2Þ ¼ c�ðs; kÞ � sn� 2:

We justify this idea in [5], following Vassiliev. Now condition (c) of Remark 4.3

implies

lim
s!l

�
Cðs; kÞ � k

�
¼ l

and the inequality in condition (b) implies CðsÞb 2. These are the properties that

we are after.

We now describe our subsets Xr H
Q

x ASr
P�, taking zb 4. Later we point out

that the Xr for all rb 0 together constitute a minimal choice, under the conditions

listed in Remark 4.3 and an additional condition described in Lemma 4.11 and

Remark 4.12. In an earlier version of this article, the additional condition was

that Xr should be closed under left-right equivalence for each r. This turned out

to be insu‰cient for a characterization of the sets Xr by minimality.
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Definition 4.5. A multijet

ð fxÞx ASr
a

Y
x ASr

P�

is admissible, i.e., is an element of Xr, if and only if

– each fx belongs to one of the types regular, fold, cusp, swallowtail, lips, beak-to-

beak;

– at most one of the fx does not belong to one of the types regular, fold;

– either for all singular fx, the images of their linear parts are distinct elements of

RP1;

– or all singular fx are of type fold, and for precisely two of them the images of

their linear parts agree; in that case the two fold curves in the target make an

ordinary (first order) tangency at the origin.

From the definition, Xr decomposes into manifold strata with names such as

one cusp and r� 1 folds, making r distinct directions in target, or two kissing folds

and ðr� 2Þ other folds, making r� 1 distinct directions in the target.

Example 4.6. Let f ¼ ð fxÞx ASr
be a multijet and let T HSr be a minimal bad

event for f . If T ¼ fxg has cardinality 1 then

(i) fx is a jet which is not of type fold, cusp, swallowtail, lips or beak-to-beak.

If T ¼ fx; yg is of cardinality 2, then fx and fy are both of type fold, cusp, swal-

lowtail, lips or beak-to-beak, and one of the following applies:

(ii) neither fx nor fy are of fold type;

(iii) exactly one of the two is of fold type and the image of the linear part is the

same for both;

(iv) both are of fold type and their fold lines make a higher tangency (double,

triple etc.) in the target.

If T ¼ fx; y; zg has cardinality 3, then fx, fy and fz are all of type fold, cusp, swal-

lowtail, lips or beak-to-beak, and one of the following applies:

(v) exactly one of fx, fy, fz is not of fold type, with image of di¤erential l, while

the other two are folds and share the image l 0 of their linear part, making an

ordinary tangency in the target, l 0A l;

(vi) fx, fy and fz are all of fold type, the image of the linear part is the same for

all, and any two make an ordinary tangency in the target.
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This covers all cases. So a minimal bad event has cardinality at most 3. Each

of the above six cases defines a semi-algebraic subset of multijet space (4.1), for

the appropriate r a f1; 2; 3g. It is easy to show that the codimension is bounded

below by nþ 4 in case (i), by 2nþ 4 in cases (ii), (iii) and (iv), and by 3nþ 5 in

cases (v) and (vi).

Definition 4.7. Let T� :¼ T0 HT1 H � � �HTk be a chain of finite nonempty sets

and proper inclusions. We define

YðT�ÞH
Y
s ATk

P�

to consist of all elements h such that Tj is a bad event for h, for 0a ja k, and

there is no bad event for h strictly between Tj and Tjþ1, for 0a ja k � 1.

Lemma 4.8. The codimension of the semialgebraic set YðT�Þ in
Q

s ATk
P� is at

least jTkjnþ 2k þ 4 everywhere.

Proof. We proceed by induction on k. The case where k ¼ 0 has been dealt with

in Example 4.6. In the case k > 0, let T 0
� be the truncated chain

T0 HT1 H � � �HTk�1:

Let R ¼ TknTk�1. There is a projection

Y
s ATk

P� !
Y

s ATk�1

P� ð4:2Þ

which induces a projection

YðT�Þ ! YðT 0
�Þ: ð4:3Þ

Fix some h a YðT 0
�Þ. The fiber Fh of (4.3) over h is a semialgebraic subset of the

fiber Eh of (4.2) over h, where Eh is a vector space,

Eh G
Y
s AR

P�:

Now it is enough to show that the codimension of Fh in Eh is at least jRjnþ 2. In

the case where jRj > 1 this is instantly clear. Indeed the codimension of Fh in Eh is

at least jRjðnþ 1Þ, because the germs gx for g a Fh and x a R are all singular, and

the singular subset of P� has codimension nþ 1. Suppose then that R is a single-

ton, R ¼ fxg. Write Fh as a union of three semialgebraic subsets, one containing

the elements g for which R is a minimal bad event, the second one containing the
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elements g for which R participates in a minimal bad event of cardinality 2, and

the last one containing the elements g for which R participates in a minimal bad

event of cardinality 3. Looking at the three cases separately, we see that the jet gx
for g a Fh is either singular and not of fold type, or it is of fold type but the direc-

tion of the fold line in the target is prescribed by h up to finite choice. Hence the

codimension of Fh in Eh GP� is at least nþ 2 ¼ jRjnþ 2. r

Theorem 4.9. The subsets Xr of Definition 4.5 together satisfy conditions (a), (b)

and (c) of Remark 4.3.

Proof. By inspection, condition (a) is satisfied. For condition (b), let

Zr H
Y
x ASr

P�

consist of all the multijets f ¼ ð fxÞ such that all of Sr is a bad event for f . We

need to show that the codimension of Zr in
Q

x P� is at least rnþ 4. Let

Qr H
Y
x ASr

P�

consist of all the f ¼ ð fxÞ such that fx is singular for every x a Sr. Then Zr HQr

and the codimension of Qr in
Q

x P� is rðnþ 1Þ. Therefore it is enough to show

that the codimension of Zr in Qr is at least 1 when r ¼ 3, at least 2 when r ¼ 2

and at least 3 when r ¼ 1. That is easily done by inspection.

Next we verify condition (c). We look for lower bounds for c�ðs; k; rÞ since

c�ðs; kÞ ¼ minrfc�ðs; k; rÞg. It is understood that ka sa r. If there are no non-

admissible multijets of size s and complexity k in
Q

x ASr
P�, then

c�ðs; k; rÞ ¼ r � dimðP�Þ > sðnþ 2Þ ¼ snþ 2s:

If there are such multijets, then k þ 1b s=3 because minimal bad events have

cardinalitya 3. By Lemma 4.8, we have

c�ðs; k; rÞb snþ 2k þ 4

so that c�ðs; k; rÞ � sn� kb k þ 4 > s=3. Therefore

c�ðs; kÞ � sn� k > s=3;

which establishes condition (c). r

Suppose that f ðtÞ : ðL;SÞ ! ðRm; 0Þ are multigerms, depending smoothly on

t a ½0; 1�. Here the dimension of L is arbitrary. We say that the family ð f ðtÞÞ is
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left-right trivial if there exist di¤eomeorphism germs cðtÞ : ðL;SÞ ! ðL;SÞ and

sðtÞ : ðRm; 0Þ ! ðRm; 0Þ, depending smoothly on t a ½0; 1�, such that cð0Þ ¼ id,

sð0Þ ¼ id and

f ðtÞcðtÞ ¼ sðtÞf ð0Þ:

Definition 4.10. Let q be a positive integer. Two multigerms f : ðL;SÞ ! ðRm; 0Þ
and g : ðL 0;S 0Þ ! ðRm; 0Þ are q-span left-right equivalent if there exists a family of

multigerms
�
f ðtÞ : ðL;SÞ ! ðRm; 0Þ

�
, depending smoothly on t a ½0; 1�, such that

• f ð0Þ ¼ f and f ð1Þ is left-right equivalent to g,

• for every nonempty T HS of cardinalitya q, the family of multigerms�
f ðtÞ : ðL;TÞ ! ðRm; 0Þ

�
is left-right trivial.

There is a similar definition for multijets. Note that left-right equivalence (for

multigerms or multijets) implies q-span left right equivalence, and the two notions

are identical for multigerms or multijets with branch numbera q.

Our reasons for making such a definition is that left-right equivalence for mul-

tigerms and multijets with large branch number r is hard to handle. By contrast,

q-span left-right equivalence for multigerms and multijets with branch number r is

as manageable as left-right equivalence for multigerms with branch number not

greater than q. See [6] for calculations and illustrations. We mention just one

simple but striking example. For fixed l ¼ dimðLÞb 2, there are uncountably

many left-right equivalence classes of multigerms f : ðL;SÞ ! ðR2; 0Þ such that

jSj ¼ 4, all branches of f are fold singularities, and the fold curves make four dis-

tinct directions in the target (at the origin). But if these multigerms are classified

by 2-span or even 3-span left-right equivalence, then there are only finitely many

equivalence classes.

Lemma 4.11. The sets Xr are closed under 2-span left-right equivalence.

Proof. The key observation is that each stratum of Xr for r > 2 can be character-

ized as the intersection of preimages of strata in X2 under various projections,

while X2 is obviously closed under left-right equivalence. For example, a multijet

in
Q

x AS5
P� is of type one swallowtail and four folds, making five distinct directions

in the target if and only if it has the following census of sub-multijets with two

branches: four of type one swallowtail and one fold, making distinct directions in

the target and six of type two folds making distinct directions in the target. r

Remark 4.12. (i) Each stratum of Xr is a union of finitely many 2-span left-right

equivalence classes which are open and closed in the stratum. The equivalence

classes making up each stratum can be distinguished by quadratic form data,
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roughly as in Corollary 3.2. We omit the details and refer to [6] for the necessary

calculations, which are unexciting in any case.

(ii) The sets Xr are minimal if we insist on conditions (a), (b) and (c) in remark

4.3 and the property of being closed under 2-span left-right equivalence. Instead

of giving a proof, we give a few examples to explain why the sets Xr have to be

as big as they are. We are dealing with multigerms f : ðL;SÞ ! ðR2; 0Þ where

dimðLÞ ¼ nþ 2.

Suppose to start with that S ¼ f1; 2g, that the first branch of f is a cusp, the

second is a fold, and the two branches determine distinct directions (elements of

RP1) in the target. The left-right equivalence class of f is a subset Y2 of the multi-

jet space. As such it has codimension 2nþ 3, of which nþ 2 are contributed by

the cusp and nþ 1 by the fold. Therefore by our conditions on X2, specifically

condition (b) in 4.3, we must have Y2 HX2. (A similar but easier argument shows

that the multijets with branch number 2 made up of two fold singularities, distinct

directions in the target, are all in X2.)

Suppose next that S ¼ f1; 2; 3g where rb 2, that the first branch of f is a cusp,

the other two branches are folds, and the three branches determine three distinct

directions (elements of RP1) in the target. The 2-span left-right equivalence class

Y3 of f has codimension 3nþ 4 in the multijet space (nþ 2 contributed by the

cusp and nþ 1 by each fold). We do not violate condition (b) by declaring that

Y3 is in the complement of X3. Let us try to make such a declaration and see

whether we run into problems.

In order to see some problems, we look at multijets in
Q

x AS P� where

S ¼ Sr ¼ f1; 2; 3; . . . ; rg, with r > 3, where the first branch is a cusp and the other

branches are folds, all making distinct directions in the target. The 2-span left-

right equivalence class Yr of g has codimension rnþ rþ 1 in the multijet space.

It is easy to construct g in such a way that for each subset T of S of the form

T ¼ f1; 2; tg with 3a ta r, the multijet obtained by (multi-)localization at T is

in Y3, therefore not in X3. For the multijet g itself, each of the subsets f1; 2; tg
for 3a ta r is then a minimal bad event and so the subsets f1; 2; . . . ; tg for

3a ta r are bad events. So the complexity k of g is at least r� 3 and the size s

is r. The same must be true for all multijets in Yr. We calculate

ðrnþ rþ 1Þ � sn� ka ðrnþ rþ 1Þ � rn� ðr� 3Þ ¼ 4:

This does not tend to infinity when s ¼ r tends to infinity. Therefore condition

(c) in Remark 4.3 is violated. This contradiction proves that X3 must contain

Y3. A similar argument by contradiction, using Y2 HX2 and Y3 HX3, proves

that Y4 HX4. Similar arguments by contradiction show that all multigerms of

the form f : ðL;SÞ ! ðR2; 0Þ where one branch is a cusp, the other ones are folds,

and all make distinct directions in the target, have their multijets in Xr where

r ¼ jSj.
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5. Appendix: Basic results from singularity theory

We rely mostly on the excellent book by Martinet [3] for definitions and theorems.

Another very readable text is [1], but that is exclusively concerned with singular-

ities of functions (target R).

We take the definition of an unfolding of a smooth map germ ðRs; 0Þ ! ðR t; 0Þ
from [3], ch. XIII. For the definition of an isomorphism between two unfoldings

(of the same map germ, and with the same parameter space) we also rely on the

same source. Note that [1] has a definition (in the case t ¼ 1) which is slightly

more restrictive in some respects, but less restrictive in other respects because it

allows for a change of the parameter space.

Following [3], we call an unfolding F (with parameter space Rp) of a smooth

map germ f universal if every other unfolding (with parameter space Rq, say) of

f is isomorphic to h�F for some germ h : ðRq; 0Þ ! ðRp; 0Þ. For a universal F

with minimal parameter space dimension p, Martinet uses the expression minimal

universal, which we shorten to miniversal. (Bröcker uses instead versal for Marti-

net’s universal, and universal for Martinet’s minimal universal.)

Definition 5.1. Let Es; t be the real vector space of all smooth map germs from

ðRs; 0Þ to R t. In the case t ¼ 1, we write Es instead of Es; t. In the general case,

Es; t is a module over the ring Es by ðu � gÞðxÞ ¼ uðxÞ � gðxÞ for u a Es and g a Es; t.

Definition 5.2. The tangent space Tf of a germ f : ðRs; 0Þ ! ðR t; 0Þ is the vector
subspace

fdf � X þ Y � f gHEs; t

where X and Y run through all the vector field germs defined near the origin on

Rs and R t, respectively, and df is the total derivative of f . The tangent space is

typically not an Es submodule. But it is an Et submodule of Es; t for the action of Et
on Es; t defined in terms of f by

ðu � gÞðxÞ ¼ u
�
f ðxÞ

�
� gðxÞ

for u a Et and g a Es; t.

Theorem 5.3 (Main theorem on unfoldings). An unfolding

F : ðRp � Rs; 0Þ ! ðRp � R t; 0Þ

of a germ f : ðRs; 0Þ ! ðR t; 0Þ is universal if and only if the di¤erential at 0 of the

adjoint F ad : ðRp; 0Þ ! Es; t is transverse to Tf .
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Remark. We have not specified a norm on Es; t. Nevertheless, F ad has a well

defined di¤erential at 0, the linear map dF adð0Þ : Rp ! Es; t defined by

v 7! x 7! lim
t!0

F ðtv; xÞ � Fð0; xÞ
t

� �

for v a Rp and x a Rs, with x su‰ciently close to 0. The transversality condition

means that im
�
dF adð0Þ

�
þ Tf ¼ Es; t.

Corollary 5.4. Let f : ðRs; 0Þ ! ðR t; 0Þ be a germ such that Tf has finite codimen-

sion in Es; t. Suppose that

gð1Þ; . . . ; gðpÞ a Es; t

generate Es; t=Tf as a vector space. Then F : ðRp � Rs; 0Þ ! ðRp � R t; 0Þ defined
by

ðz; xÞ 7! f ðxÞ þ
X
i

zig
ðiÞðxÞ

is a universal unfolding of f .

Lemma 5.5. Let F ;G : ðRp � Rs; 0Þ ! ðRp � R t; 0Þ be unfoldings of a germ

f : ðRs; 0Þ ! ðR t; 0Þ. If F and G are isomorphic as unfoldings of f , then the linear

map

dF adð0Þ � dGadð0Þ : Rp ! Es; t

factors through Tf HEs; t.

Remark. This means that the composition

Rp ���!dF adð0Þ
Es; t ���!proj:

Es; t=Tf

is an isomorphism invariant of the unfolding F (of a fixed germ f , and with fixed

parameter space Rp).

We conclude this section with a few calculations of tangent spaces of germs, in

increasing order of di‰culty. These are used in Section 2.

Example 5.6. Let f : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

f ðx; yÞ ¼ ðx; y2Þ:

This is one of the germs shown to be stable by Whitney in his investigation of

singularities of maps from the plane to the plane. Stable germs have trivial mini-

versal unfoldings; equivalently, Tf ¼ E2;2. It is also easy to verify by direct calcu-

lation that Tf ¼ E2;2.
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Example 5.7. Let f : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

f ðx; yÞ ¼ ðx; y3 � xyÞ:

This is again one of Whitney’s stable germs. Therefore Tf ¼ E2;2 and the miniver-

sal unfolding of f is trivial.

As an alternative, here is a direct proof of Tf ¼ E2;2 using the Mather-

Malgrange preparation theorem. We view E2;2 ¼ Es; t as a module over Et ¼ E2

as in Definition 5.2. We have MtEs; t ¼ f f1 � gþ f2 � h j g; h a Es; tg, where the mul-

tiplication dot means ordinary multiplication of vector-valued functions by scalar

functions. Therefore Es; t=MtEs; t has vector space dimension 6, and is spanned by

the (cosets of ) the six maps

ðx; yÞ 7!

ð1; 0Þ;
ð0; 1Þ;
ðy; 0Þ;
ð0; yÞ;
ðy2; 0Þ;
ð0; y2Þ:

8>>>>>>>><
>>>>>>>>:

By the preparation theorem, these six maps generate Es; t as an Et module. A

slightly tedious verification shows that they are all in the Et-submodule Tf of Es; t.

Therefore Tf ¼ Es; t.

Example 5.8. Let f : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

f ðx; yÞ ¼ ðx; y3 þ x2yÞ:

Let W HEs; t ¼ E2;2 be the linear subspace consisting of all k ¼ ðk1; k2Þ such

that the first derivative of y 7! k2ð0; yÞ at y ¼ 0 vanishes. This is clearly an

Et-submodule of Es; t, and it contains Tf . We want to show that Tf ¼ W .

We have the standard description

Tf ¼ Jf þ tf ¼ Esfð1; 2xyÞ; ð0; 3y2 þ x2Þg þ Etfð1; 0Þ; ð0; 1Þg;

where Esf. . .g and Etf. . .g denote the Es and Et submodules, respectively, generated

by the elements listed between the brackets. A two-fold application of [3], XV.2.1,

proves that

Tf þ Etfð0; yÞg ¼ E2;2 ð5:1Þ

where ð0; yÞ is short for the map ðx; yÞ 7! ð0; yÞ. In more detail, we know

from Theorem 5.3 that F ðx; y; uÞ ¼ ðx; y3 þ x2yþ uyÞ defines a universal (not
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miniversal) unfolding, with two unfolding parameters x and u, of the germ

y 7! y3. By [3], XV.2.1, it follows that F is a stable germ. But F is also a one-

parameter unfolding of the germ f . Then [3], [XV.2.1], can be applied in the

opposite direction, which leads to equation (5.1).

Hence it is enough to check that Mt � ð0; yÞHTf . As Tf is an Et-module, that

reduces to showing that

ð0; xyÞ a Tf ; ð0; y4 þ x2y2Þ a Tf :

For the first of these, write 2ð0; xyÞ ¼ ð1; 2xyÞ � ð1; 0Þ where ð1; 2xyÞ a Jf and

ð1; 0Þ a tf . For the second, write

9ð0; y4 þ x2y2Þ ¼ 3y2ð0; 3y2 þ x2Þ þ 2x2ð0; 3y2 þ x2Þ � 2x4ð0; 1Þ

where 3y2ð0; 3y2 þ x2Þ a Jf and 2x2ð0; 3y2 þ x2Þ a Jf and 2x4ð0; 1Þ a tf .

Example 5.9. Let f : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

f ðx; yÞ ¼ ðx; y3 � x2yÞ:

Again we have Tf ¼ W , where W HEs; s ¼ E2;2 is the linear subspace consisting

of all k ¼ ðk1; k2Þ such that the second derivative of y 7! k2ð0; yÞ at y ¼ 0

vanishes. The proof follows the lines of Example 5.8.

Example 5.10. f : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

f ðx; yÞ ¼ ðx; y4 þ xyÞ:

We want to show that Tf has codimension 1 in Es; t ¼ E2;2. We have the standard

description

Tf ¼ Jf þ tf ¼ Esfð1; yÞ; ð0; 4y3 þ xÞg þ Etfð1; 0Þ; ð0; 1Þg:

A two-fold application of [3], [XV.2.1], proves that Tf þ Etfð0; y2Þg ¼ Es; t. (Fol-

low the reasoning of Example 5.8.) Hence it is enough to check that

Mt � ð0; y2ÞHTf :

As Tf is an Et-module, that reduces to checking that

ð0; xy2Þ a Tf ; ð0; y6 þ xy3Þ a Tf :

For the first of these we write

3ð0; xy2Þ ¼ 4xyð1; yÞ � 4ðy4 þ xy; 0Þ þ 4y4ð1; yÞ � y2ð0; 4y3 þ xÞ:
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For the second we write

16ð0; y6 þ xy3Þ ¼ 3xð0; 4y3 þ xÞ þ 4y3ð0; 4y3 þ xÞ � 3x2ð0; 1Þ:

Example 5.11. Let g : ðR2; 0Þ ! ðR2; 0Þ be the germ given by

gðx; yÞ ¼ ðx; y4 þ px y
2 þ xyÞ

where x 7! px is a smooth function (germ) of x, with p0 ¼ 0. We shall see that

the tangent space Tg has codimension 1 in E2;2 ¼ Es; t. More precisely, we are

going to show that g is left-right equivalent to the germ f defined by f ðx; yÞ ¼
ðx; y4 þ xyÞ, which we investigated in Example 5.10. Since Tf has codimension

1 in E2;2, it follows that Tg has codimension 1 in E2;2.

For nonzero a a R define ga : ðR2; 0Þ ! ðR2; 0Þ by

gaðx; yÞ ¼ ðx; y4 þ a�2pa3xy
2 þ xyÞ:

Then g1 ¼ g. It is easy to see that ga is left-right equivalent to g. Indeed, ga ¼ jgc

where cðx; yÞ ¼ ða3x; ayÞ and jðx; yÞ ¼ ða�3x; a�4yÞ.
We also define g0 : ðR2; 0Þ ! ðR2; 0Þ by g0ðx; yÞ ¼ ðx; y4 þ xyÞ ¼ f ðx; yÞ.

With these abbreviations, the germ G : ðR� R2; 0Þ ! ðR� R2; 0Þ defined by

Gða; x; yÞ ¼
�
a; gaðx; yÞ

�
is smooth. (To see this, write px ¼ x � ux where x 7! ux is a smooth function. This

is possible by [3], I.5.1. Then gaðx; yÞ ¼ ðx; y4 þ a � ua3xy2 þ xyÞ, which is clearly

smooth as a function of a, x and y.) We think of it as a 1-parameter unfolding

with parameter a a R of the germ g0 ¼ f . As g0 is finitely determined, with Tg0

of codimension 1 etc., we know that a miniversal unfolding of g0 is given by

F : ðR� R2; 0Þ ! ðR� R2; 0Þ where

F ðb; x; yÞ ¼ ðb; x; y4 þ by2 þ xyÞ:

By the universal property, the unfolding G is isomorphic (as an unfolding of g0) to

the pullback of F under some map germ b : ðR; 0Þ ! ðR; 0Þ relating the parameter

spaces. But b must be the zero germ. (Indeed, ga for arbitrary fixed a has a seri-

ous singularity at 0 whereas ðx; yÞ 7! ðx; y4 þ by2 þ xyÞ for nonzero b, and near

the origin, has only Whitney’s folds and cusps.) Hence all ga for su‰ciently small

a > 0 are left-right equivalent to g0 ¼ f . But we already saw that ga for aA 0 is

left-right equivalent to g1 ¼ g. It follows that g is left-right equivalent to f .

Example 5.12. Let f : ðR2; 0Þ ! ðR2; 0Þ be a germ of the form

f ðx; yÞ ¼
�
x; f2ðx; yÞ

�
:
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Let q : Rn ! R be a nondegenerate quadratic form (a polynomial function, homo-

geneous of degree 2). Define a new germ by

fa : ðRnþ2; 0Þ ! ðR2; 0Þ; ðz1; . . . ; zn; x; yÞ 7!
�
x; f2ðx; yÞ þ qðz1; . . . ; znÞ

�
:

Let r : Enþ2;2 ! E2;2 be the restriction map (restriction to the xy-plane). This is

clearly onto. We have

Tfa¼ r�1ðTf Þ:

To prove this, we note first that rðTfaÞHTf and also Tf H rðTfaÞ, from the

definitions. Then it only remains to show

kerðrÞHTfa:

Indeed we shall see that kerðrÞ is contained in Jfa, the subspace of Tfa consisting

of all dfa � X where X is a vector field germ on ðRnþ2; 0Þ. Suppose then that

k ¼ ðk1; k2Þ is in the kernel of r. Let l ¼ dfa � k1X where X is the vector field

with constant value ð0; . . . ; 0; 1; 0Þ. Then l is in JfaB kerðrÞ and l1 ¼ k1. There-

fore k � l ¼ ð0; k2 � l2Þ is in kerðrÞ and we only need to prove that it is in Jfa.

The function k2 � l2 vanishes on the xy-plane. Therefore, by [3], I.5.1, it can be

written in the form

ðz1; . . . ; zn; x; yÞ 7!
Xn

i¼1

zi � giðz1; . . . ; zn; x; yÞ:

This means that k � l can be written in the form

ðz1; . . . ; zn; x; yÞ 7!
Xn

i¼1

giðz1; . . . ; zn; x; yÞ � ð0; ziÞ:

The map ðz1; . . . ; zn; x; yÞ 7! ð0; ziÞ is in Jfa, due to the fact that q is nondegen-

erate. Since Jfa is an Enþ2-submodule of Enþ2;2, it follows that k � l a Jfa.
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