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Abstract. Let MgðGÞ be the stack of stable curves of genus g with a given dual graph G and
let MgðGÞ be its closure in Mg. We consider the normalization of MgðGÞ in order to classify
the residual orbifolds of the normalizations of the irreducible components of the locus in
Mg corresponding to curves with at least 3g� 4 nodes.
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1. Introduction

In his famous paper [18], Mumford introduced a stratification of the stack Mg

given by the number of nodes. The stratum, Mn
g , corresponding to curves with

n nodes has pure dimension 3g� 3� n, but is not irreducible. The irreducible

components of Mn
g are indexed by weighted stable graphs (see Definition 3.1).

Precisely, if G is a weighted stable graph with n edges and (weighted) genus g,

then the substack MgðGÞ parametrizing curves with dual graph G is an irreducible

component of Mn
g . The substacks MgðGÞ and their closures in Mg give a combi-

natorial decomposition of the stack Mg, and a natural question is to describe the

irreducible components of Mumford’s stratification. Unfortunately, the combina-

torics is rather complicated due to the rapid growth of the number of possible

graphs G for increasing genus and number of nodes.

In Sections 3 and 4, we give a general overview of the moduli substacks of

stable curves. We use a well known explicit desingularization of MgðGÞ in the

category of Deligne–Mumford stacks (Theorem 4.7). This allows us to verify

whether MgðGÞ is singular, knowing the graph G (see Lemma 4.10 and [11],

Lemma 4.2).
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In Section 6 we focus on the irreducible components MgðGÞ of the 1-stratum

of Mg corresponding to curves with at least 3g� 4 nodes. The main result of

this paper is to describe the normalization of MgðGÞ as a gerbe over an orbifold

(Theorems 6.3 and 6.11). In particular we show that there are only 5 possible re-

sidual orbifolds of the normalizations of irreducible components of the 1-stratum

(Remark 6.4 and Theorem 6.11). We also give a local presentation for the singu-

lar points of MgðGÞ (Proof of Proposition 6.5). We also show that the coarse mod-

uli spaces of these components are all P1 (see Proposition 6.5 and Remark 6.12).

For an alternative approach to the same problem see Zintl [21], where a de-

scription of these components is given as a di¤erent quotient stack.

Acknowledgements. The authors are grateful to Lucia Caporaso and Filippo

Viviani for helpful comments on an earlier version of this paper. They are also

grateful to the referees for a careful reading and many helpful comments.

2. Preliminaries

2.1. Deligne–Mumford stacks. We will work with stacks over a noetherian

base scheme S. This means in particular that a stack X will be considered

equipped with a morphism

c : X! S:

Stacks are defined as categories fibered in groupoids over a site (with some extra

conditions). The base scheme S represents category of schemes of finite presenta-

tion over S equipped with the étale topology. For basic definitions of stacks we

refer to [7], [3], [16], and Appendix in [20]. Here we gather together a few basic

facts.

Definition 2.1. A morphism F : X! Y between two stacks over S is represent-

able if for every scheme T and for every morphism T ! Y, the fibered product

X�Y T ! T is a scheme.

Many concepts about morphisms of schemes may be applied to representable

morphisms of stacks.

Definition 2.2. Let P be a property of morphisms of schemes that is stable under

base change and of local nature on the target (e.g., flat, smooth, étale, surjective,

unramified, normal, locally of finite type, locally of finite presentation). Then we

say that a representable morphism of stacks X! Y has property P if for every

morphism T ! Y, the morphism of schemes deduced by base change g : T �Y X

has that property.
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Definition 2.3. A stack X is a Deligne–Mumford (DM ) stack if the following

conditions are satisfied.

(1) The diagonal D : X! X�S X is representable, quasi-compact, and sepa-

rated.

(2) There exists an étale surjective morphism U ! X, where U is a scheme.

The scheme U is called an atlas for X.

An algebraic space is a DM stack which is equivalent to a sheaf.

Remark 2.4. The representability of the diagonal implies that any morphism

U ! X with U a scheme is representable and the morphism U ! X of Definition

2.3 is étale and surjective in the sense of Definition 2.2.

Remark 2.5. If f : X! Y is a morphism of DM stacks then f has property P

if for some (and hence every) étale atlas U ! X the morphism of schemes

U �Y X! U has property P.

Let P be a property of schemes, local in the étale topology (e.g., regular,

smooth, normal, reduced), then we say that a Deligne–Mumford stack has prop-

erty P if and only if the atlas U satisfies P.

Remark 2.6. The structure morphism c : X! S is not representable unless X is

a scheme. So, according to the given definition, we cannot say that X satisfies P if

and only if c satisfies P. However if P is a property of local nature, at source and

target, for the étale topology (e.g., flat, smooth, étale, unramified, normal, locally

of finite type, locally of finite presentation), then we can extend the definitions for

morphisms of DM stacks which are not necessarily representable (see [7], p. 100).

Definition 2.7. A stack X is separated over S if the diagonal D : X! X�S X is a

finite representable morphism.

By [8] Theorem 2.7, every Deligne–Mumford stack X admits a finite surjective

morphism Z ! X with Z a scheme. Using this fact we can define the notions of

proper and finite morphisms of DM stacks. Our definition of proper morphism is

equivalent to the one given in [7].

Definition 2.8. A morphism of DM stacks X! Y is proper (resp. finite) if for

some (and hence all) finite surjective morphism Z ! X with Z a scheme, the com-

posite morphism Z ! X! Y is a representable proper (resp. finite) morphism.

Proposition 2.9. Let F : X! Y be a finite surjective morphism of DM stacks

which is faithful (i.e., the functor F is a faithful functor) then F is representable.
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To prove Proposition 2.9 we begin with a Lemma.

Lemma 2.10. Let F : X! Y be a morphism between two DM stacks. Then F is

weakly representable (a morphism is weakly representable if for every morphism

T ! Y with T an algebraic space, the fiber product is represented by an algebraic

space) if and only if F is faithful.

Proof. From [16] Corollary (8.1.2), we have that F is weakly representable if and

only if the diagonal morphism

DF : X! X�Y X;

x a ObjðXÞ 7! ðx; x; idFðxÞÞ;
ð f : x! x 0Þ 7!

�
f ; f ;F ð f Þ

�
is fully faithful. This condition means exactly that two morphisms

f ; g a HomXðx; x 0Þ

are equal if and only if F ð f Þ ¼ F ðgÞ. r

Proof. Proof of Proposition 2.9. By Lemma 2.10 the faithful functor F : X! Y

is weakly representable. Let T ! X be a morphism from a scheme and let XT

denote the fiber product T �Y X. Since F is weakly representable we know that

XT is an algebraic space. To prove that F is representable we need to show that

XT is actually a scheme. Working locally on T we may assume that T is a‰ne.

Let Z ! X be a finite surjective morphism from a scheme. Since Z ! Y is finite,

surjective and representable, the fiber product ZT ¼ T �Y Z is represented by a

scheme and the map ZT ! T is finite and surjective. Since T is assumed a‰ne,

the scheme ZT is also a‰ne. Now the morphism ZT ! XT is, by base change,

a finite surjective morphism of algebraic spaces. Chevalley’s theorem for alge-

braic spaces [15], Chapter III, Theorem 4.1, implies that XT is an a‰ne scheme

as well. r

Definition 2.11. Let X be a DM stack. A geometric point of X is a morphism

SpecðKÞ !x X;

where K is an algebraically closed field. From any such map we can deduce an

object x in X
�
SpecðKÞ

�
. Let Gx be the automorphism group of x, we have a

monomorphism

BGx !
rgx

X:

We call Gx the stabilizer of x and rgx the residual gerbe of x. If Gx is not trivial, we

say that x is a stacky point of X (in literature it is also called twisted point).
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Let x : SpecðKÞ ! X be a geometric point of a Deligne–Mumford stack X,

and let Ux be an étale scheme-theoretic neighborhood of x. We have a lifting of

x to Ux, so we define

ÔOx;X :¼ ÔOx;Ux
:

We recall the following fundamental Lemma (see [1], 2.2.2 and 2.2.3). It states

that, locally in the étale topology, every separated Deligne–Mumford stack is a

quotient stack by a finite group.

Lemma 2.12. Let X be a separated Deligne–Mumford stack, and X its coarse

moduli space. There is an étale covering fXa ! Xga A I such that for each a a I

there is a scheme Ua and a finite group Ga, acting on Ua, with the property that

the pullback X�X Xa is isomorphic to the quotient stack ½Ua=Ga�. Moreover, if X

is noetherian, Xa is the coarse moduli space of ½Ua=Ga� (therefore it is isomorphic to

the geometric quotient Ua=Ga).

Remark 2.13. All the stacks we will consider are proper, therefore separated.

Proposition 2.14. Let X be a separated Deligne–Mumford stack with a noetherian

coarse moduli space X. Let x : SpecðKÞ ! X be a geometric point and Gx its

stabilizer. Then

(1) there is a natural action of Gx on ÔOx;X;

(2) ÔOx;X G ðÔOx;XÞGx .

Proof.

(1) Following the notation of Lemma 2.12, we consider an étale neighborhood

½Ua=Ga� of x in X. Gx is a subgroup of Ga which stabilizes a lifting of x to

Ua, therefore we have an induced action of Gx on ÔOx;X ¼ ÔOx;Ua
.

(2) We have that an étale neighborhood of x in X is the geometric quotient

Ua=Ga. We can also choose Ua ¼ SpecðRÞ for some ring R. A groupoid

which represents ½SpecðRÞ=G� is

W ¼
�
SpecðRÞ �k G

�
x
p1

g
SpecðRÞ

where p1 is the first projection and g is the action. Now, from [13] Proposition

5.1, we have that the geometric quotient is SpecðRW Þ. In our case RW ¼ RG,

so the coarse moduli space of ½SpecðRÞ=G� is SpecðRGÞ. In order to conclude

we must show that the natural morphism

SpecðRGxÞ ! SpecðRGÞ

is étale on x, and this is given by [9], Exposé V, Proposition 2.2. r
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2.2. Quotients of DM stacks. In the following we will consider quotients of

DM stacks by an action of a finite group acting on it. More precisely by group

we mean a sheaf in groups over the base category. Usually the base is the cate-

gory of schemes over a base scheme S, which we simply call S (in this case the

base category is the stack structure of S). The main reference is [19]. Here we

recall some basic definitions (see (loc. cit.) Definitions 2.1 and 2.3).

Definition 2.15. Let M be a stack over a base scheme S, and let G be a sheaf in

groups over S. Let m be the multiplication of G and e its unit section. An action

of G on M is a morphism of stacks m : G �M!M with strictly commutative

diagrams.

G � G �M ���!m�id
G �M

id�m

???y
???ym

G �M ���!m M;

G �M ���!m M

e�id

x???
M

�����
��!

id

We say that M is a G-stack.

Any stack over S can be seen as a G-stack over S through the trivial action.

Definition 2.16. Let M and N be two G-stacks and c : N!M a morphism.

We say that c is a G-morphism (c a homG-stacksðN;MÞ) if the diagram

G �N ���!mN N

id�c

???y
???yc

G �M ���!mM M

is strictly commutative.

Remark 2.17. If we consider groupoids over S instead of stacks, the above dia-

grams are 2-diagrams satisfying some ‘‘higher associativity’’ condition (see [19],

Definition 1.3). In the case of stacks we require that the action is strict.

Definition 2.18. Let G be a sheaf in groups over S and let M be a G-stack over S.

A quotient stack M=G is a stack that 2-represents the 2-functor

F ðNÞ ¼ homG-stacksðN;MÞ:

Proposition 2.19 ([19], Theorem 3.3). Let G be a sheaf in groups over S, and M a

G-stack over S. Then there exists a quotient stack M=G and its formation com-

mutes with base change on S.
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Under some hypothesis on G we can extend the above proposition to DM

stacks (see [19], Theorem 4.1).

Theorem 2.20. Let G be an étale group scheme over S. Let M be a DM G-stack

over S. Then the quotient stack M=G is a DM stack.

3. Topological classes of stable curves

Definition 3.1. We call weighted graph, a graph with a natural number on each

vertex. Given a weighted graph, we call VðGÞ the set of vertices, EðGÞ the set of

edges and w : VðGÞ ! N the assignment of weights. Let c ¼ jVðGÞj, n ¼ jEðGÞj
and h ¼

P
v AVðGÞ wðvÞ. For each vertex v in jVðGÞj we call degree of v (degðvÞ)

the number of edges starting from v (loops counting twice). We also define multi-

plicity of v to be the number multðvÞ ¼ 3wðvÞ þ degðvÞ. We call weighted genus of

a weighted graph the number

g ¼ hþ n� cþ 1: ð1Þ

This is not the standard genus of a graph that we can find in literature, more pre-

cisely we are adding the total weight h.

We say that a weighted graph G is stable if G is connected, its genus isb 2 and

for every v a VðGÞ we have multðvÞb 3.

We call loop graph a graph whose cycles are only loops.

Remark 3.2. There is a subtlety that should be considered at this point. We are

thinking of graphs as unlabeled because we want to consider a unique topological

class of a stable curve that does not depend on labeling. However in the definition

of graph and in the following definition of automorphism, we need to label

vertices and edges by fixing the sets VðGÞ and EðGÞ.

Definition 3.3 (see [2], Chap. X, Definition 2.16). An automorphism of a

weighted graph G is the following set of data:

(1) a one-to-one correspondence f : VðGÞ ! VðGÞ such that w
�
f ðvÞ

�
¼ wðvÞ for

all vertices of G;

(2) a one-to-one correspondence g : EðGÞ ! EðGÞ such that for all e a EðGÞ the
two vertices connected by gðeÞ are images of the vertices connected by e;

(3) an element of Z
lðGÞ
2 where lðGÞ is the number of the loops of G. We are think-

ing that we can flip each loop and in general that there are two ways to send a

loop into another one.

We call AutðGÞ the group of automorphisms of G.
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Given a stable curve C of weighted genus g, we can associate a weighted stable

graph G of genus g by setting

VðGÞ ¼ firreducible components of Cg;
EðGÞ ¼ fnodes of Cg

and

w : VðGÞ ! N; wðvÞ :¼ genus of the normalization of v:

Notice that a node belongs to at most two components, and we set a loop

when a component has self intersection.

We call G the topological class of C.

As an example we give now the table that we get for genus g ¼ 2. Each graph

corresponds to a topological class of a curve of genus 2. We put in columns

graphs with a given total weight h and in lines we fix the number of components.

g ¼ 2 h ¼ 2 h ¼ 1 h ¼ 0

c ¼ 1

c ¼ 2

In general the total weight runs from 0 to g while the number of components is

at most 2g� 2. We add here also the case g ¼ 3 but we just write the number of

stable weighted graphs in each square.

g ¼ 3 h ¼ 3 h ¼ 2 h ¼ 1 h ¼ 0

c ¼ 1 1 1 1 1

c ¼ 2 1 3 4 4

c ¼ 3 1 3 6 5

c ¼ 4 1 2 3 5

Remark 3.4. Instead of the total weight we can also use for labeling the columns

the standard genus gs of the graph, since hþ gs ¼ g.

Definition 3.5. For any integer gb 2 and any weighted stable graph G of genus g,

we call MgðGÞ the closed substack of Mg parametrizing curves from which a curve
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with topological class G can be obtained through smoothing a subset (possibly

empty) of nodes.

Notice that this MgðGÞ is the closed substack DG of [2], Chapter XII, (10.5)

(with P ¼ j). We denote by MgðGÞ the locally closed substack of Mg parametriz-

ing stable curves with topological class G.

We also call i-stratum of Mg the union of MgðGÞ such that dim
�
MgðGÞ

�
¼ i.

This is the stratum of Mg consisting of curves with exactly 3g� 3� i nodes

Remark 3.6. Given a stable weighted graph G we have

dim
�
MgðGÞ

�
¼

X
v AVðGÞ

�
multðvÞ � 3

�
:

Notice also that in the above tables the anti-diagonals preserve the number of

edges (i.e. of nodes), therefore graphs in the same anti-diagonal correspond to

components of the same dimension.

Proposition 3.7. For every stable graph G of genus g, the stack MgðGÞ is smooth

over SpecðZÞ.

Proof. We know by [7] that Mg is a smooth stack over SpecðZÞ. To prove that the

substack MgðGÞ is smooth it su‰ces to show that the substack MgðGÞ is formally

smooth. Let x : SpecðkÞ !MgðGÞ be a geometric point corresponding to a stable

curve Cx of topological class G.

The complete local ring of Mg at x is the complete local ring of the universal

deformation space M of the curve Cx. By [7] this ring is ok½½t1; . . . ; t3g�3��. Here

ok ¼ k if the characteristic is 0 and ok is the unique complete regular local ring

with residue field k and maximal ideal pok if the characteristic is p.

Moreover, we may choose the ti’s such that if C!M is the universal curve,

then the complete local ring of C at the nodes of Cx is isomorphic to

ok½½ui; vi; t1; . . . ; t3g�3��=ðuivi � tiÞ:

The complete local ring of MgðGÞ at x is the quotient of Ox;Mg
by the ideal cor-

responding to deformations that preserve the nodes. From the description of the

complete local rings to C at the nodes of C we see that this ideal is ðt1; . . . ; trÞ
where r is the number of edges of G. Hence MgðGÞ is smooth. r

4. Normalization of the substacks Mg(G)

Given a vertex v in a graph G, we call ÊEðvÞ the (ordered) set of edges meeting v and

considering loops twice.
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Definition 4.1. Given a stable weighted graph G of weighted genus g, we define

the stack

NgðGÞ :¼
� Y

v AVðGÞ
MwðvÞ; ÊEðvÞ

�

and the natural 1-morphism

NgðGÞ !
pG

MgðGÞ

induced by gluing sections corresponding to the same edge.

Moreover we define NgðGÞ as the stack

NgðGÞ :¼
� Y

v AVðGÞ
MwðvÞ; ÊEðvÞ

�

and extend pG:

NgðGÞ !
pG

MgðGÞ:

Remark 4.2. The stack NgðGÞ defined above, is the same of the stack MG given

in [2], Chapter XII, (10.2).

Example 4.3. Consider the graph

This graph represents a curve with three irreducible components: a genus-2, a

genus-0, and a genus-1 curve. The genus-2 and the genus-0 curves intersect each

other in three points. The genus-1 curve intersects the genus-0 curve in one point

and intersects itself once. The genus of this curve is

g ¼ hþ n� cþ 1 ¼ 3þ 5� 3þ 1 ¼ 6:

From the above definition we have

N6ðGÞ :¼M2;3 �M0;4 �M1;3;

N6ðGÞ :¼M2;3 �M0;4 �M1;3:

Notice that even if the genus-1 curve has 2 nodes, we consider M1;3 because of the

loop which is counted twice. The morphism pG glues
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– the three sections of M2;3 respectively with the first three sections of M0;4;

– the last section of M0;4 with the first section of M1;3;

– the last two sections of M1;3 together.

The morphism pG glues the sections in the same way.

Proposition 4.4. The 1-morphisms pG and pG are (a) representable; (b) finite; (c)

unramified; (d) surjective. Moreover, (e) the 1-morphism pG is ètale.

Proof. The morphism pG is a composition of clutching morphisms in the sense

of Knudsen [14]. Knudsen proved that clutching morphisms are representable,

finite and unramified [14], Corollary 3.9. To prove (d) we have to check that for

all curves C ! T in MgðGÞ, there exists an étale covering T 0 ! T such that

CT 0 ! T 0 (obtained by base change) is isomorphic to the image of some object

in NgðGÞ.
First of all fix a geometric point SpecðkÞ ! T . We can choose a smooth point

on each irreducible component of the fiber Ck defining sections fsvgv AVðGÞ. We

know that there exists an étale covering T1 ! T where the sections fsvgv AVðGÞ
extend. So we get a curve C1 ! T1 of topological class G where we have labeled

irreducible components with VðGÞ.
Let us now consider the normalization cC1C1 ! C1 ! T1. The pre-image of the

relative singular locus of C1 defines a divisor cD1D1 HcC1C1 and an étale coveringcD1D1 ! T1 of degree
P

v AVðGÞ jÊEðvÞj. If this covering is trivial, then we can choose

T 0 :¼ T1 and CT 0 ¼ C1 (the sections fsvgv AVðGÞ rigidify the components, but not

necessarily the nodes).

Otherwise let H1;H2; . . . ;Hr be all the irreducible components of cD1D1 such that

each morphism Hi ! T1 is not trivial. For every 1a ia r, let q1 be the degree of

Hi ! T1. We call q ¼
Pr

i¼1 qi the excess covering number of p1 : C1 ! T1. Let

T2 :¼
ar
i¼1

Hi

and consider the cartesian diagram

cC2C2 ���! cC1C1???y i
???y

C2 ���! C1

p2

???y i
???yp1

T2 ���!s1 T1:
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The morphism cC2C2 ! T2 admits at least the identity section, therefore

p2 : C2 ! T2 has a strictly smaller excess covering number.

After a finite number of steps we get the required T 0 and CT 0 .

(e) We have that NgðGÞ is smooth because it is the product of smooth stacks,

moreover we have proved in proposition 3.7 that MgðGÞ is smooth, therefore pG
is a finite representable surjective morphism between a smooth (hence Cohen-

Macaulay) stack and a smooth (hence regular) stack of the same dimension.

Hence it is flat [17], Remark 3.11. From [10], Proposition 17.6.1, we have that a

flat and unramified morphism of relative dimension 0 is necessarily étale. r

There is a natural action of AutðGÞ on NgðGÞ (that extends to NgðGÞ) which is

consistent with the action on G, so the quotient stacks

NgðGÞ=AutðGÞ NgðGÞ=AutðGÞ

are well defined by Theorem 2.20.

Let us consider a geometric point of MgðGÞ, that is to say a stable curve C over

an algebraically closed field K of topological class G. We have the diagram

SpecðKÞ �MgðGÞNgðGÞ ���! NgðGÞ???y i
???ypG

SpecðKÞ ���! MgðGÞ:

Proposition 4.5. There is a natural isomorphism

SpecðKÞ �MgðGÞNgðGÞGAutðGÞ:

Proof. It is enough to check the isomorphism over SpecðKÞ. Let C be the curve

over K with topological class G defined by SpecðKÞ !MgðGÞ. The objects of the

groupoid

NgðGÞK
�
SpecðKÞ

�
:¼

�
SpecðKÞ �MgðGÞNgðGÞ

��
SpecðKÞ

�

are pairs ðĈC; aÞ where ĈC is an object in NgðGÞ
�
SpecðKÞ

�
and a is an isomorphism

between C and pGðĈCÞ.
The isomorphisms between two objects ðĈC; aÞ and ðĈC 0; a 0Þ, are isomorphisms

g : ĈC ! ĈC 0 such that the diagram

pGðĈCÞ ������!pGðgÞ
pGðĈC 0Þ

a a 0����
!  ����

C
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commutes. That is to say pGðgÞ ¼ a 0a�1. By representability of pG we have at

most one isomorphism g having this property. In particular this means, as we

already know from Proposition 4.4 (b), that NgðGÞK is a set of points.

Let us now fix an object ðĈC; aÞ and take g a AutðGÞ di¤erent from the identity.

Let us write

ĈC ¼
a

v AVðGÞ
Cv

where Cv is a curve in MwðvÞ; ÊEðvÞ. Let us define

gðĈCÞ :¼
a

v AVðGÞ
CgðvÞ

where now CgðvÞ is a curve in MwðgðvÞÞ; gðÊEðvÞÞ.

Notice that ĈC and gðĈCÞ are two isomorphic curves just labeled di¤erently in

NgðGÞ. There is an isomorphism b between pGðĈCÞ and pG
�
gðĈCÞ

�
sending each

component v to gðvÞ and each node e to gðeÞ. Define gðaÞ :¼ ba : C ! pG
�
gðĈCÞ

�
.

There are no isomorphisms in NgðGÞ between ĈC and gðĈCÞ whose image through

pG is b, since isomorphisms in NgðGÞ preserve the labelling. Therefore we have

that
�
gðĈCÞ; gðaÞ

�
defines a di¤erent point in NgðGÞK .

On the other hand let ðĈC2; a2Þ be another object in NgðGÞK such that a2a
�1

cannot be lifted to an isomorphism b̂b : ĈC2 ! ĈC.

Let us now consider the diagram

ĈC ���!d ĈC2???y
???y

pGðĈCÞ ���!a2a
�1

pGðĈC2Þ

C

����
!  ����a a2

where vertical maps are normalization morphisms which are consistent with

the labelling of G. There exists a unique isomorphism d making the diagram

commute. Notice that d may exchange two points coming from a loop. This is

why we need part (3) in Definition 3.3. Moreover, since d cannot be an isomor-

phism in NgðGÞK , it cannot preserve all nodes and components. Therefore d

defines an element g in AutðGÞ di¤erent from identity.

So we can conclude that ðC2; a2Þ is isomorphic to
�
gðĈCÞ; gðaÞ

�
. r

Proposition 4.6. There is an isomorphism

½NgðGÞ=AutðGÞ�GMgðGÞ:
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Proof. From the proof of Proposition 4.5 we get that the induced morphism

½NgðGÞ=AutðGÞ� !MgðGÞ

is faithful, that is to say representable (from Lemma 2.10). From Proposition 4.4

we have that it is an étale covering and using Proposition 4.5 we get it is of degree

one. Hence it is an isomorphism. r

We still have a morphism

jG : ½NgðGÞ=AutðGÞ� !MgðGÞ;

but it is in general far from being an isomorphism. The main reason is that we

could get extra automorphisms at the points in the closure.

However, NgðGÞ is normal, since it is the product of normal stacks, so also the

quotient stack is normal. This means that jG factorizes through the normalization

of MgðGÞ.

Theorem 4.7. The morphism

jG : ½NgðGÞ=AutðGÞ� !MgðGÞ

is a normalization for MgðGÞ.

Proof. The map jG is faithful on automorphism groups by Proposition 4.5. It is

also finite and surjective so by Proposition 2.9 it is representable. Since normal-

ization commutes with étale base change [10], Proposition 18.12.15, we may as-

sume that jG is a map of schemes. Since the source is normal and the map is finite

and generically an isomorphism, jG must be the normalization by the universal

property of normalizations. r

Remark 4.8. The description of the normalization of DG :¼Mg;PðGÞ can be

found in [2], Chap. XII, Proposition 10.11.

Remark 4.9. Note also that since ½NgðGÞ=AutðGÞ� is non-singular, the map jG is

a desingularization of MgðGÞ. Moreover MgðGÞ is smooth if and only if jG is an

isomorphism. In particular we have the following Lemma.

Lemma 4.10. The stack MgðGÞ is smooth if and only if for every G0 such that

MgðG0ÞJMgðGÞ, there is only one subset F of edges of G0 such that G can be

obtained from G0 by shrinking the edges in F .

Proof. This is [11], Lemma 4.2. We now follow their proof.

Let G0 be a graph such that MgðG0ÞJMgðGÞ and let x : SpecðkÞ !MgðG0Þ
be a geometric point of MgðG0Þ. From Remark 4.9, if MgðGÞ is smooth, then
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the pre-image of x through jG consists of a single point, this is equivalent to the

fact that there is only one subset of nodes of a curve corresponding to G0 which

need to be smoothed in order to obtain a curve corresponding to G.

On the other hand, if the pre-image of x through jG consists of a single point,

then, by using the notation of Proposition 3.7, the complete local ring of MgðGÞ at
x, is the quotient of Ox;Mg

by the ideal corresponding to deformations that

preserve the nodes corresponding to G which can be chosen in only one way. r

5. Topological considerations on the 1-stratum

Throughout this section all graphs will be weighted and stable.

We want to prove that the 1-stratum of genus gb 2 stable curves is connected.

First of all notice that each of the irreducible components of the 1-stratum

comes from a graph G having either of the following properties:

(1) all vertices of G have weight 0, exactly one of them has degree 4 and all the

others have degree 3;

(2) exactly one among the vertices of G has weight 1 (and degree 1) and all the

others have degree 3 and weight 0.

Fix a graph G coming from the 1-stratum, then the geometric points we have

to add to MgðGÞ correspond to the graphs obtained from G in the following ways:

(1) if we are in the first case we split the vertex of degree 4 into two vertices and

add an edge between them as in the following example:

we can do this in at most three di¤erent ways depending on the symmetries of

the graph;

(2) if we are in the second case we change the weight 1 into 0 and add a loop. For

example,

Definition 5.1. We call a transformation of graphs like the two above pop. On

the other hand we call shrink the inverse of pop, that is to say shrinking any edge

of graph from the 0-stratum and adding a weight 1 if we shrink a loop.

Remark 5.2. It is a straightforward computation to check that pop and shrink

preserve stability and genus.
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Theorem 5.3. For any gb 2, the 1-stratum of Mg is connected.

Proof. This fact follows straightforward from the results mentioned in Remark

5.7. We give now a proof for reader’s sake.

By applying a pop we see that any curve in MgðGÞ contains a geometric point

of the 0-stratum. In order to prove connectedness of the 1-stratum it is enough to

show that the 0-stratum is connected through components of the 1-stratum. If a

graph G of the 0-stratum can be turned into another graph G 0 of the 0-stratum

through a finite sequence of shrinks and pops, then MgðGÞ is connected with

MgðG 0Þ through the 1-stratum. We do this by proving two claims. r

Claim 5.4. Any graph of the 0-stratum can be turned into a loop graph of the

0-stratum by applying a finite sequence of shrink-pop transformations.

Proof. Take a graph G of the 0-stratum and a cycle of G which is not a loop.

Shrink one of the edges of the cycle getting a smaller cycle. The shrink locally

looks as follows:

where the horizontal edges belong to the cycle we are focusing on. Then apply the

only pop that preserves the shorter cycle

We continue until we get a loop. r

Remark 5.5. We cannot simply take the largest cycle because it is not guaranteed

that in the process other cycles are not enlarged. Actually in the process we could

also obtain isomorphic graphs at di¤erent steps: the relevant part is keeping track

of the cycle we are reducing in order to take out a loop.

Claim 5.6. Any loop graph of (weighted ) genus gb 2 can be turned into the follow-

ing loop graph

ð2Þ

by applying a finite sequence of shrink-pop transformations.
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Proof. Choose a path of maximal length of the graph. If the graph is not like (2),

then we have somewhere the following subgraph (here the horizontal edges belong

to the longest path)

that we can transform as

obtaining a graph whose horizontal edges belong to the (now unique) maximal

path. It is clear that after a finite numbers of shrink-pop transformations we get

the graph (2). r

Remark 5.7. Claims 5.4 and 5.6 imply that every pair of 3-regular graphs can

be linked via a sequence of pop and shrinks of type (1). This statement is

not new. A topological proof was originally given by Hatcher and Thurston

[12]. More recently Caporaso [6] used combinatorial methods to prove that any

two 3-connected p-regular graphs may be linked via a sequence of 3-connected

p-regular graphs.

Remark 5.8. As a trivial consequence, we have that, for any 1a ia 3g� 4, the

i-stratum of Mg is connected. An analogous result for the moduli space of tropical

curves, was proved by Brannetti, Melo, and Viviani [5], Proposition 3.2.59 (ii). In

the language of tropical algebraic geometry, the stack Mg with its stratification

by dual graphs is connected through codimension one. Indeed there is a bijective

correspondence between the stratification of Mg by dual graphs and the strata of

the tropical moduli space [6], Proposition 5.5.

6. The irreducible components of the 1-stratum

In this section we work over a base field S ¼ SpecðkÞ. We assume that

charðkÞA 2 and that the field k contains the cubic roots of �1. These are made

in order to consider standard results of the action of S4 on M0;4.

Let G be a stable weighted graph of weighted genus g and 3g� 4 edges. As

explained in Section 5, we have two possibilities:
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(1) all vertices of G have weight 0, exactly one of them has degree 4 and all the

others have degree 3 (total weight h ¼ 0);

(2) exactly one among the vertices of G has weight 1 (and degree 1) and all the

others have degree 3 and weight 0 (total weight h ¼ 1).

6.1. Cross ratio. Before starting with the case h ¼ 0 we need to point out some

considerations about the cross ratio. More precisely we define a morphism

P1nf0; 1;lgGM0;4 !
cr

P1nf0; 1;lg

which sends l a P1nf0; 1;lg to the cross ratio of f0; 1;l; lg.
This map is an isomorphism and can be extended to an isomorphism to

P1 GM0;4 !
cr

P1:

So once we have chosen the order of the marked points of a rational curve in M0;4

there is a natural way to associate the cross ratio. Even if we should consider the

isomorphism cr we call l a M0;4 the cross ratio of the associated marked curve.

Let us now consider the action of S4 on M0;4 that permutes the marked points.

It is known that the orbit of l for the action of S4 is generically of order 6:

l;
1

l
;

l� 1

l
;

l

l� 1
; 1� l;

1

1� l
;

and the generic stabilizer is the normal subgroup V4 GZ=2Z� Z=2Z generated

by ð12Þð34Þ and ð13Þð24Þ. Therefore, we have an induced action of S3 GS4=V4

which, up to isomorphisms, corresponds to the permutation of f0; 1;lg (that is
to say the first three points).

On P1 we have the exceptional orbits:

o1 :¼ f0; 1;lg; o2 :¼
�

1
2 ; 2;�1

�
; o3 :¼ fx; x�1g;

where xA�1 and x3 ¼ �1. The generic stabilizer for the action of S3 is the

identity. The stabilizers of the two exceptional orbits o1 and o2 are the three sub-

groups generated respectively by ð1; 2Þ, ð1; 3Þ, ð2; 3Þ. Finally the stabilizer of the

orbit o3 is the subgroup generated by ð123Þ.

Remark 6.1. Two curves with topological class G are isomorphic if and only if

the four nodes on the same component have the same cross ratio for some order

consistent with G.

6.2. The case h(G)F 0. Let us call v0 the point with degree 4 and let e1, e2, e3, e4
the four edges in ÊEðGÞ (where loops are counted twice) ending in it.
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Let s : AutðGÞ ! S4 be the map that sends every automorphism a a AutðGÞ to
the corresponding permutation sa a S4 of the four edges. Clearly we have

sða�1Þ ¼ sðaÞ�1; sðaa 0Þ ¼ sðaÞsða 0Þ:

Therefore, s is a group homomorphism.

Definition 6.2. Let us define

RðGÞ :¼ AutðGÞ=s�1ðV4ÞJS3:

Theorem 6.3. The normalization of MgðGÞ is a s�1ðV4Þ-gerbe, in the sense of [4],

Proposition 4.6, over the orbifold

½M0;4=RðGÞ�:

Proof. We have

NgðGÞGM0;4

since all the other factors are M0;3 ¼ SpecðkÞ.
From Theorem 4.7 we get that the normalization of MgðGÞ is ½M0;4=AutðGÞ�

where the generic stabilizer is the normal subgroup s�1ðV4Þ. We conclude by

using the same argument of [4], Proposition 4.6. r

Remark 6.4. The smooth Deligne–Mumford stack ½M0;4=RðGÞ� is the residual

orbifold of the normalization of MgðGÞ. In order to define uniquely such orbi-

folds, it is enough to give the order of the orbifold points, since the coarse moduli

space is P1 for all of them (see [20], Proposition 2.11).

Now, RðGÞ is a subgroup of S3, so we have only four possibilities: fidg, Z=2Z,
Z=3Z, S3. For each possibility, we write ½M0;4=RðGÞ� ¼ ½a j b�,where a is the set of

orders of the points in the closure and b is the set of the orders of the remaining

orbifold points. We summarize everything in the following chart:

RðGÞ ½M0;4=RðGÞ�
fidg ½1; 1; 1 j j�
Z=2Z ½1; 2 j 2�
Z=3Z ½1 j 3; 3�
S3 ½2 j 2; 3�

Proposition 6.5. The coarse moduli space of MgðGÞ is P1.
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It may seem counterintuitive that the non-normal (and hence singular) stacks

MgðGÞ can have smooth coarse moduli spaces. However, as the following the

example shows, it is possible for the geometric quotient of a non-normal scheme

by a finite group to be normal.

Example 6.6. There is an obvious Z2 action on A2 which exchanges the

coordinates. If X ¼ Spec k½x; y�=ðxyÞ then the action of Z2 on the invariant sub-

scheme X exchanges the two irreducible components. The Z2-invariant subring of

k½x; y�=ðxyÞ is isomorphic to the ring k½t� where t ¼ xþ y. Thus A1 is the coarse

moduli space of the non-normal stack ½X=Z2�.

Proof of Proposition 6.5. Let MgðGÞ be the coarse moduli space of MgðGÞ, it is a
compact algebraic curve. From the universal property of coarse moduli spaces,

we have a (non constant) scheme morphism from the coarse moduli space of

½NgðGÞ�, that is to say a morphism P1 !MgðGÞ.
We now want to conclude by proving that MgðGÞ is smooth. We use the

notation of the proof of Proposition 3.7.

Let x : SpecðkÞ !MgðGÞ be a geometric point. From properties of coarse

moduli spaces, it lifts to a geometric point of MgðGÞ. Moreover we can assume

that (the lift of ) x belongs to MgðGÞnMgðGÞ. Let Gx be the topological class

of the curve Cx associated to x. The complete local ring of MgðGÞ at x is the

quotient of ÔOx;Mg
¼ ok½½t1; . . . ; t3g�3�� by the ideal corresponding to deformations

smoothing a node that allows to get a curve with topological class G (that is to say

a shrink from Gx to G). After a possible reorder of the variables, we can assume

that t1; . . . ; tk correspond to the nodes p1; . . . ; pk smoothing which we get a curve

of topological class G. Therefore, the ideal we are looking for, is

Ix :¼ ftitjgi< j; i; j¼1;...;k A ftkþ1; . . . ; t3g�3g:

Notice that a node belongs to at most two components and we set a loop when a

component has self intersection. So we get

ÔOx;MgðGÞ ¼ ok½½t1; . . . ; tk��=ðftitjgi< j; i; j¼1;...;kÞ:

In order to compute the local ring ÔOx;MgðGÞ of x in the moduli space MgðGÞ we
have to consider the invariant part of the action of the group AutðGxÞ (see Propo-
sition 2.14).

Since this action comes from a transitive permutation of the nodes p1; . . . ; pk
(see Lemma 6.7), by direct computation we get

ÔOx;MgðGÞ ¼ ok½½s��

for some generator s, and we conclude that MgðGÞ is smooth. r
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Lemma 6.7. Let G be a graph of genus g and 3g� 4 edges. Let Gx be a graph

obtained by a pop at the vertex of G with multiplicity 4. Then AutðGxÞ acts transi-
tively on the edges p1; . . . ; pk shrinking which we get the graph G.

Proof. Without loss of generality we show that there exists an element of AutðGxÞ
exchanging p1 and p2.

We know that there exists an isomorphism g between Gx shrunk at p1 and Gx

shrunk at p2. Clearly g lifts to an automorphism of Gx. r

Definition 6.8. Let G be a stable graph of genus g with total weight 0 and 3g� 4

edges. Let

SpecðkÞ !x MgðGÞnMgðGÞ

be a geometric point and Gx its associated graph. We call order of x in MgðGÞ
(written ordxðGÞ) the number of edges in Gx shrinking which we get the graph G.

From the proof of Proposition 6.5 we get that ordxðGÞ is equal to the number of

generators for the complete local ring ÔOx;MgðGÞ.

Remark 6.9. The point x is smooth in MgðGÞ if and only if ordxðGÞ ¼ 1.

Remark 6.10. It is tempting to describe MgðGÞ as an H-gerbe over a Deligne–

Mumford stack with only finite stacky points for some finite group. However,

because MgðGÞ is not normal this is not the case, as the following example

shows.

Let G be

and Gx be

We have AutðGÞ ¼ D8. The group H should be isomorphic to s�1ðV4Þ (see The-

orem 6.3), which in this case is V4 GZ=2Z� Z=2Z. Now we have AutðGxÞGS4,

but the group s�1ðV4Þ seen in AutðGxÞ is the subgroup fixing an edge which is not

normal in AutðGxÞ.

6.3. The case h(G)F 1. In this case we have NgðGÞ ¼M1;1. It is known that

M1;1 is a Z=2Z-gerbe over a ½1 j 2; 3� orbifold (the coarse moduli space is still P1).
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Moreover in this case the stabilizer of points is the entire group AutðGÞ and it acts

trivially on M1;1 as it must fix the vertex of weight 1. So we have

½M1;1=AutðGÞ� ¼M1;1 � B AutðGÞ

and we get

Theorem 6.11. The normalization of MgðGÞ is a
�
Z=2Z�AutðGÞ

�
-gerbe over the

orbifold ½1 j 2; 3�.

Remark 6.12. Proposition 6.5 still holds and we can also extend Definition 6.8.

6.4. The 1-stratum of M3. As an example we present the case g ¼ 3. In the fol-

lowing picture we alternate the graphs with 5 and 6 nodes.
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In the following table we describe the stacks M3ðGÞ. We use the notation of

6.4 and Definition 6.8.

G s�1ðV4Þ ½N3ðGÞ=AutðGÞ�orb
order of points

in the 0-stratum

V4 ½1; 2 j 2� ordx1ðGÞ ¼ 6

ordx2ðGÞ ¼ 2

ðZ=2ZÞ2 ½1; 2 j 2� ordx1ðGÞ ¼ 4

ordx2ðGÞ ¼ 1

ðZ=2ZÞ2 ½1; 2 j 2� ordx1ðGÞ ¼ 2

ordx2ðGÞ ¼ 2

ðZ=2ZÞ3 ½1; 2 j 2� ordx1ðGÞ ¼ 2

ordx2ðGÞ ¼ 3

Z=2Z ½2 j 2; 3� ordx1ðGÞ ¼ 2

ðZ=2ZÞ3 ½1 j 2; 3� ordx1ðGÞ ¼ 1

ðZ=2ZÞ3 ½1 j 2; 3� ordx1ðGÞ ¼ 2

ðZ=2ZÞ4 ½1 j 2; 3� ordx1ðGÞ ¼ 3

Example 6.13. We want to show that all cases for residual orbifolds exist.

A graph G such that the residual orbifold of ½NgðGÞ=AutðGÞ� is ½1; 1; 1 j j�, is

A graph G such that the residual orbifold of ½NgðGÞ=AutðGÞ� is ½1 j 3; 3�, is
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6.5. Remarks on higher dimension. The above techniques can be generalized

to higher dimension. The main obstacle to a complete classification, is the rapid

growth of the number of possibilities and the rather complicated combinatorics

involved. However, we are able to formulate the following fact.

Proposition 6.14. Let NkðgÞ be the set of isomorphism classes of residual orbifolds

of the normalizations of the irreducible components of the k-stratum of Mg. Then,

for every nonnegative integer k, the set

Nk :¼ 6
l

g¼2
NkðgÞ

is finite.

Proof. Following the notation of Definition 3.1, for a stable graph G, we have

k ¼
X
v AG

�
multðvÞ � 3

�
:

This means that for every graph G, appearing in a k-stratum, there are at most k

vertices with multiplicity greater than 3 and the multiplicity of a vertex is at most

k þ 3. Therefore, there are only finitely many possible

NgðGÞ :¼
Y

v AVðGÞ
MwðvÞ; ÊEðvÞ

since all vertices with multiplicity exactly 3 contribute to the product with a single

point.
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Now, let F be the normal subgroup of AutðGÞ which fixes all vertices with

multiplicity greater that 3 and their edges. The action of F on NgðGÞ is trivial.
So, without loss of generality, we can consider the residual gerbes of

�
NgðGÞ=

�
AutðGÞ=F

�	
:

But AutðGÞ=F is a subgroup of the group G of all possible permutations of vertices

of multiplicity greater than 3 and of their edges, moreover the action of G on

NgðGÞ is canonical. Therefore we have finitely many possibilities. r

Remark 6.15. Clearly jN0j ¼ 1 since every irreducible stack of dimension 0 is a

gerbe over a point. Throughout our description of the 1-stratum, we got jN1j ¼ 5.

Example 6.16. We provide an easy example from the 2-stratum of M3

In this case we have

N3ðGÞ ¼M0;4 �M1;1

and

½N3ðGÞ=AutðGÞ�orb ¼ ½1; 2 j 2� � ½1 j 2; 3�:
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