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Diophantine equations with binary recurrences
associated to the Brocard–Ramanujan problem
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Abstract. In this paper, applying the Primitive Divisor Theorem, we solve completely the
diophantine equation

Gn1Gn2 . . .Gnk þ 1 ¼ G2
m

in non-negative integers k > 0, m and n1 < n2 < � � � < nk if the binary recurrence fGngln¼0 is
either the Fibonacci sequence, or the Lucas sequence, or it satisfies the recurrence relation
Gn ¼ AGn�1 � Gn�2 with G0 ¼ 0, G1 ¼ 1 and an arbitrary positive integer A. The more
specific case

GnGnþ1 . . .Gnþk�1 þ 1 ¼ G2
m

was investigated by Marques [3] in Portugaliae Mathematica in the case of the Fibonacci
sequence.
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1. Introduction

Let Fn denote the n
th term of the Fibonacci sequence. The variant

FnFnþ1 . . .Fnþk�1 þ 1 ¼ F 2
m ð1Þ

of the Brocard–Ramanujan problem was investigated by Marques [3]. Applying

the Primitive Divisor Theorem (in short, PDT), the author proved that (1) has

no solution in positive integers n, k and m. Although the idea of the proof is

correct and adequate for equation (1), unfortunately by some inaccuracy in the



evaluation, the solutions F4 þ 1 ¼ F 2
3 and F6 þ 1 ¼ F 2

4 to (1) have not been

noticed. Article [4] of the same author deals with a modification of (1).

Consider now the following generalization. Replace the Fibonacci sequence

by any binary recurrence fGngln¼0, and suppose that the subscripts of the terms

in the product on the left-hand side of (1) do not necessarily form an arithmetic

progression with di¤erence 1. More precisely, we will examine the diophantine

equation

Gn1Gn2 . . .Gnk þ 1 ¼ G2
m ð2Þ

in integers kb 1, mb 0 and 0a n1 < n2 < � � � < nk.

In this paper, the complete solution to (2) is provided if the terms Gn are

either the Fibonacci numbers, or the Lucas numbers or they satisfy the relation

Gn ¼ AGn�1 � Gn�2, where A is any positive integer and G0 ¼ 0, G1 ¼ 1.

Since the primitive divisors play a crucial role in the proofs, first we deal with

them. Suppose that a and b are two algebraic numbers such that aþ b and ab are

non-zero coprime integers, and a=b is not a root of unity. The sequence

Un ¼
an � b nffiffiffiffi

D
p ð3Þ

is called Lucas sequence linked to a and b, where
ffiffiffiffi
D

p
¼ a� b. It is known that

the terms Un satisfy the recurrence relation Un ¼ ðaþ bÞUn�1 � ðabÞUn�2 for

nb 2, further the initial values are U0 ¼ 0, U1 ¼ 1. Formula (3) is often called

Binet formula corresponding to the sequence fUngln¼0. Obviously, the linear re-

cursive sequence given previously by Gn ¼ AGn�1 � Gn�2 and G0 ¼ 0, G1 ¼ 1 is

included in Lucas sequences if Ab 3.

The prime p is a primitive divisor of Un if

p jUn but pFDU1 . . .Un�1: ð4Þ

The question of primitive divisors has more than one century of history. The most

remarkable results are due to Bilu, Hanrot and Voutier [1], who completely de-

scribed the sequences that have no primitive divisors at some term Un, and these

terms are exactly determined. For our purpose, it is su‰cient to apply the weaker

result of Carmichael [2], where he defined the primitive divisors without the factor

D in (4).

Theorem 1.1 (Carmichael, PDT). If a and b are real numbers and nA 1; 2; 6, then

Un contains a primitive divisor, except when n ¼ 12, aþ b ¼ 1, ab ¼ �1 (i.e. except

the Fibonacci sequence).
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In the sequel we consider the posed problem for the three aforementioned

sequences.

2. Fibonacci sequence

In this section we generalize the result of Marques [3]. It is well known that in the

case of the Fibonacci sequence a ¼ ð1þ
ffiffiffi
5

p
Þ=2, b ¼ ð1�

ffiffiffi
5

p
Þ=2, D ¼ 5 hold in

formula (3). Putting

e ¼ eðmÞ ¼ 2 if m is even;

1 if m is odd;

�

we can formulate the result associated to the Fibonacci sequence.

Theorem 2.1. The diophantine equation

Fn1Fn2 . . .Fnk þ 1 ¼ F 2
m ð5Þ

in positive integers k, m and 3a n1 < n2 < � � � < nk has an infinite family of solu-

tions given by

Fm�eFmþe þ 1 ¼ F 2
m; mb 5:

Moreover, there exist only two sporadic solutions: F4 þ 1 ¼ F 2
3 and F6 þ 1 ¼ F 2

4 .

Remark 2.2. Note that the relation F1 þ 1AF 2
m makes it possible to avoid

F1 ¼ 1 on the left-hand side of (5). This does not change if one replaces F1 with

F2 ¼ 1 or F1F2. Thus we can assume that 3a n1.

On the other hand, the two sporadic solutions can be included in the infinite

family by allowing F1 or F2 among the factors of the product: F2F4 þ 1 ¼ F 2
3

and F2F6 þ 1 ¼ F 2
4 .

In the proof we will use

Lemma 2.3. F 2
m � 1 ¼ Fm�eFmþe holds for any positive integer m.

Proof. This is an immediate consequence of the identities (3) in [3]. Or one can

show the result by the direct application of the Binet formula for the Fibonacci

numbers. r

Proof of Theorem 2.1. Taking a solution to (5), by Lemma 2.3 we get

Fn1Fn2 . . .Fnk ¼ Fm�eFmþe: ð6Þ
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Suppose that mb 15. Then 13am� e < mþ e, therefore we can apply Theorem

1.1. Since Fmþe has a primitive divisor, nk ¼ mþ e and (6) reduces to

Fn1Fn2 . . .Fnk�1
¼ Fm�e: ð7Þ

Now Fm�e > 1 entails kb 2. Using the same arguments linked to primitive divi-

sors as above, (7) provides nk�1 ¼ m� e. Consequently, k ¼ 2, i.e., there are

no more terms on the left-hand side of (7). Thus we obtain an infinite family of

solutions Fm�eFmþe þ 1 ¼ F 2
m, mb 15. Clearly, this can be extended for mb 5 by

Lemma 2.3.

Assume that 3ama 14 is fixed. Since F2m > F 2
m for m > 1, it is easy to check

all the candidates of the solution to (5) by running over on the possibilities

F d3
3 F d4

4 . . .F d2m�1

2m�1 þ 1 ¼ F 2
m

with di a f0; 1g. The verification yields the aforementioned two sporadic solu-

tions.

Clearly, neither m ¼ 1 nor m ¼ 2 is possible in (5). r

3. The companion sequence of Fibonacci numbers

As usual, the companion sequence (or associate sequence) of Un defined by (3) is

the sequence Vn ¼ an þ b n. In the case of Fibonacci sequence, its companion is

denoted by fLngln¼0 and often called also Lucas sequence. In order to avoid the

ambiguousness in Un and Ln, we always call the terms Ln Fibonacci–Lucas

numbers. At the first sight the application of PDT in solving the analogous

problem of (2) for Fibonacci–Lucas numbers is impossible since fLngln¼0 is not a

Lucas sequence in sense of (3). But the identities in the following lemma allow us

to transform the problem

Ln1Ln2 . . .Lnk þ 1 ¼ L2
m ð8Þ

into an equivalent form containing only Fibonacci numbers.

Lemma 3.1.

L2
m � 1 ¼ F3m=Fm if m is even;

5Fm�1Fmþ1 if m is odd:

�
ð9Þ

Proof. This can be easily obtained by using the explicit formulae for Fn and Ln.

r
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Theorem 3.2. The diophantine equation

Ln1Ln2 . . .Lnk þ 1 ¼ L2
m ð10Þ

in non-negative integers k > 0, m and n1 < n2 < � � � < nk ðni A 1Þ has only the

single solution L2 þ 1 ¼ L2
0.

Before turning to the details of the proof, we note that L1 þ 1AL2
m. Therefore

we may suppose that ni A 1 (i ¼ 1; . . . ; k). We also remark that L2 þ 1 ¼ L2
0

trivially satisfies the weaker equation LnLnþ1 . . .Lnþk�1 þ 1 ¼ L2
m.

Proof of Theorem 3.2. Considering a solution to (10), assume first that m is a

positive even integer. Then (8), together with (9) and the well-known identity

FnLn ¼ F2n, implies that

F2n1

Fn1

F2n2

Fn2

. . .
F2nk

Fnk

¼ F3m

Fm

: ð11Þ

Suppose now that mb 14. Then F3m has a primitive divisor by Theorem 1.1.

Consequently, 2nk ¼ 3m, i.e., nk ¼ 3m=2 > m. Obviously, kA 1, otherwise (11)

reduces to Fm ¼ Fn1 , and we arrive at a contradiction to m ¼ n1. Assuming

k ¼ 2, (11) simplifies to

F2n1

Fn1

Fm ¼ Fn2 :

Since n2 > m, Fn2 contains a primitive divisor. Then n2 ¼ 2n1 and m ¼ n1, which

contradicts n2 ¼ 3m=2. If kb 3, observe that nk�1 < m holds, otherwise it would

contradict Lnk�1
Lnk < L2

m. Thus, again by nk ¼ 2nk�1, we conclude that

F2n1

Fn1

. . .
F2nk�2

Fnk�2

Fm ¼ Fnk�1
; ð12Þ

which has no solution since mb 14. Therefore Fm has a primitive divisor on the

left-hand side of (12), which cannot exist on the right-hand side.

In the next part we must check the cases when the even m is at most 12. Fac-

torizing the candidates L2
m � 1, none of them is a product of other Lucas numbers,

except L2
0 � 1 ¼ L2.

Assume now that the subscript m is odd. Then again by (8) and (9), we obtain

Ln1Ln2 . . .Lnk ¼ 5Fm�1Fmþ1: ð13Þ

Since 5 divides no Lucas numbers, (13) is impossible. r
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4. The sequence UnFAUnC1 CUnC2

Let A denote a positive integer. Assume that the terms of the linear recurrence

fUngln¼0 satisfy the recurrence relation Un ¼ AUn�1 �Un�2 with the initial values

U0 ¼ 0 and U1 ¼ 1. Thus the Binet formula (3) is valid with

a ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4

p

2
and b ¼ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4

p

2
: ð14Þ

For example, the sequence of Balancing numbers is corresponding to A ¼ 6.

In this section we consider a more general question than (2) for the sequence

fUngln¼0. Namely, for Ab 3 we study and solve the diophantine equation

Un1Un2 . . .Unk þU 2
t ¼ U 2

m

in positive integers k, t, m and 2a n1 < n2 < � � � < nk.

Note that if A ¼ 1 then the sequence fUngln¼0 is the periodic repetition of the

cycle

0; 1; 1; 0; �1; �1

and the posed problem is of no interest anymore. The case A ¼ 2 is still beyond

reach since it is exactly the original Brocard–Ramanujan problem if we prescribe

t ¼ 1, n1 ¼ 1 and ni þ 1 ¼ niþ1 for i ¼ 1; . . . k � 1. In order to avoid the trivial

and the very di‰cult cases above, we suppose that Ab 3. Then D ¼ A2 � 4b 5.

Thus a and b are positive real numbers, moreover,

fUngln¼0 : U0 ¼ 0; U1 ¼ 1; U2 ¼ A; U3 ¼ A2 � 1; U4 ¼ A3 � 2A;

U5 ¼ A4 � 3A2 þ 1; U6 ¼ A5 � 4A3 þ 3A; . . .

is strictly monotonically increasing.

The precise result is the following.

Theorem 4.1. Suppose that Ab 3. All solutions to the diophantine equation

Un1Un2 . . .Unk þU 2
t ¼ U 2

m ð15Þ

in positive integers k, t, m and 2a n1 < n2 < � � � < nk are determined by the two

infinite families of solutions

• U2tþ1 þU 2
t ¼ U 2

tþ1,

• Um�tUmþt þU 2
t ¼ U 2

m, mb tþ 2.
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The condition 2a n1 is prescribed in order to avoid the trivial factor B1 ¼ 1 on

the left-hand side of (15). It does not cause any problem since if the product there

contains only one term then 1þU 2
t ¼ U 2

m is not soluble.

In the proof we will use the following identity.

Lemma 4.2. If nb k, then U 2
n �U 2

k ¼ Un�kUnþk.

Proof. By (14), we have ab ¼ 1, and then

an � b n

a� b

� �2
� ak � bk

a� b

 !2

¼ a2n þ b2n � a2k � b2k

ða� bÞ2
¼ an�k � b n�k

a� b

anþk � b nþk

a� b
:

r

We also need

Lemma 4.3. If Ab 3, then U2n > U 2
n holds for any positive integer n.

Proof. Since (14) implies that a > b > 0, and a� b > 1 also holds, we conclude

that

U2n

Un

¼ a2n � b2n

an � b n ¼ an þ b n >
an � bn

a� b
¼ Un: r

Proof of Theorem 4.1. Suppose that (15) has a solution. Clearly, mþ tb 3. By

Lemma 4.2,

Un1Un2 . . .Unk ¼ Um�tUmþt ð16Þ

holds.

I. Assume first that mþ t > 6. Now, by Theorem 1.1, Umþt has a primitive

divisor, consequently nk ¼ mþ t. Simplifying (16) by Umþt, we obtain

Un1Un2 . . .Unk�1
¼ Um�t: ð17Þ

Now we distinguish two principal cases.

I/1. If m� t ¼ 1, then Un1Un2 . . .Unk�1
¼ 1 is not soluble since 2a ni, Ab 3

and the sequence fUngln¼0 is strictly monotonically increasing. Therefore k ¼ 1,

which together with the conditions m ¼ tþ 1 and n1 ¼ mþ t leads to the solution

U2tþ1 þU 2
t ¼ U 2

tþ1, tb 3. Obviously, we can extend this family for t ¼ 1; 2 as

well.

I/2. Supposing m� tb 2, first consider the case m� t > 6. By (17) and PDT,

nk�1 ¼ m� t follows. Thus we arrive at the second infinite family of solutions

given by Um�tUmþt þU 2
t ¼ U 2

m, mb tþ 7. Clearly, we may even write mb tþ 2
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to extend the validity by (4.2). Assume now that m� t ¼ 6. Solving all the

possible equations

Ad1ðA2 � 1Þd2ðA3 � 2AÞd3ðA4 � 3A2 þ 1Þd4 ¼ A5 � 4A3 þ 3A

with di a f0; 1g, we find no integer solution in Ab 3.

Finally, for 2am� ta 5 a similar investigation to the case m� t ¼ 6 shows

no further solution.

II. Let mþ t ¼ 6. Observe that mþ t and m� t have the same parity. There-

fore the right-hand side of (16) may contain only one of the terms U4U6 and U2U6

as a polynomial of A. Obviously, by Lemma 4.3, nk a 11 in both cases. The

verifications

Y11
i¼2

U di
i ¼ UjU6

for j ¼ 2 and then for j ¼ 4 do not yield further solutions.

III. Let 4amþ ta 5. Now, by Theorem 1.1 and the analogous equation to

(17), we must consider only U2 ¼ U3. But the roots of A ¼ A2 � 1 are not integer.

IV. Finally, mþ t ¼ 3 gives t ¼ 1 and m ¼ 2. Here, due to Lemma 4.3, we

conclude the following possibilities:

U d2
2 U d3

3 þ 1 ¼ U 2
2 ; ð18Þ

with di a f0; 1g. Since (18) does not possess any additional solution, the proof of

Theorem 4.1 is complete. r
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