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question of whether Zo has subgroups whose duals are free of still higher rank is discussed,
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Introduction

The additive group Zo (the countable direct power of ZÞ is a nonfree abelian

group G whose rank (maximum number of linearly independent elements) is the

cardinality of the continuum, 2@0 ; but its dual, HomðG;ZÞ, is known to be free

abelian of merely countable rank [13]. Blass, Irwin and Schlitt [3], after examining

generally which subgroups of Zo have duals free of countable rank, ask whether a

subgroup of Zo can have dual free of uncountable rank. Such a subgroup is here

constructed.

We begin (§1) by sketching briefly an unsuccessful first try, noting why it fails,

then sketching how the di‰culty can be circumvented. In §§2–4 we develop the

resulting successful construction in detail.

In §5 we ask whether there are subgroups of Zo whose duals are free of still

larger ranks, the evident upper bound being 22
@0 . §6 notes some classes of sub-

groups of Zo found while thinking about that question. (For some other unusual

subgroups of Zo, see [9, Chapter X], [6], and works cited there.)

*Preprint archived at http://arXiv.org/abs/1104.3827. After publication, any updates, errata, related
references, etc. found will be recorded at http://math.berkeley.edu/~gbergman/papers/.



A more precise version of the fact that HomðZo;ZÞ is free of countable

rank, which we shall use below, says that every homomorphism j : Zo ! Z

factors through the projection to finitely many coordinates. (Regarded as a

property of the codomain group Z of j, this is expressed by saying that Z is a

‘‘slender’’ abelian group. There is considerable literature on slender groups,

modules, and other structures; e.g., [10, §94], [9, Chapter III] and [7]. However,

since this note focuses on the domain group G, we shall not use that language

here.)

I am indebted to John Steel for a helpful observation used in §5.

1. A first attempt

I will sketch here my first try at constructing a group with the desired property. As

indicated above, the more complicated construction of §§2–4 will be motivated as

a way of patching up the di‰culty with this one.

Clearly, for any countably infinite set Y , the group ZY is isomorphic to Zo; so

in place of o we will use a countable set that is more convenient to our purposes,

the set ½0; 1�BQ of rational numbers between 0 and 1.

Let G be the group of Z-valued functions on ½0; 1�BQ which are constant in a

neighborhood of each irrational x a ½0; 1�. Such functions can have infinitely

many jumps. (E.g., consider the function which has the value 0 at 0, while for

each natural number n, it has the value n at all rationals in the subinterval

ð2�n�1; 2�nÞ, and �n at 2�n itself.)

For each irrational x a ½0; 1�, let hx a HomðG;ZÞ be the map taking every

g a G to its constant value in the neighborhood of x. If, further, for each rational

x a ½0; 1� we define hx to take g a G to its value at x, it is not hard to see that the

set of homomorphisms hx as x ranges over ½0; 1� are linearly independent. If they

spanned HomðG;ZÞ, we would have our desired example.

Why might we hope that the hx would span HomðG;ZÞ?
Consider any a a HomðG;ZÞ. If we take any decomposition of ½0; 1� into

countably many (open, closed, or half-open) subintervals with rational endpoints,

then we can define elements of G independently on di¤erent members of this

decomposition. This observation can be used to construct homomorphisms

Zo ! G, by starting with an arbitrary g a G, and using the n-th entry of an

element of Zo to ‘‘scale’’ the output of g on the n-th of our subintervals (under

some fixed enumeration of those subintervals). Composing such a map Zo ! G

with a : G ! Z, we get a homomorphism Zo ! Z. But it is known that every

homomorphism Zo ! Z is a linear combination of the evaluation maps at

finitely many coordinates [13, Satz III]. I hoped to use this to prove that the

action of a would similarly be localized at finitely many points x1; . . . ; xn a ½0; 1�,
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and would in fact be a linear combination of the corresponding homomor-

phisms hxi .

Unfortunately, this fails to be true. For example, suppose x is an irrational

point in ½0; 1�, and y0; y1; y2; . . . a sequence of distinct points of ½0; 1�, converg-
ing to x. I claim that a homomorphism G ! Z can be defined by taking each

g a G to

�
hy0ðgÞ � hy1ðgÞ

�
þ
�
hy2ðgÞ � hy3ðgÞ

�
þ � � � þ

�
hy2mðgÞ � hy2mþ1

ðgÞ
�
þ � � � :ð1Þ

Indeed, as n ! l, the yn approach x, so by definition of G, the sequence of

integers hynðgÞ eventually becomes constant. Hence all but finitely many of the

parenthesized terms of (1) are zero, so the sum (1) is defined, and clearly gives a

homomorphism. But it is not a function of the behavior of g ‘‘at’’ finitely many

points of ½0; 1�.
The trouble with the argument that suggested the opposite is that the process

of prescribing elements of G independently on countably many intervals cannot be

carried out if these intervals converge to an irrational point x: since x itself won’t

belong to any of the resulting intervals of constancy, functions so constructed will

not, in general, belong to G.

The solution we shall take below is to weaken that local constancy require-

ment, and require instead that each element of the group G we will define be

constant on a ‘‘perforated’’ neighborhood of each irrational x, where countably

many ‘‘perforations’’ by subintervals with rational endpoints are allowed, as long

as the fraction of the space they occupy approaches 0 as we get close enough

to x.

This foils the above counterexample, since we can enclose successive yn in tiny

perforations, and on these, let g have values independent of its value at x; thus, the

rogue homomorphism (1) will no longer be defined. I expected that this kludge, in

solving one problem, would only create more. But it turned out to work, as we

shall see in the next three sections.

Between the above sketch and the construction we will present, there are also a

few cosmetic improvements. Rather than describing elements of G as functions on

½0; 1�BQ, we will, for most of our development, make them functions on ½0; 1�,
i.e., give them genuine values at each x in that interval, and only at the end restrict

them to ½0; 1�BQ to obtain a solution to the original problem. With elements of

G expressed as functions on ½0; 1�, we will be able to describe the ‘‘perforated con-

stancy’’ condition as continuity in a certain topology on that interval, finer than

the standard topology. Finally, rather than working, throughout, with the partic-

ular structures of the set ½0; 1�, its standard topology, and that finer topology,

we will posit (in §2) a general situation of a set X with two topologies related

in certain ways, describe (in §3) our particular choice of X ¼ ½0; 1� and its two
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topologies, showing that these fit this pattern, and, finally (in §4), prove our free-

ness result in the general context.

2. The general context

Our construction will assume a set X given with two Hausdor¤ topologies, which

we will call the coarse and the fine topology, satisfying the following three

conditions. (Recall that a topological space is first-countable if every point has a

countable neighborhood basis.)

Under the coarse topology, X is compact and first-countable.ð2Þ

The coarse topology on X has a basis of open sets whose members are

clopen (closed and open) in the fine topology.
ð3Þ

For every infinite subset S of X , there exists a decomposition of X

into disjoint subsets clopen in the fine topology, infinitely many of

which contain members of S in their interiors with respect to the

coarse topology.

ð4Þ

Condition (3) implies that the fine topology contains the coarse topology, jus-

tifying the names.

Conditions (2)–(4) would be satisfied if we took any compact, Hausdor¤, first-

countable topology for the coarse topology, and the discrete topology for the fine

topology. However, our application of this setup will involve finding a subset

Y JX of comparatively small cardinality that is dense in the fine topology. So

we will need a fine topology that is not too fine.

If we took for X the real unit interval ½0; 1�, for the coarse topology the stan-

dard topology, and (following the original idea of the preceding section) defined

the fine topology to have for its open sets those sets U J ½0; 1� which contain

a neighborhood, with respect to the coarse topology, of every irrational point

x a U , then conditions (2) and (3) would hold (the latter because intervals with

rational endpoints are clopen in the fine topology); and the countable subset

½0; 1�BQ would be dense in the fine topology. But (4) would fail: if we took for

S a sequence of points y0; y1; y2; . . . converging to an irrational point x, then for

any covering of X by disjoint sets clopen in the fine topology, the member of that

covering containing x would contain all but finitely many of the yn, so it would be

impossible for infinitely many other members of our disjoint covering to meet S.

In the next section we shall see that a fine topology based on ‘‘perforated neigh-

borhoods’’ does satisfy (4); and in §4, condition (4) will be the key to constructing

enough composite maps Zo ! G ! Z to establish (as was not true for the G of

the preceding section) that HomðG;ZÞ is free on the desired basis.
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3. Our two topologies on [0, 1]

As sketched in §2, let us take the real unit interval ½0; 1� for our set X , and for our

coarse topology the usual compact topology. The description, in the next defini-

tion, of the fine topology will make precise the ‘‘small perforations’’ idea.

In speaking of subintervals of ½0; 1�, we will use the terms ‘‘closed interval’’,

‘‘open interval’’ and ‘‘half-open interval’’ in their conventional senses for real in-

tervals (of which the first two match the topological properties of these intervals

under the coarse topology).

Definition 1. A subset U J ½0; 1� will be open in the fine topology if for every

irrational x a U , and every e > 0, there exists d > 0 such that for every closed in-

terval ½r; s�J ½0; 1� with rational endpoints, which contains x and has length < d,

there exists a finite family of pairwise disjoint closed subintervals, also with ratio-

nal endpoints, which lie in U B ½r; s�, and have total length at least ð1� eÞðs� rÞ.

It is not hard to see that the class of sets so defined does indeed constitute

a topology. (In verifying closure under pairwise intersection, note that the

ð1� eÞðs� rÞ condition means that the part of ½r; s� missed by U can be enclosed

in finitely many intervals of length totalinga e times the length of ½r; s�. To estab-

lish this property at x for an intersection U BV of sets both satisfying it there,

take d small enough to get the same condition in each of U and V , with e=2 in

place of e.)

(The assumption in Definition 1 that the intervals named all have rational end-

points could be omitted without changing the topology defined, as long as we keep

the restriction that x be irrational, and specify that x lie strictly between r and s.

But the present formulation in terms of intervals with rational endpoints will be

convenient. In statements made below, assumptions of rational endpoints cannot

necessarily be dropped.)

Two easily verified observations:

Every open, closed, or half-open subinterval of ½0; 1� with rational

endpoints (including the degenerate closed interval ½r; r� ¼ frg for

each rational r a ½0; 1�) is clopen in the fine topology.

ð5Þ

Under the fine topology, the rational points of ½0; 1� form a dense set

of isolated points.
ð6Þ

I claim now that this pair of topologies satisfies conditions (2)–(4) of the pre-

ceding section. Property (2) is well known, and (3) follows from (5) applied to

open intervals with rational endpoints. Less trivial is

Lemma 2. The pair of topologies on ½0; 1� described above satisfies (4).
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Proof. Let S be an infinite subset of ½0; 1�. Then it must contain an infinite in-

creasing or decreasing sequence; assume without loss of generality that it contains

a decreasing sequence y1 > y2 > � � � , with greatest lower bound x. By dropping

enough terms from this sequence, we can assume that 1 > y1 and that for every n,

we have

ynþ1 � xa ðyn � xÞ=2:ð7Þ

Now let us surround each of our points yn by an interval ðrn; snÞJ ½0; 1� with
rational endpoints, in such a way that the lengths of these intervals shrink much

faster than the points yn approach x:

sn � rn < ðyn � xÞ=2nþ1:ð8Þ

In view of (7) and (8), the intervals ðrn; snÞ are disjoint, and by (5) they are clopen

in the fine topology. Now let

V ¼ ½0; 1� � 6
nb1

ðrn; snÞ:ð9Þ

Since the ðrn; snÞ are open in the fine topology, V is closed in that topology. We

claim it is also open. That the condition of Definition 1 holds at all irrational

points of V other than, perhaps, x, is immediate: V contains a genuine interval

about every such point. Let us show that V also satisfies the required condition

at x, if x is irrational. (Definition 1 imposes no such requirement if x is rational.)

Given e > 0, we can use (7) and (8) to find a d such that in every interval ðr; sÞ
of length s� r < d having rational endpoints and containing x, the lengths of

the (infinitely many) intervals ðrn; snÞ meeting ðr; sÞ sum to less than e=2 times the

length of ðr; sÞ. For any such ðr; sÞ, let us take an open subinterval ðr 0; s 0ÞJ ðr; sÞ
about x with rational endpoints, of length less than e=2 times the length of ðr; sÞ.
This will contain all but finitely many of the ðrn; snÞ, hence the union of ðr 0; s 0Þ and
those ðrn; snÞ that meet ðr; sÞ will be a finite union of open intervals, of total length

less than e times the length of ðr; sÞ; hence its complement in ðr; sÞ will be a finite

union of closed intervals of total lengthb ð1� eÞðs� rÞ, as required to show that

(9) is open.

The sets ðrn; snÞ ðnb 1Þ and V thus satisfy the conclusion of (4): they are

clopen, they form a disjoint covering of ½0; 1�, and infinitely many of them, namely

the ðrn; snÞ, contain members of S. r

4. Describing G , and proving Hom(G,Z) free

We now return to the general assumptions of §2, letting X be an arbitrary set given

with two topologies satisfying (2)–(4). Let GJZX be the group of all Z-valued
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functions on X that are continuous in the fine topology. (Throughout this section

we understand Z to have the discrete topology, so continuity of a function X ! Z

means that the inverse image of each integer is clopen.) For each x a X ,

Let hx : G ! Z be the homomorphism of evaluation at x.ð10Þ

We shall show below that HomðG;ZÞ is freely generated by the elements hx.

First, the easy part.

Lemma 3. The homomorphisms hx ðx a XÞ are linearly independent.

Proof. It clearly su‰ces to show that for any finite family of distinct points

x1; . . . ; xn a X , there exists g a HomðG;ZÞ with hx1ðgÞ ¼ 1, and hxmðgÞ ¼ 0 for

m ¼ 2; . . . ; n.

Since X is Hausdor¤ in the coarse topology, we can find a neighborhood of x1
in that topology containing none of x2; . . . ; xn. By (3), this will contain a sub-

neighborhood U of x1 that is clopen in the fine topology. The characteristic func-

tion of U , which is continuous in the fine topology, gives our desired g. r

We now begin the process that will decompose every element of HomðG;ZÞ as
a linear combination of these maps. First, a result whose proof uses nothing spe-

cific to Z-valued functions. By the support of an element g a Zo we will mean

fx a X j gðxÞA 0g.

Lemma 4. Let a be a nonzero member of HomðG;ZÞ. Then there exists a point

x a X such that

For every neighborhood U of x in the coarse topology, there exists

g a G with support contained in U such that aðgÞA 0.
ð11Þ

Proof. Suppose the contrary. Then every x a X has a neighborhood Ux in the

coarse topology such that every member of g with support in Ux is in the kernel

of a. By (3) we can assume that the sets Ux are also clopen in the fine topology

on X . By compactness of the coarse topology, finitely many of these, say

Ux1 ; . . . ;Uxn , cover X . Hence the sets

Ux1 ;Ux2 �Ux1 ; . . . ;Uxn � ðUx1 A � � �AUxn�1
Þð12Þ

constitute a covering of X by finitely many pairwise disjoint sets clopen in the fine

topology, such that every member of G with support in one of them is in kerðaÞ.
But because these sets are clopen, every member of G is a sum of members of

G with supports in one or another of them; hence every member of G is in kerðaÞ,
so a ¼ 0, contradicting our hypothesis. r
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We now want to prove that for each a a G, there are only finitely many x a X

such that (11) holds. The key step will be the first assertion of the next lemma.

(The second assertion will be used later.) The proof of the lemma will call on the

following known result, mentioned earlier.

[13, Satz III] Every homomorphism Zo ! Z depends on only

finitely many coordinates of its argument, i.e., can be factored

Zo ! Zn ! Z, where the first map is given by the projections to

some n coordinates, and the second is an arbitrary homomorphism.

ð13Þ

Lemma 5. Suppose X is written as the union of a disjoint family of sets Ui ði a IÞ
each clopen in the fine topology, and let a a HomðG;ZÞ. Then only finitely many

i a I have the property

There are elements of G with support in Ui on which a has nonzero

value.
ð14Þ

Assume, further, that I is countable, and let U denote the union of the finitely

many Ui satisfying (14). Then the value of a at every g a G is determined by the

restriction of g to U. Equivalently, a has in its kernel all elements of G with support

in X �U.

Proof. Suppose, in contradiction to the first assertion, that there are infinitely

many i satisfying (14). Then we can write I as the union of a countably infinite

family of pairwise disjoint subsets In ðn a oÞ each containing at least one i that

satisfies (14). Letting Vn ¼ 6
i A In

Ui for each n a o, it follows that for each n a o

there exists a gn a G with support in Vn such that aðgnÞA 0.

Since the gn have disjoint supports, we see that for every f a Zo, the expres-

sion f 0 ¼
P

n Ao f ðnÞgn makes sense; and as the Vn are clopen in the fine topology,

f 0 is again continuous in that topology, i.e., belongs to G. Clearly the map

f 7! f 0 is a homomorphism Zo ! G. Composing it with the given homomor-

phism a : G ! Z we get a homomorphism Zo ! Z which for each n takes the ele-

ment en a Zo having a 1 in the n-th position and 0 everywhere else to aðgnÞA 0.

This contradicts (13), proving the finiteness of the set of i a I such that (14) holds.

Now assume, as in the last paragraph of the lemma, that I is countable; with-

out loss of generality we shall take I ¼ o. Let U be the union of the finitely many

Ui for which (14) holds. Because U and X �U are clopen in the fine topology,

every element of g is the sum of an element with support in U and an element

with support in X �U . From this, the equivalence of the last two sentences of

the lemma is clear; we shall prove the last of those sentences.

Let g a G be an element with support in X �U , and now for each n a o let

gn a G be the function which agrees with g on Un and is zero elsewhere. Again,

we map Zo to Z by f 7! a
�P

n Ao f ðnÞgn
�
. This function is zero on every en
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ðn a oÞ: on those with Un JU because g has support in X �U , and on the others

because the corresponding sets Un do not satisfy (14). But from (13) we can see

that a homomorphism Zo ! Z which is zero on all the en is zero; hence the above

map is zero, hence aðgÞ, which is the value of that map on the constant function 1

in Zo, is 0, as claimed. r

(We shall see in Corollary 12 that the countability condition in the second

paragraph of the above lemma can be dropped; but the above version su‰ces for

the purposes of this section.)

We deduce

Lemma 6. For any a a HomðG;ZÞ there are only finitely many x a X such that

(11) holds.

Proof. If the set S of such points were infinite, then by (4) we could find a covering

of X by disjoint subsets Ui clopen in the fine topology, infinitely many of which

contained a point of S in their interiors with respect to the coarse topology. It

follows from our choice of S that for each of the latter sets, we could find an ele-

ment gi a G with support in Ui such that aðgiÞA 0, contradicting the first assertion

of the preceding lemma. r

From Lemmas 4 and 6, we can now get

Corollary 7. Every a a HomðG;ZÞ can be written

a ¼ a1 þ � � � þ an ðnb 0; a1; . . . ; an a HomðG;ZÞÞ;ð15Þ

where for each am there is an xm a X which is the unique point such that (11) holds

with am and xm in the roles of a and x; equivalently, such that

am is nonzero, but annihilates all elements of G whose supports do not

have xm in their closure in the coarse topology.
ð16Þ

Proof. Given a, let x1; . . . ; xn ðnb 0Þ be the points described by Lemma 6. Using

(3), we can get a covering of X by disjoint sets U1; . . . ;Un which are clopen in the

fine topology, and such that each Um is a neighborhood of xm in the coarse topol-

ogy (cf. the method used to construct (12)). If we define am : G ! Z for 1ama n

to be the operation that first multiplies g a G by the characteristic function of Um,

then applies a to the result, we immediately have (15), and it is not hard to verify

that xm is the unique point for which am satisfies (11).

It remains to show that this is equivalent to (16). One direction, that (16)

implies that xm is the unique point which, together with the homomorphism am,

satisfies (11), is easily checked.
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Conversely, let us assume that condition and deduce (16). The assumption

that there exists xm which, with am, satisfies (11) clearly implies that amA 0.

Now let g a G be any element whose support does not have xm in its closure under

the coarse topology. Thus, xm has a neighborhood V in that topology disjoint

from the support of g. By (3), V has a subset W which is again a neighborhood

of xm in the course topology, and which is clopen in the fine topology. The oper-

ation of multiplying by the characteristic function of X �W and then applying am
will be a member of HomðG;ZÞ having no point x satisfying the condition analo-

gous to (11), since the application of the latter condition with U ¼ W shows that

xm is not such a point, and the fact that am has no such point other than xm shows

that the function constructed from it can’t either. Hence by Lemma 4, this new

function is the zero map. But because g has support in X �W , this map, which

we have shown to be zero, agrees with am at g; so amðgÞ ¼ 0, as claimed. r

In view of the above result, we will have what we have been aiming for, once

we prove

Lemma 8. Suppose a a HomðG;ZÞ is a homomorphism for which there exists a

unique x a X satisfying (11). Then a is an integer multiple of hx.

Proof. The asserted conclusion is clearly equivalent to the statement that a can be

factored G ! Z ! Z, where the first map is hx, and the second is a homomor-

phism. Because hx maps surjectively to Z, this is in turn equivalent to the state-

ment that a annihilates the kernel of hx. That is what we shall now prove.

Let g a kerðhxÞ. Since g is continuous in the fine topology on X , and Z is

taken with the discrete topology, under which all its points are clopen, the state-

ment that g belongs to kerðhxÞ tells us that

g is zero on some subset U of X which contains x and is clopen in

the fine topology.
ð17Þ

Note further that by (3), x has a neighborhood basis in the coarse topology

consisting of subsets clopen in the fine topology. Since the coarse topology is

first-countable, that neighborhood basis can be assumed countable. By taking

successive intersections of its terms, we can assume it is decreasing, and begins

with the whole space:

X ¼ V0 KV1 K � � �KVn K � � � :ð18Þ

Since X is Hausdor¤, 7Vn ¼ fxg. Hence the sets

V0 � V1; V1 � V2; . . . ; Vn � Vnþ1; . . .ð19Þ

which are also clopen in the fine topology, give a disjoint covering of X � fxg.
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Now for the tricky step. Using the U of (17), we obtain from (19) the sets

U ; V0 � V1 �U ; V1 � V2 �U ; . . . ; Vn � Vnþ1 �U ; . . .ð20Þ

which are again disjoint, and clopen in the fine topology, and which now cover all

of X . Hence in view of the final paragraph of Lemma 5, aðgÞ is determined by the

values of a on the projections of g to these sets. By the choice of U in (17), g has

zero projection to U . On the other hand, its projection on each set Vn � Vnþ1 �U

is (as a function on all of XÞ zero on a neighborhood of x in the coarse topology,

namely Vnþ1. But since x is the unique point which, with a satisfies (11), the

equivalence of the two conclusions of the preceding corollary show that our g is

annihilated by a, as required. r

The above results give

Theorem 9. Suppose X is a set given with two topologies, called ‘‘the coarse topol-

ogy’’ and ‘‘the fine topology’’, satisfying (2)–(4), and that G is the subgroup of ZX

consisting of all elements continuous with respect to the fine topology on X and the

discrete topology on Z.

Then HomðG;ZÞ is the free abelian group on the evaluation maps hx of (10).

r

Corollary 10. Letting ½0; 1� denote the real unit interval, and G the group of func-

tions ½0; 1� ! Z continuous in the topology of Definition 1, the group HomðG;ZÞ is
free abelian on the generators hx ðx a ½0; 1�Þ.

Hence, the isomorphic group G0 of functions ½0; 1�BQ ! Z obtained from G

by restriction to ½0; 1�BQ has the same dual.

Hence Zo has a subgroup whose dual is free abelian of continuum rank.

Proof. The first assertion follows from the above theorem, since we showed in the

preceding section that the standard topology and the topology of Definition 1 sat-

isfy (2)–(4). The one-one-ness of the restriction map G ! Z½0;1�BQ, on which the

second assertion then hangs, follows from the density statement of (6). Finally,

taking any bijection between ½0; 1�BQ and o, we get an isomorphism between

Z½0;1�BQ and Zo, so our subgroup G0 JZ½0;1�BQ leads to an isomorphic subgroup

of Zo. r

5. Can we do better?

The group Zo has continuum cardinality, c ¼ 2@0 ; hence, although it has relatively

few homomorphisms to Z (only countably many), there is no reason why it should

not have subgroups admitting as many as 2c such homomorphisms.
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And, in fact, it does. It is known that the subgroup B of bounded functions

o ! Z is free (proved in [13] assuming the continuum hypothesis, then in [11]

and [2] without that assumption). Having continuum cardinality and being free,

B must be free of continuum rank; so its dual HomðB;ZÞ can be identified with

Zc, and so has cardinality 2c. Hence that dual group has rank (maximum number

of linearly independent elements) also 2c, in other words, it contains a subgroup

free of that rank.

Perhaps unexpectedly, one can characterize an explicit family of 2c linearly

independent elements in HomðB;ZÞ. The set bðoÞ of all ultrafilters on o has

cardinality 2c [5, Corollary 7.4], and since each g a B assumes only finitely many

values in Z, every ultrafilter U a bðoÞ gives a way of associating to each such g

one of those values, the value such that the set on which it is assumed belongs

to U. For each U a bðoÞ this gives a homomorphism hU : B ! Z, and it is not

hard to check that the hU are linearly independent.

But the free group generated by the maps hU is not the whole of

HomðB;ZÞGHomð0
c
Z;ZÞGZc, since the latter, having subgroups isomorphic

to Zo, is non-free. So we may ask

Question 11. Is there a subgroup GJZo whose dual is free of rank 2c; or, at

least, free of rank > c?

If we had a candidate subgroup G for the above property roughly along the

lines of the construction of the preceding sections, a possible di‰culty with apply-

ing the methods of those sections to it is that the coarse topology on X might no

longer be first-countable, as required by (2). Let us show, therefore, that the gen-

eral results of that section remain true if hypotheses (2) and (3) are replaced by

Under the coarse topology, X is compact; and the cardinality of the

set X is less than every countably measurable cardinal (if any such

cardinals exist).

ð21Þ

For every x a X , there exists a family ðWiÞi A Ix of pairwise disjoint

sets each clopen in the fine topology such that

(i) X � fxg ¼ 6
i A Ix

Wi,

(ii) x has a basis of open neighborhoods U in the coarse topology,

each of which is clopen in the fine topology, and has the form

U ¼ fxgA6
i A JWi for some subset JJ Ix.

ð22Þ

For the concept of a countably measurable cardinal (in many works simply

called a measurable cardinal) see [4]. Condition (21) is indeed a consequence of

(2), since by [1], every compact Hausdor¤ first-countable topological space has

cardinalitya c, which is far less than any countably measurable cardinal. Condi-
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tion (22) by itself is stronger than (3), but the construction of (19) in the proof of

Lemma 8 shows that (2)–(4) together imply (22), so the conjunction of (21), (22)

and (4) is implied by that of (2), (3) and (4). Moreover, this new set of conditions

does not imply first-countability of the coarse topology (as can be verified using

examples where the fine topology is discrete); so it is strictly weaker than the old

one.

We can now prove

Corollary 12 (to the proofs of §4). The general results of §4 (the results through

Theorem 9) remain true if the hypotheses (2)–(4) are weakened to (21), (22) and (4).

Moreover (under these weakened hypotheses, and hence under the original hy-

potheses) one can delete the countability assumption from the second paragraph of

Lemma 5.

Sketch of proof. The first-countability condition of (2) was not used before the

proof of Lemma 8, so the results proved up to that point remain true under our

weakened hypotheses, and the only thing we have to prove regarding those results

is that in the second paragraph of Lemma 5, we can replace the condition that the

index set I be countable by the assumption from (21) that X have cardinality less

than all countably measurable cardinals.

The latter assumption certainly implies that (after dropping from I any i such

that Ui is empty) the cardinality of I is likewise less than all countably measurable

cardinals. Our earlier proof of the desired statement now goes over if, where we

previously called on Specker’s result (13) that HomðZo;ZÞ is free on the projec-

tions to the individual coordinates, we now call on the stronger known result that

the same is true of HomðZY ;ZÞ for any set Y having cardinality less than all

countably measurable cardinals (cf. [10, Theorem 94.4], [8]).

Moving on to the proof of Lemma 8, the first-countability condition was

finally used there to construct the family of sets Vn � Vnþ1. We claim that in our

present context, the Wi of (22) can serve in the same role. Without loss of gener-

ality, let us assume all those Wi nonempty.

In view of the strengthened final statement of Lemma 5 noted above, we do

not need to assume that there are only countably many Wi; the hypothesis on the

cardinality of X implies the very weak bound we need. The proof of Lemma 8

also used the fact that each Vn � Vnþ1 was disjoint from some neighborhood of x

under the coarse topology, namely, Vnþ1. To get the same conclusion for a given

Wj ð j a IÞ, take any w a Wj. By Hausdor¤ness of the coarse topology, x has a

neighborhood U in that topology not containing w, so by (22)(ii), it has such

a neighborhood of the form U ¼ fxgA6
i A JWi ðJJ IxÞ. Since U does not con-

tain w a Wj, we have j B J, so U is disjoint from Wj. With these modifications,

the proof of Lemma 8, and hence that of Theorem 9, go over under the present

hypotheses. r
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To what spaces X might one apply such a construction? The set bðoÞ has a
natural compact Hausdor¤ topology, under which it is the Stone-Čech compacti-

fication of the discrete space o. However, taking X to be bðoÞ and the dense

subset to which we eventually restrict our functions to be o does not seem a

good candidate for our purposes. For in the natural topology on bðoÞ, the set of
neighborhoods of any U a bðoÞ, intersected with o, give precisely the members

of U. Since U is a maximal filter on o, if we tried to ‘‘puncture’’ these neighbor-

hoods further, in a way that a¤ected their intersections with o, we would get some

neighborhoods that intersected o in the empty set; i.e., o would cease to be dense.

On the other hand, the less exotic space 2c, i.e., the continuum power of the

discrete space 2, also has countable dense subsets; let me sketch how to obtain

one. Identify c with the set of f0; 1g-valued functions on o. Let BooleðoÞ be

the free Boolean algebra on an o-tuple of indeterminates x0; x1; . . . , i.e., the

set of finitary Boolean operations in countably many variables. Then to each

bðx0; x1; . . .Þ a BooleðoÞ we can associate a subset of c, namely the set Sb of

o-tuples ðe0; e1; . . .Þ ðei a f0; 1gÞ such that bðe0; e1; . . .Þ ¼ 1. (Intuitively, the set

of assignments that ‘‘satisfy’’ the Boolean condition given by b.) If we now think

of 2c as the power set of c, so that each Sb is a member thereof, I claim that the

countable set fSb j b a BooleðoÞgJ 2c is dense. Indeed, a basis of the topology

of 2c is given by the solution-sets U of statements saying that a certain finite list

of elements of c should, and another finite list should not, belong to the members

of 2c considered. Since the members of any finite family of elements of c may be

distinguished by looking at finitely many coordinates, we can, for any solution-set

U as above, find some b a BooleðoÞ such that Sb satisfies the criterion for belong-

ing to U .

It should be possible to ‘‘puncture’’ the topology on 2c, so as to get stronger,

non-compact topologies under which the above countable set remains dense.

Whether one could get such a topology that satisfied (22), or some other condition

from which one could prove that the group G of Z-valued functions continuous in

that topology had dual free on the set of evaluations at the points of 2c, is not

clear to me.

6. Some other subgroups of Zo

We have seen that it is not likely that one can get an a‰rmative answer to Ques-

tion 11 by finding a group GJZo whose dual is spanned by evaluations of ele-

ments at members of bðoÞ. However, while hoping to do so, I came upon some

curious subgroups G, which I sketch below for their own interest.

My idea was that since bðoÞ is constructed using only the set-theoretic struc-

ture of o, and not its order, etc., one should look at groups whose definitions
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likewise ‘‘treat all points of o alike’’; i.e., subgroups of Zo invariant under the

action of the full symmetric group on o. These contrast with subgroups of the

sort commonly studied. (For instance, those in [13] consist of the sequences with

prescribed bounds on their growth rates.)

I will start with a class of examples that actually o¤ers a faint hope of giving a

construction with the desired sort of dual. Suppose we take any nondiscrete Haus-

dor¤ group topology T on Z (a topology under which the group operations are

continuous; for instance, the p-adic topology for some prime p, or the topology

induced by an embedding in the circle group, or one of the topologies constructed

in [12]). Now let GT JZo consist of all g such that the set of values of g has com-

pact closure CðgÞ within Z under that topology. (For instance, if ðkiÞi Ao is a se-

quence of integers converging under T to an integer k, then any g a Zo whose

components all lie in fki j i a ogA fkg will have this property.) It is easy to see

that GT is a subgroup of Zo. Given g a GT, every ultrafilter U on o induces an

ultrafilter gðUÞ on gðoÞJCðgÞ, which, by compactness of the latter set, will con-

verge to some element limU g a CðgÞJZ. For each U, this construction

g 7! limU g is a homomorphism hU : GT ! Z. Whether for some topology T

on Z these homomorphisms hU span HomðGT;ZÞ, I do not know.

A di¤erent sort of subgroup invariant under all permutations of o is

f f a Zo j ðbk a oÞðEn > 0Þ f assumes at most k values modulo n

infinitely many timesg:ð23Þ

A subgroup of (23) is

f f a Zo j ðEn > 0Þ there are only finitely many m a o such that

nF f ðmÞg:ð24Þ

For a final class of examples, let us start with any set S of integers. Then the

subgroup GS JZo generated by the set ðf0gASÞo is clearly invariant under per-

mutations of o. It can be described as

GS ¼ f f a Zo j ðbk a oÞ every value assumed by f is the sum of at

most k terms taken fromeS (counting repetitions)g:ð25Þ

So, for instance, if S ¼ f1g, then GS is the group B of bounded functions; if S is

the set of powers of 2, then GS can be described as the set of all sequences of inte-

gers whose binary expressions (ignoring initiale signs) have a common bound on

the number of substrings ‘‘10’’ that they contain. If S has compact closure under

some group topology T on Z, then GS will be contained in the group GT dis-

cussed above. On the other hand, if S is not su‰ciently sparse, e.g., if it is the

set of all squares, then GS is the full group Zo.
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