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Abstract. For any C 1-expanding map f of the circle we study the equilibrium states for the
potential c ¼ �logj f 0j. We formulate a C 1 generalization of Pesin’s Entropy Formula that
holds for all the Sinai–Ruelle–Bowen (SRB) measures if they exist, and for all the (neces-
sarily existing) SRB-like measures. In the C 1-generic case Pesin’s Entropy Formula holds
for a unique SRB measure which is not absolutely continuous with respect to Lebesgue.
The result also stands in the non-generic case for which no SRB measure exists.
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1. Introduction

For any map f on a compact manifold, if no invariant measure is equivalent to

Lebesgue, or if f is non-ergodic with respect to the invariant measures that are

equivalent to Lebesgue, many substitutive concepts of natural invariant measures

have been defined. They translate the statistical asymptotic behavior of Lebesgue-

positive sets of orbits into spatial probabilities. Nevertheless, except under specific

conditions in the C1þa scenario, those statistically good measures do not necessar-

ily coincide, and moreover, they do not necessarily exist. For instance in [4] and

[15] the natural measures are defined as the weak� limit (if it exists) of the averages

ð1=nÞ
Pn�1

j¼0 ð f �Þ jn for any probability nfm, where m is the Lebesgue measure

and f � denotes the pull back operator in the space of Borel-probabilities. Simi-

larly, SRB measures are defined as the weak� limit (if it exists) of the averages

snðxÞ :¼ ð1=nÞ
Pn�1

j¼0 ð f �Þ jdx for a Lebesgue-positive set of initial states x. In [15]

a method is exhibited to construct C0 non-singular expanding maps of the circle
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S1, for which there exists a unique natural measure with respect to m, and never-

theless, for m-almost all the points x a S1 the averages snðxÞ are not convergent.

Thus, even in the case of topological expansion, the notions of SRB and natural

measures are di¤erent. In [13], [23], [10] diverse maps are constructed without any

natural limit measure, but with other good ergodic properties (for instance, the

existing of a mixing probability). In a general context, neither the existence of

natural measures nor of SRB measures is required for a map f to exhibit statisti-

cally good properties with respect to the Lebesgue measure ([9]).

A third notion of good measure from the statistical viewpoint arises from the

thermodynamic formalism when considering, if it exists, a probability m for which

Pesin’s Entropy Formula holds [16]. If the hypothesis of C2- (or C1þa-)regularity

is added, plenty of tight relations were proved among the SRB measures, the

absolute continuity with respect to Lebesgue (of the conditional measures along

the unstable manifolds), and Pesin’s Entropy Formula. See for instance [14],

[17], [21], [1], [2]. But to prove those results, the C1-plus Hölder regularity is

essential. In the C1 scenario, generic volume preserving di¤eomorphisms still

have an invariant measure satisfying Pesin’s Entropy Formula [22], [5]. But con-

trary to the situation of the C1þa-maps, the C1-generic dynamical systems, under

some hyperbolic-like assumptions, have no invariant measure m being (either m or

its conditional unstable measures) absolutely continuous with respect to Lebesgue

[3], [7]. Nevertheless, those C1-generic systems still have a unique SRB measure

[8], [18].

In this paper we consider the family E1 of all the C1-expanding maps of the

circle S1. We recall that a C1-map f : S1 7! S1 is expanding if j f 0ðxÞj > 1 for

all x a S1. We write E1þa ¼ E1BC1þa. Namely f a E1þa if and only if f a E1

and besides f 0 is a-Hölder continuous. We will focus on the systems in E1nE1þa.

Our purpose is to state and prove a reformulation of Pesin’s Entropy Formula for

these systems, including the non-generic ones for which no SRB exists.

For C1-systems, Ruelle’s Inequality [20] states that for any f -invariant proba-

bility measure m on the Borel s-algebra of S1, the corresponding measure-theoretic

entropy hmð f Þ satisfies

hmð f Þa
ð
logj f 0j dm: ð1Þ

Therefore, hmð f Þ �
Ð
logj f 0j dma 0. By definition, Pesin’s Entropy Formula holds

if the latter di¤erence is equal to zero:

hmð f Þ ¼
ð
logj f 0j dm: ð2Þ

For any map f a E1þa, [16] and [14] prove that formula (2) holds if and only if

mfm, where m is the Lebesgue measure. On the contrary, as said above, if f is
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only C1 then E1-generically f has no invariant measure m such that mfm [8].

Two questions arise: First, do there exist, for any f a E1, invariant probability

measures satisfying formula (2)? From the thermodynamic formalism, the answer

to this question is known to be a‰rmative since f is topologically expansive. Sec-

ond, what statistical properties do those probabilities exhibit with respect to the

(non-invariant) Lebesgue measure? In Theorem 2.3 of this paper we give a statis-

tical simple description of a non-empty subset of invariant measures satisfying

formula (2). We call that description the SRB-like property [9]. As a Corollary,

if the measure that satisfies formula (2) is unique, then it is SRB, also when

E1-generically it is mutually singular with respect to the Lebesgue measure. Be-

sides, if there are physical measures, all of them satisfy formula (2). Finally,

if SRB measures do not exist, there still exist (uncountably many) probability

measures that are distinguished from the general invariant measures by a weak

physical condition which is similar to the statistical property of SRB measures,

and that besides satisfy Pesin’s Entropy Formula.

Even if we conjecture that the results are also true for C1-expanding maps in

any dimension, the proofs along this paper work only on one-dimensional com-

pact manifolds. In fact, in Lemma 4.1 we use that there exists a partition of the

ambient manifold whose pieces have arbitrarily small diameters, and such that the

measure of the union of the boundaries of its pieces is zero for all the invariant

probability measures. This property is trivially satisfied by any one-dimensional

map whose set of periodic orbits is at most countable.

2. Definitions and statement of the result

The classic thermodynamic formalism defines the pressure Pf with respect to the

potential

c :¼ �logj f 0j

by

Pf ¼ sup
m AMf

n
hmð f Þ �

ð
logj f 0j dm

o
;

where Mf is the set of all the f -invariant Borel probabilities in S1. For any

f a E1 the pressure Pf is equal to zero (see [19]). Let us denote with ESf the (a

priori maybe empty) set of all the f -invariant probability measures m that realize

the pressure Pf as a maximum equal to zero. Precisely:

m a ESf if and only if hmð f Þ ¼
ð
logj f 0j dm: ð3Þ
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Namely, the set ESf is the set of invariant measures that satisfy Pesin’s Entropy

Formula (2) of the entropy. The thermodynamic formalism (see for instance

[12]) for expansive maps states that ESf is weak
� compact and convex in the space

M of all the Borel probabilities in S1, and, if non-empty, its extremal points are

ergodic measures. The measures in ESf are called equilibrium states of f for the

C0 potential c ¼ �logj f 0j.
Let us recall some definitions from the statistical viewpoint. Consider for each

initial point x a S1, the following sequence of measures fsnðxÞgnb1, that are called

empirical probabilities. In general they are not f -invariant:

snðxÞ :¼
1

n

Xn�1

j¼0

df jðxÞ: ð4Þ

In the above definition dy denotes the Dirac-delta measure supported on y.

Definition 2.1. We call a Borel probability measure m physical or SRB if

BðmÞ :¼
�
x a S1 : lim

n!þl
snðxÞ ¼ m

�
ð5Þ

has positive Lebesgue measure. (In the definition of the set BðmÞ the limit of the

measures is taken in the space M of all the probability measures, endowed with

the weak� topology.)
We call BðmÞ the basin of attraction of the physical measure m.

It is standard to check that any physical measure is f -invariant. After the

definition above, if there exist physical measures, then they describe the spatial

probabilistical distribution in S1 of the asymptotic behavior of the empirical dis-

tributions in equality (4), for a Lebesgue-positive set BðmÞHS1 of initial states.

This is the physical role of the SRB measures from the statistical viewpoint. As

said in the introduction, the existence and uniqueness of an SRB measure m

are generic properties for f a E1, but m is mutually singular with respect to the

Lebesgue measure [8]. On the other hand, for any f a E1þa, the existence and

uniqueness of the SRB measure m is a well-established fact (Ruelle’s Theorem).

Besides, in this case m is equivalent to Lebesgue and it is the unique equilibrium

state for the potential c ¼ �logj f 0j. Namely, it is the unique probability that sat-

isfies Pesin’s Entropy Formula (2). In Theorem 2.3 we prove a generalization of

Ruelle’s Theorem and of Pesin’s Entropy Formula (2) for any C1-expanding map

of the circle. We apply the definition of SRB-like measure, instead of considering

only SRB measures. The gain in this generalization is that the SRB-like measures

always exist. Besides, they still preserve a physical-like meaning (see Proposition
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2.2) as SRB measures do, and also, they are equilibrium states for �logj f 0j, re-
gardless of whether SRB measures exist and whether such an equilibrium state is

unique.

Before stating the precise result, we need to revisit the definition of SRB-like

measure. In brief, the non-empty set Of of the SRB-like probability measures

(defined for any continuous map acting on a compact manifold) is the minimal

weak�-compact non-empty set of M that contains all the limits of the convergent

subsequences of (4) for Lebesgue-almost all the initial states x a S1 (see Definition

3.2). Immediately, if there exist SRB measures, they are SRB-like; and there exists

a unique SRB-like measure if and only if there exists a unique SRB probability m

and its basin BðmÞ has full-Lebesgue measure. But besides, in the cases that no

SRB measure exists, the SRB-like measures still exist and preserve the statistical

role that the nonexisting SRB measures would exhibit. Although the construction

above is global, each SRB-like measure m a Of preserves an individual weakly

physical meaning, independently of the other measures in the set Of . This is stated

in Proposition 2.2, which gives a characterization of the SRB-like measures. To

state Proposition 2.2, and to argue along the paper, the space M of all the Borel

probabilities on S1 is endowed with the weak� topology. For each point x a S1

let

poðxÞ ¼
�
m a M : there exists ni ! þl such that lim

i!þl
sniðxÞ ¼ m

�
; ð6Þ

where snðxÞ is the empirical probability defined in equality (4). The set poðxÞ
is the limit set in M of the empirical sequence with initial state x. We call

poðxÞ the p-limit set of x. We fix any weak�-metric in M. We denote by dist

this metric.

Proposition 2.2. A probability measure m is SRB-like if and only if for all e > 0

the following set AeðmÞHS1 (called basin of e-weak attraction of m) has positive

Lebesgue measure:

AeðmÞ :¼
�
x a S1 : dist

�
poðxÞ; m

�
< e

�
: ð7Þ

For the sake of completeness, and although Proposition 2.2 can be easily ob-

tained from the results in [9], we give an independent proof in Section 3 of this

paper. Let us state now our main result:

Theorem 2.3. For any C1-expanding map f : S1 7! S1 there exist SRB-like mea-

sures and all of them are equilibrium states for the potential �logj f 0j.

The following assertions are immediate consequences or restatements of Theo-

rem 2.3 for all the C1-expanding maps that are not necessarily C1þa:
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2.3.1 The set ESf of equilibrium states for �logj f 0j contains the weak�-compact

convex hull of the never empty set Of of SRB-like measures.

2.3.2 If ESf contains a single measure m, then m is ergodic and Of ¼ fmg. Besides,

Of ¼ fmg if and only if m is SRB and its basin BðmÞ has full Lebesgue

measure.

2.3.3 Any SRB-like measure m (and in particular any SRB measure if it exists)

satisfies Pesin’s Entropy Formula (2).

2.3.4 There exist f -invariant probability measures such that m
�
AeðmÞ

�
> 0 for all

e > 0, where m denotes the Lebesgue measure and AeðmÞ denotes the basin

of e-weak attraction of m defined by (7). All those measures satisfy Pesin’s

Entropy Formula.

We prove Theorem 2.3 in Section 4. It is a stronger version of Theorem 6.1.8

of the book of Keller [12], which states that observable measures belong to ESf .

In fact, the definition of SRB-like measures in Section 2 of this paper is non-

trivially weaker than the definition of observable measures in [12]. While SRB-

like measures do exist for any f a E1, the stronger observable measures according

to [12] may not exist. Nevertheless, some of the arguments that we use to prove

Theorem 2.3, are taken from the proof of Theorem 6.1.8 in [12]. The di¤erence

resides in the proof of Lemma 4.3. We have to manage with sets of probabilities

(neighborhoods of the SRB-like measures), instead of fixed probabilities (the

observable measures according to [12]).

The statement 2:3.2 can be equivalently reformulated, substituting the assump-

tionaESf ¼ 1 by the following condition (see Lemma 2.4 [18]):

lim
t!0þ

1

t
sup
n AMf

�
hn þ

ð
ðtj� logj f 0jÞ dn

�
¼

ð
j dm Ej a C0ðS1Þ Em a ESf :

For any expansive map (in any finite-dimensional manifold) the above condi-

tion is C1-generic (see Corollary 2.5 and Proposition 3.1 of [18]). Thus, the state-

ment 2.3.2 provides a new proof of a remarkable result in [8]: C1-generically the

expanding maps of the circle have a unique ergodic SRB measure whose basin

covers Lebesgue-almost all the orbits.

Let us state three Corollaries of Theorem 2.3. We say that a probability mea-

sure is atomic if it is supported on a finite set.

Corollary 2.4. There is no atomic SRB-like measure of a C1-expanding map in S1.

We prove this Corollary in the paragraph 5.1.

Corollary 2.5. Denote by m the Lebesgue measure in S1. For any C1-expanding

map f in S1 the following assertions are equivalent:
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(a) There exists some SRB-like measure m such that mf m.

(b) There exists a unique SRB-like measure m, it is equivalent to Lebesgue and

ergodic.

Besides, if the conditions above hold, then m is SRB and its basin BðmÞ has full

Lebesgue measure.

We prove this Corollary in the paragraph 5.1 at the end of this paper. This

corollary has a similar version for natural measures, when they exist, instead of

SRB-like measures (Theorem 2.4, Part (3) of [10]). From the definition of SRB-

like measure, it is immediate that if there exists some ergodic SRB-like measure m

such that mfm, then it is SRB. Nevertheless it may exist non-ergodic invariant

measures mfm that are neither SRB nor SRB-like (see [19]). In such a case m

satisfies Pesin’s Entropy Formula, as stated in the following lemma. This shows

that the SRB-like condition is su‰cient but not necessary to a measure m be an

equilibrium state for the potential �logj f 0j.

Corollary 2.6. Let f be a C1-expanding map of S1. Let m be a non-ergodic

f -invariant probability such that mfm, where m is the Lebesgue measure. Then

m satisfies Pesin’s Entropy Formula.

The proof of Corollary 2.6 is in the paragraph 5.5. This corollary has a similar

formulation for C1-di¤eomorphisms in any dimension with a dominated splitting

(see [21]).

3. SRB-like measures

We revisit the definition and properties of the SRB-like (weakly physical) mea-

sures. The content of this section is a reformulation of a part of [9].

Proposition 3.1. There exists a unique minimal non-empty and weak� compact set

Of HM such that poðxÞHOf for a full-Lebesgue set of initial states x a S1.

Proof. Consider the family 1 of all the non-empty and weak� compact sets

AHM such that poðxÞHA for a full Lebesgue set of initial states x a S1. The

family 1 is not empty, since triviallyM a 1. Define in 1 the partial orderA1aA2

if and only if A1 HA2. We assert that each chain in 1 has a minimal element in

1. In fact, fAaga A@ H1 is a chain if it is a totally ordered subset of 1. Let us

prove that A :¼ 7
a A@ Aa belongs to 1. For each fixed a a @, and for each e > 0

define B0ðaÞ :¼ fx a M : poðxÞHAag, BeðAÞ :¼ fx a M : poðxÞHBeðAÞg,
where BeðAÞ :¼ fn a M : distðn;AÞ < eg. To conclude that A a 1, it is enough

to prove that m
�
BeðAÞ

�
¼ 1 for all e > 0, where m denotes the Lebesgue measure

on M. For all e > 0 there exists a a @ such that AaHBeðAÞ. (If it did not exist
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then, by the property of finite intersections of compact sets, and since fAaga A@
is totally ordered, we would deduce that the set 7

a A@
�
AanBeðAÞ

�
would be

non-empty, contained in A, but disjoint with its open neighborhood BeðAÞ.)
We deduce that B0ðaÞHBeðAÞ. Since Aa a 1, we have that m

�
B0ðaÞ

�
¼ 1 for all

a a @. Thus m
�
BeðAÞ

�
¼ 1 for all e > 0, and therefore A a 1. We have proved

that each chain in 1 has a minimal element in 1. So, by Zorn’s Lemma there exist

minimal elements in 1, namely, minimal non-empty and weak� compact sets

OHM such that poðxÞHO for Lebesgue almost all x a S1. Finally, the minimal

element OH1 is unique since the intersection of two of them is also in 1. r

Definition 3.2 (SRB-like probability measures). A probability measure m a M is

SRB-like or weakly physical if m a Of , where Of is the set of Proposition 3.1.

It is immediate that any SRB-like measure is f -invariant. In fact, the set of

f -invariant Borel probabilities is non-empty, weak�-compact and contains poðxÞ
for all x a S1. It is also immediate that all the SRB measures (according with

Definition 2.1), if they exist, are SRB-like measures. In fact, if m B Of , then since

poðxÞHOf for Lebegue-almost all x a S1, the set BðmÞ ¼ fx a S1 : poðxÞ ¼
fmgg has zero Lebesgue-measure, and thus m is non-SRB.

down vote favorite

How can I make the first subsection under a section start on ‘‘d’’? I currently

have the following code to get a,b,c,d . . . :

3.3. Proof of Proposition 2.2. As stated in Section 2, this proposition gives an

individual (weakly) physical meaning to each of the SRB-like measures.

Proof. Let us denote with m the Lebesgue measure. For any e > 0 and any m a M

let us denote BeðmÞ to the ball of center m and radius e in M, defined with the met-

ric dist. If m a Of then m
�
AeðmÞ

�
> 0 for all e > 0, because if not, the compact set

K :¼ Of nBeðmÞ would be strictly contained in Of and such that poðxÞHK for

Lebesgue almost all x a S1. (Therefore K is not empty.) This last contradicts

the minimality condition of Of in Proposition 3.1. Thus any SRB-like measure

satisfies the statement m
�
AeðmÞ

�
> 0 for all e > 0. On the other hand, if a Borel

probability measure m satisfies the inequality m
�
AeðmÞ

�
> 0 for all e > 0, and since

poðxÞHOf for m a.e. x a S1, we obtain BeðmÞBOf A j for all e > 0. Namely, m

is in the weak�-closure of Of . Since Of is weak
�-compact (see Proposition 3.1) we

conclude that m a Of as wanted. r

4. Proof of Theorem 2.3

Denote by Mf HM the set of all the f -invariant Borel probability measures on

S1. Let us recall the definition of the measure-theoretic entropy. For any Borel
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measurable finite partition P of S1, and for any (not necessarily invariant) proba-

bility m it is defined

HðP; mÞ :¼ �
X
Xi AP

mðXiÞ log mðXiÞ:

If besides m a Mf then

hðP; mÞ :¼ lim
q!þl

HðPq; mÞ
q

:

In the equality above Pq :¼ 4q�1

j¼0 f �jðPÞ, where for any pair of finite parti-

tions P and Q it is defined P4Q :¼ fX BY A j : X a P;Y a Qg. It is a

well-established result that the limit defining hðP; mÞ exists. Finally, the measure-

theoretic entropy hm of an f -invariant measure m is defined by hm :¼ supP hðm;PÞ;
where the sup is taken on all the Borel measurable finite partitions P of the

space.

We define the diameter diamP of a finite partition P as the minimum diame-

ter of its pieces. A well-known result (see Proposition 2.5 of [6]) states that if f is

expansive (in particular if f a E1), and if P is a partition with diameter smaller

than the expansivity constant, then hm ¼ hðm;PÞ for all m a Mf . Applying this re-

sult, in the sequel we will consider only finite partitions with diameter smaller than

the expansivity constant a of f a E1. So, we will compute the measure-theoretic

entropy by

hm ¼ lim
q!þl

HðPq; mÞ
q

if diamðPÞ < a: ð8Þ

For any (not necessarily f -invariant) Borel probability n, denote f �n to the prob-

ability defined by f �nðBÞ :¼ n
�
f �1ðBÞ

�
for any Borel-measurable set B. For a

given finite partition P denote qP :¼ 6
X AP qX , where qX denotes the topologi-

cal boundary of the piece X . The only step along the proof of Theorem 2.3 (which

is one of the key-points of this proof ), for which we use that the space has

dimension one, resides in the application of the following lemma, in particular in

its statements (ii) and (iii). This lemma is essentially a restatement of a part of

Misiurewicz’s proof of the Variational Principle:

Lemma 4.1. Let f be a C1-expanding map on S1. Let a > 0 be an expansivity

constant. For all 0 < da a there exists a finite partition P of S1 such that:

(i) diamðPÞ < da a;

(ii) mðqPÞ ¼ 0 for all m a Mf ;
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(iii) for any sequence of not necessarily invariant probabilities nn, for any m a Mf

equal to the weak� limit of a convergent subsequence fmnigib1 of mn :¼
1
n

Pn�1
j¼0 ð f jÞ�nn, and for any e > 0, there exists i0 such that

1

ni
HðPni ; nniÞa hm þ e Eib i0:

Proof. Take any finite covering U of S1 with open intervals with length smaller

than d. Denote qU :¼ 6
X AU qX . It is a finite set. Therefore mðqUÞ ¼ 0 for all

m a Mf if and only if qU does not contain periodic points of f . Since f a E1,

the set of periodic points is countable. Then, changing if necessary the open inter-

vals X a U to slightly smaller ones such that they still cover S1 and their bound-

ary points are non-periodic, we get a new covering U 0 ¼ fYig1aiap such that

mðqU 0Þ ¼ 0 for all m a Mf . Therefore, the partition P ¼ fXig1aiap defined by

X1 :¼ Y1 a U 0, Xiþ1 :¼ Yiþ1nð6 i

j¼1 XiÞ, satisfies the assertions (i) and (ii). Let us

prove that (i) and (ii) imply (iii). Fix the integer numbers qb 1, and nb q. Write

n ¼ Nqþ j where N, j are integer numbers such that 0a ja q� 1 Fix a (not

necessarily invariant) probability n. From the properties of the entropy function

H of n with respect to the partition P, we obtain

HðPn; nÞ ¼ HðPNqþ j; nÞaH
�
4
j�1

i¼0

f �iP; n
�
þH

�
4
N

i¼1

f �iqPq; n
�

a
Xj�1

i¼0

Hð f �iP; nÞ þ
XN
i¼1

Hð f �iqPq; nÞ

¼
Xj�1

i¼0

H
�
P; ð f iÞ�n

�
þ
XN
i¼1

H
�
Pq; ð f iqÞ�n

�

) HðPn; nÞa q log pþ
XN
i¼1

H
�
Pq; ð f iqÞ�n

�
Eqb 1; nb q:

To obtain the inequality above recall that HðP; nÞa log p En a M, where p is the

number of pieces of the partition P. The inequality above holds also for f �lP

instead of P, for any lb 0, because it holds for any partition with exactly p

pieces. Thus

Hð f �lPn; nÞa q log pþ
XN
i¼1

H
�
f �lPq; ð f iqÞ�n

�
¼ q log pþ

XN
i¼1

H
�
Pq; ð f iqþlÞ�n

�
:

Adding the above inequalities for 0a la q� 1, we obtain:
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Xq�1

l¼0

Hð f �lPn; nÞa q2 log pþ
Xq�1

l¼0

XN
i¼1

H
�
Pq; ð f iqþlÞ�n

�

)
Xq�1

l¼0

Hð f �lPn; nÞa q2 log pþ
XNqþq�1

l¼0

H
�
Pq; ð f lÞ�n

�
: ð9Þ

On the other hand, for all 0a la q� 1,

HðPn; nÞaHðPnþl ; nÞa
�Xl�1

i¼0

Hð f �iP; nÞ
�
þHð f �lPn; nÞ

a q log pþHð f �lPn; nÞ:

Therefore, adding the above inequalities for 0a ja q� 1 and joining with the

inequality (9), we obtain

qHðPn; nÞa 2q2 log pþ
XNqþq�1

l¼0

H
�
Pq; ð f lÞ�n

�
:

Recall that n ¼ Nqþ j with 0a ja q� 1. So Nqþ qa nþ q and then

qHðPn; nÞa 2q2 log pþ
Xn�1

l¼0

H
�
Pq; ð f lÞ�n

�
þ

XNqþq�1

l¼n

H
�
Pq; ð f lÞ�n

�

) qHðPn; nÞa 3q2 log pþ
Xn�1

l¼0

H
�
Pq; ð f lÞ�n

�
:

In the last inequality we have used that the number of non-empty pieces of Pq is

at most pq. Now we put n ¼ nn and divide by n. Recall that the convex combina-

tion of the function H for a finite set of probability measures is not larger than the

function H for the convex combination of the measures. We deduce:

qHðPn; nnÞ
n

a
3q2 log p

n
þ 1

n

Xn�1

l¼0

H
�
Pq; ð f lÞ�nn

�

) qHðPn; nnÞ
n

a
3q2 log p

n
þHðPq; mnÞ:

For any fixed e > 0 (and the natural number qb 1 still fixed), take nb nðqÞ :¼
maxfq; 9q log p=eg in the inequality above. We deduce:
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q

n
HðPn; nnÞa

qe

3
þHðPq; mnÞ Enb nðqÞ Eqb 1

) 1

n
HðPn; nnÞa

e

3
þHðPq; mnÞ

q
Enb nðqÞ Eqb 1: ð10Þ

The inequality above holds for any fixed qb 1 and for any n large enough, de-

pending on q.

By hypothesis, m is f -invariant equal to the weak�-limit of a convergent sub-

sequence of mn. By equality (8) there exists qb 1 such that

HðPq; mÞ
q

a hm þ
e

3
: ð11Þ

Fix such a value of q. Since m
�
qðPÞ

�
¼ 0 for all m a Mf ,

lim
i!þl

HðPq; mniÞ ¼ HðPq; mÞ if lim
i!þl

ðweak�Þmni ¼ m

because mðqPqÞ ¼ 0. Thus there exists i0 such that

ni b nðqÞ and
HðPq; mniÞ

q
a

HðPq; mÞ
q

þ e

3

for all ib i0. Combining the last assertion with inequalities (10) and (11) we

deduce (iii), as wanted. r

4.2. Notation. For any f a E1 denote c :¼ �logj f 0j < 0, and for all rb 0

construct

Kr :¼
n
n a Mf :

ð
c dnþ hnb�r

o
: ð12Þ

The notation above is taken from the book [12]. The set Kr is non-empty, weak�

compact and convex. This follows from the proof of Theorem 4.2.3 in [12] to-

gether with Theorem 4.2.4 and Remark 6.1.10 therein. Combining the assertions

(1), (3) and (12) we deduce that ESf ¼ K0 is weak
� compact and convex.

For any integer nb 1 and for all x a S1, recall the definition of the empirical

probability snðxÞ in equality (4) and the definition of the p-limit set poðxÞ in the

set M of Borel probabilities, according to equality (6). In M fix the weak� metric

distðm; nÞ :¼
Xþl

i¼0

1

2 i

���
ð
fi dm�

ð
fi dn

���; ð13Þ
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where f0 :¼ c ¼ �logj f 0j and ffigib1 is a countable family of continuous func-

tions that is dense in the space C0ðS1; ½0; 1�Þ. Trivially with this distance, for any

m0 a M and any e > 0, the ball B :¼ fn a M : distðm0; nÞ < eg is convex.

Lemma 4.3. Let f be a C1-expanding map on S1. Let m be the Lebesgue measure

on S1. Fix r > 0 and let Kr be defined by equality (12). Consider the weak� dis-

tance defined in (13). Then, for all 0 < e < r=2, there exists n0b 1 such that

m
��

x a S1 : dist
�
snðxÞ;Kr

�
b e

��
a enðe�rÞ < e�nr=2 Enb n0: ð14Þ

Proof. Fix 0 < e < r=2. Observe that the set fm a M : distðm;KrÞb eg is weak�

compact, so it has a finite covering fBig1aiak, for a minimal cardinal kb 1,

with open balls Bi HM of radius e=3. For any fixed nb 1 write

Cn; i :¼ fx a S1 : snðxÞ a Big; Cn :¼ 6
k

i¼1

Cn; i:

Then

�
x a S1 : dist

�
snðxÞ;Kr

�
b e

�
HCn:

Therefore, to prove the lemma it is enough to find n0 such that mðCnÞa enðe�rÞ for
all nb n0. Fix 1a ia k. We claim:

bni such that mðCn; iÞa enð�rþðe=2ÞÞ Enb ni: ð15Þ

First, let us see that it is enough to prove assertion (15) to finish the proof of

the lemma. In fact, if assertion (15) holds, put n0 :¼ maxf2ðlog kÞ=e;maxk
i¼1 nig.

Then we deduce the following inequality for all nb n0, as wanted:

mðCnÞa
Xk

i¼1

mðCn; iÞa kenð�rþe=2ÞÞ ¼ enð�rþðe=2Þþðlog k=nÞÞ
a enðe�rÞ:

Secondly, let us prove assertion (15). Consider an expansivity constant a > 0

of f . Take e=6 and for such value, fix a continuity modulus 0 < d < a of the func-

tion c ¼ �logj f 0j. Namely jcðxÞ � cðyÞj < e=6 if distðx; yÞ < d. Take a finite

partition P ¼ fXig1aiap of S1 with diameter smaller than d and satisfying

also the conditions (ii) and (iii) of Lemma 4.1. The map f is conjugated to a

linear expanding map. Therefore, if the diameter of the partition P is chosen

small enough, the restricted map f njX : X 7! f nðXÞ is a di¤eomorphism for all
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X a Pn and for all nb 1. Thus, recalling that c ¼ �logj f 0j, we deduce the fol-

lowing equality for all X a Pn:

mðX BCn; iÞ ¼
ð
f nðXBCn; iÞ

jð f �nÞ0j dm ¼
ð
f nðXBCn; iÞ

eT
n�1
j¼0 c� f j

dm

) mðCn; iÞ ¼
X
X APn

ð
f nðXBCn; iÞ

eT
n�1
j¼0 c�f j

dm:

Either Cn; i ¼ j, and assertion (15) becomes trivially proved, or the finite family

of pieces fX a Pn : X BCn; i A jg ¼ fX1; . . . ;XNg has N ¼ Nðn; iÞ pieces for

some Nb 1. In this latter case, take a unique point yk a Xk BCn; i for each

k ¼ 1; . . . ;N. Denote by Yðn; iÞ ¼ fy1; . . . ; yNg the collection of such points.

Due to the construction of d > 0, and since the partition P has diameter smaller

than d, we deduce

Xn�1

j¼0

c
�
f jðyÞ

�
a

Xn�1

j¼0

�
c
�
f jðykÞ

�
þ e=6

�
Ey; yk a Xk; Ek ¼ 1; . . . ;N:

Therefore mðCn; iÞa ene=6
PN

k¼1 e
T

n�1
j¼0 cð f jðykÞÞm

�
f nðXk BCn; iÞ

�
and thus

mðCn; iÞa ene=6
XN
k¼1

eT
n�1
j¼0 cð f jðykÞÞ:

Define

L :¼
XN
k¼1

eT
n�1
j¼0 cð f jðykÞÞ; lk :¼ 1

L
eT

n�1
j¼0 cð f jðykÞÞ > 0:

Then
PN

k¼1 lk ¼ 1 and

mðCn; iÞa eðne=6ÞþlogL; logL ¼
�XN

k¼1

lk
Xn�1

j¼0

c
�
f jðykÞ

��
�
�XN

k¼1

lk log lk

�
:

(To check the last equality substitute lk by the quotient which defines it.) Define

the probability measures

nn :¼
XN
k¼1

lkdyk ; mn :¼
1

n

Xn�1

j¼0

ð f jÞ�ðnnÞ ¼
XN
k¼1

lk
1

n

Xn�1

j¼0

df jðykÞ ¼
XN
k¼1

lksnðykÞ:
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It is standard to check that

XN
k¼1

lk
Xn�1

j¼0

c
�
f jðykÞ

�
¼ n

ð
c dmn;

XN
k¼1

lk log lk ¼ HðPn; nnÞ

and then

mðCn; iÞa exp
ne

6
þ logL

� 	
¼ exp

�
n
� e

6
þ
ð
c dmn þ

HðPn; nnÞ
n

�	
:

Take a subsequence nl ! þl such that

• liml!þl
1
nl
logmðCnl ; iÞ ¼ lim supn!þl

1
n
logmðCn; iÞ and

• the sequence fmnlglb1 is weak
�-convergent.

Denote m ¼ liml!þl mnl . By assertion (iii) of Lemma 4.1 and the definition of

the weak� topology, there exists ni b 1 such that

mðCn; iÞa exp

�
n
� e

2
þ
ð
c dmþ hm

�	
Enb ni: ð16Þ

By construction yk a Cn; i for all k ¼ 1; . . . ;N. Thus snðykÞ a Bi. Since the ball

Bi is convex and mn is a convex combination of the measures snðykÞ (recall thatPN
k¼1 lk ¼ 1), we deduce that mn a Bi. Therefore, the weak� limit m of any con-

vergent subsequence of fmngnb1 belongs to Bi. Since the ball Bi has radius e=3

and intersects fm a M : distðm;KrÞb eg, we have m a Bi HMnKr . Therefore,

by the definition of the set Kr, we have: hm þ
Ð
c dm < �r. Substituting this last

inequality into (16) we conclude (15) ending the proof. r

4.4. End of the proof of Theorem 2.3. For any r > 0 consider the compact set

Kr HM defined by equality (12). Since fKrgr is decreasing with r, we have

K0 ¼ 7
r>0

Kr :

From equalities (1) and (3) and from the definition of K0 in equality (12), we have

K0 ¼ ESf :

So, to prove Theorem 2.3 we must prove that the set Of of SRB-like measures

satisfy Of HKr for all r > 0. Since Kr is weak
� compact, we have

Kr ¼ 7
e>0

Bðr; eÞ; where Bðr; eÞ :¼ fm a M : distðm;KrÞa eg;
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with the weak� distance defined in (13). Therefore, it is enough to prove that

Of HBðr; eÞ for all 0 < e < r=2 and for all r > 0. By Proposition 3.1, and since

Bðr; eÞ is weak� compact, it is enough to prove that the following set Bðr; eÞ (called
basin of attraction of Bðr; eÞ) has full Lebesgue measure:

Bðr; eÞ :¼ fx a S1 : pwðxÞHBðr; eÞg:

By Lemma 4.3, there exists n0 such that

mfx : snðxÞ B Bðr; eÞga enðe�rÞ
a e�nr=2

for any n > n0, where m denotes the Lebesgue measure. This implies that

Xl
n¼1

m
�
x : snðxÞ B Bðr; eÞ

�
< þl:

By Borel–Cantelli Lemma it follows that

m
�

7
l

n0¼1

6
l

n¼n0

fx : snðxÞ B Bðr; eÞg
�
¼ 0:

In other words, for m-a.e. x a S1 there exists n0b 1 such that snðxÞ a Bðr; eÞ for
all nb n0. Hence, pwðxÞHBðr; eÞ for m-almost all the points x a S1, as wanted.

5. Proofs of the corollaries

5.1. Proof of Corollary 2.4. If m is an atomic invariant measure for an expand-

ing map f , then hmð f Þ ¼ 0. Since c ¼ �log f 0 < 0, we have hmð f Þ þ
Ð
c dm < 0.

Therefore m does not satisfy Pesin’s formula (3). By Theorem 2.3.3 the measure m

is not SRB-like.

To prove Corollaries 2.5 and 2.6 we will use the following definition:

Definition 5.2. For any f -invariant probability measure m the weak�-closure
KðmÞ of the ergodic components of m is the minimal non-empty and weak�-
compact set of probabilities such that

mx :¼ lim
n!þl

1

n

Xn�1

j¼0

df jðxÞ a KðmÞ m-a:e: x a S1: ð17Þ

By Birkho¤ ’s Ergodic Theorem, the above limit exists (in the weak� topology)
m-a.e. x a S1. Applying Zorn’s Lemma (as in the proof of Proposition 3.1, putting
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m in the role of the Lebesgue measure m), we deduce that the minimal compact set

KðmÞ satisfying (17) exists and is unique. We call KðmÞ the weak� closure of the
ergodic components of m because for m-a.e. x a X 1 the limit mx in equality (17) is an

ergodic component of m (see for instance Theorem 4.1.12 of [11].)

Lemma 5.3. For any f -invariant measure m, consider the weak�-closureKðmÞ of its
ergodic components, as defined in (5.2). Then m is ergodic if and only if m a KðmÞ,
and if this latter inclusion is met, then KðmÞ ¼ fmg. Thus, m is non-ergodic if and

only if dist
�
m;KðmÞ

�
> 0.

Proof. By Definition 5.2 and the definition of ergodicity, we have K ¼ fmg if and

only if m is ergodic. Now, it is enough to prove that if m a KðmÞ then m is ergodic.

Consider the weak� distance defined by equality (13). For any e > 0 consider the

ball Be ¼ fn a M : distðn; mÞ < eg and the set

Ae ¼ fx a S1 : poðxÞHBeg: ð18Þ

We claim that mðAeÞ > 0 for all e > 0. In fact, arguing by contradiction if

mðAeÞ ¼ 0, and since poðxÞ is a single measure for m-almost all the points x a S1,

it follows that mðfx a S1 : poðxÞHKðmÞnBegÞ ¼ 1. This contradicts the mini-

mality of KðmÞ in Definition 5.2. Consider the sequence of continuous func-

tions fi in equality (13), which defines the weak� metric dist. Applying the

Ergodic Decomposition Theorem (see for instance Theorem 4.1.12 of [11]) we

obtain

ð
Ae

fi dm ¼
ð
dm

ð
Ae

fi dmx;

where mx is an ergodic component of m. Since Ae satisfies equality (18), and

poðxÞ ¼ fmxg for m-a.e. x a S1, we deduce mx a Be for m-a.e. x a Ae. Therefore

Xþl

i¼0

1

2 i

���
ð
fi dm�

ð
Ae

fi dm
��� ¼ Xþl

i¼0

1

2 i

���
ð
fi dm�

ð
dm

ð
Ae

fi dmx

���

a
Xþl

i¼0

1

2 i

ð ���
ð
fi dm�

ð
Ae

fi dmx

��� dma 2e:

The bounded linear operator j a C0ðS1;RÞ 7!
Ð
Ae
j dm (via Riesz Representa-

tion Theorem) is the integral operator with respect to the finite measure me, defined

by

meðBÞ :¼ mðAeBBÞ
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for all the Borel sets BHS1. The above inequality is translated as

distðme; mÞa 2e

in the space of all the finite Borel-measures n such that nðS1Þa 1. Thus,

lime!0þ me ¼ m in such a space endowed with the weak�-topology. We deduce

that lime!0þ
Ð
j dme ¼

Ð
j dm for any j a C0ðS1;RÞ. In particular for the constant

real function j ¼ 1, we obtain that lime!0þ mðAeÞ ¼ 1. Consider the basin BðmÞ of
attraction of m defined by equality (5). By construction, the sets Ae decrease to

BðmÞ when e > 0 decrease going to zero. Thus, BðmÞ ¼ 7
e>0 Ae and m

�
BðmÞ

�
¼

lime!0þ mðAeÞ ¼ 1. Taking into account the definition of the basin BðmÞ in equal-

ity (5), we conclude that limn!þlð1=nÞ
Pn�1

j¼0 df jðxÞ ¼ m for m-a.e. x a S1. Thus m

is ergodic, as wanted. r

5.4. Proof of Corollary 2.5. Trivially, (b) implies (a) and it also implies that m is

SRB and that its basin of attraction has full-Lebesgue measure (recall Definitions

2.1 and 3.2). So, it is only left to prove that (a) implies (b).

Assume (a). Since m is SRB-like, it is f -invariant. Using that mf m and

applying Birkho¤ Theorem and Definition 5.2, we obtain that poðxÞ ¼ fmxg for

m a.e. x a S1, where mx a KðmÞ. Applying Proposition 2.2 to the SRB-like mea-

sure m, for all e > 0 there exists a m-positive set AeðmÞ such that dist
�
poðxÞ; m

�
< e.

We deduce that dist
�
m;KðmÞ

�
< e for all e > 0. Thus, m a KðmÞ. As proved in

Lemma 5.3, if m were non-ergodic then it would be isolated from the weak� clo-

sure KðmÞ of the set of its ergodic components. Since m a KðmÞ, m is ergodic.

Therefore, by definition of ergodicity, poðxÞ ¼ fmg for m-a.e. x a S1. From the

condition mf m we deduce that poðxÞ ¼ fmg for m-a.e. x a S1. This implies,

together with Proposition 3.1 and Definition 3.2, that m is the unique SRB-like

measure. Now, to end the proof of (b) it is only left to check that mfm. Take

any Borel set BHS1 such that mðBÞ > 0 and construct the set C ¼ 6n

j¼0
ð f �nÞðBÞ.

It satisfies f �1ðCÞHC. Since m is ergodic and mðCÞbmðBÞ > 0, we have

mðCÞ ¼ 1. As mf m we deduce mðCÞ > 0. Therefore m
�
f �nðBÞ

�
> 0 for some

nb 0. Note that f �mfm, i.e., m
�
f �1ðBÞ

�
¼ 0 if mðBÞ ¼ 0 (this assertion holds

because f a C1 and f 0 is bounded away from zero). We conclude the mðBÞ > 0.

This shows that mðBÞ > 0 if mðBÞ > 0, or in other words, mfm, ending the proof.

5.5. Proof of Corollary 2.6

Proof. From Definition 5.2 we have limnð1=nÞ
Pn�1

j¼0 df jðxÞ ¼ mx a KðmÞ for m-

almost all the points x a S1. Since mfm, we have an m-positive set of initial

states x a S1 such that fmxg ¼ poðxÞHKðmÞ. By Definition 3.2 of the set Of of

SRB-like measures, and by the minimality of KðmÞ in Definition 5.2, we deduce

that KðmÞHOf . In other words, if n a KðmÞ, then n is SRB-like. Applying
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Theorem 2.3 and recalling assertion (3), we obtain KðmÞHESf . From the Birkh-

o¤ Ergodic Theorem, for any continuous function j, it follows that

ð
j dm ¼

ð
lim

n!þl

1

n

Xn�1

j¼0

j � f j dm ¼
ð � ð

j dmx

�
dm;

where mx a KðmÞ is defined by equality (17). The above integral decomposi-

tion implies that m is in the weak�-compact convex hull of KðmÞHESf . Since

ESf is weak�-compact and convex (because f is expansive), we get m a ESf , as

wanted. r
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