Portugal. Math. (N.S.) Vol. 69, Fasc. 3, 2012, 213–220 DOI 10.4171/PM/1914

Diophantine equations with binary recurrences associated to the Brocard–Ramanujan problem

László Szalay

(Communicated by Miguel Ramos)

Abstract. In this paper, applying the Primitive Divisor Theorem, we solve completely the diophantine equation

$$G_{n_1}G_{n_2}\ldots G_{n_k}+1=G_m^2$$

in non-negative integers k > 0, *m* and $n_1 < n_2 < \cdots < n_k$ if the binary recurrence $\{G_n\}_{n=0}^{\infty}$ is either the Fibonacci sequence, or the Lucas sequence, or it satisfies the recurrence relation $G_n = AG_{n-1} - G_{n-2}$ with $G_0 = 0$, $G_1 = 1$ and an arbitrary positive integer *A*. The more specific case

$$G_n G_{n+1} \dots G_{n+k-1} + 1 = G_m^2$$

was investigated by Marques [3] in *Portugaliae Mathematica* in the case of the Fibonacci sequence.

Mathematics Subject Classification (2010). Primary 11B39.

Keywords. Binary recurrences, diophantine equation, primitive divisor theorem.

1. Introduction

Let F_n denote the n^{th} term of the Fibonacci sequence. The variant

$$F_n F_{n+1} \dots F_{n+k-1} + 1 = F_m^2 \tag{1}$$

of the Brocard-Ramanujan problem was investigated by Marques [3]. Applying the Primitive Divisor Theorem (in short, PDT), the author proved that (1) has no solution in positive integers n, k and m. Although the idea of the proof is correct and adequate for equation (1), unfortunately by some inaccuracy in the

L. Szalay

evaluation, the solutions $F_4 + 1 = F_3^2$ and $F_6 + 1 = F_4^2$ to (1) have not been noticed. Article [4] of the same author deals with a modification of (1).

Consider now the following generalization. Replace the Fibonacci sequence by any binary recurrence $\{G_n\}_{n=0}^{\infty}$, and suppose that the subscripts of the terms in the product on the left-hand side of (1) do not necessarily form an arithmetic progression with difference 1. More precisely, we will examine the diophantine equation

$$G_{n_1}G_{n_2}\dots G_{n_k} + 1 = G_m^2 \tag{2}$$

in integers $k \ge 1$, $m \ge 0$ and $0 \le n_1 < n_2 < \cdots < n_k$.

In this paper, the complete solution to (2) is provided if the terms G_n are either the Fibonacci numbers, or the Lucas numbers or they satisfy the relation $G_n = AG_{n-1} - G_{n-2}$, where A is any positive integer and $G_0 = 0$, $G_1 = 1$.

Since the primitive divisors play a crucial role in the proofs, first we deal with them. Suppose that α and β are two algebraic numbers such that $\alpha + \beta$ and $\alpha\beta$ are non-zero coprime integers, and α/β is not a root of unity. The sequence

$$U_n = \frac{\alpha^n - \beta^n}{\sqrt{D}} \tag{3}$$

is called Lucas sequence linked to α and β , where $\sqrt{D} = \alpha - \beta$. It is known that the terms U_n satisfy the recurrence relation $U_n = (\alpha + \beta)U_{n-1} - (\alpha\beta)U_{n-2}$ for $n \ge 2$, further the initial values are $U_0 = 0$, $U_1 = 1$. Formula (3) is often called Binet formula corresponding to the sequence $\{U_n\}_{n=0}^{\infty}$. Obviously, the linear recursive sequence given previously by $G_n = AG_{n-1} - G_{n-2}$ and $G_0 = 0$, $G_1 = 1$ is included in Lucas sequences if $A \ge 3$.

The prime p is a primitive divisor of U_n if

$$p \mid U_n \quad \text{but} \quad p \not\mid DU_1 \dots U_{n-1}.$$
 (4)

The question of primitive divisors has more than one century of history. The most remarkable results are due to Bilu, Hanrot and Voutier [1], who completely described the sequences that have no primitive divisors at some term U_n , and these terms are exactly determined. For our purpose, it is sufficient to apply the weaker result of Carmichael [2], where he defined the primitive divisors without the factor D in (4).

Theorem 1.1 (Carmichael, PDT). If α and β are real numbers and $n \neq 1, 2, 6$, then U_n contains a primitive divisor, except when n = 12, $\alpha + \beta = 1$, $\alpha\beta = -1$ (i.e. except the Fibonacci sequence).

In the sequel we consider the posed problem for the three aforementioned sequences.

2. Fibonacci sequence

In this section we generalize the result of Marques [3]. It is well known that in the case of the Fibonacci sequence $\alpha = (1 + \sqrt{5})/2$, $\beta = (1 - \sqrt{5})/2$, D = 5 hold in formula (3). Putting

$$\varepsilon = \varepsilon(m) = \begin{cases} 2 & \text{if } m \text{ is even,} \\ 1 & \text{if } m \text{ is odd,} \end{cases}$$

we can formulate the result associated to the Fibonacci sequence.

Theorem 2.1. The diophantine equation

$$F_{n_1}F_{n_2}\dots F_{n_k} + 1 = F_m^2 \tag{5}$$

in positive integers k, m and $3 \le n_1 < n_2 < \cdots < n_k$ has an infinite family of solutions given by

$$F_{m-\varepsilon}F_{m+\varepsilon}+1=F_m^2, \quad m\ge 5.$$

Moreover, there exist only two sporadic solutions: $F_4 + 1 = F_3^2$ and $F_6 + 1 = F_4^2$.

Remark 2.2. Note that the relation $F_1 + 1 \neq F_m^2$ makes it possible to avoid $F_1 = 1$ on the left-hand side of (5). This does not change if one replaces F_1 with $F_2 = 1$ or F_1F_2 . Thus we can assume that $3 \leq n_1$.

On the other hand, the two sporadic solutions can be included in the infinite family by allowing F_1 or F_2 among the factors of the product: $F_2F_4 + 1 = F_3^2$ and $F_2F_6 + 1 = F_4^2$.

In the proof we will use

Lemma 2.3. $F_m^2 - 1 = F_{m-\varepsilon}F_{m+\varepsilon}$ holds for any positive integer m.

Proof. This is an immediate consequence of the identities (3) in [3]. Or one can show the result by the direct application of the Binet formula for the Fibonacci numbers.

Proof of Theorem 2.1. Taking a solution to (5), by Lemma 2.3 we get

$$F_{n_1}F_{n_2}\dots F_{n_k} = F_{m-\varepsilon}F_{m+\varepsilon}.$$
(6)

Suppose that $m \ge 15$. Then $13 \le m - \varepsilon < m + \varepsilon$, therefore we can apply Theorem 1.1. Since $F_{m+\varepsilon}$ has a primitive divisor, $n_k = m + \varepsilon$ and (6) reduces to

$$F_{n_1}F_{n_2}\dots F_{n_{k-1}} = F_{m-\varepsilon}.$$
(7)

Now $F_{m-\varepsilon} > 1$ entails $k \ge 2$. Using the same arguments linked to primitive divisors as above, (7) provides $n_{k-1} = m - \varepsilon$. Consequently, k = 2, i.e., there are no more terms on the left-hand side of (7). Thus we obtain an infinite family of solutions $F_{m-\varepsilon}F_{m+\varepsilon} + 1 = F_m^2$, $m \ge 15$. Clearly, this can be extended for $m \ge 5$ by Lemma 2.3.

Assume that $3 \le m \le 14$ is fixed. Since $F_{2m} > F_m^2$ for m > 1, it is easy to check all the candidates of the solution to (5) by running over on the possibilities

$$F_3^{\delta_3} F_4^{\delta_4} \dots F_{2m-1}^{\delta_{2m-1}} + 1 = F_m^2$$

with $\delta_i \in \{0,1\}$. The verification yields the aforementioned two sporadic solutions.

Clearly, neither m = 1 nor m = 2 is possible in (5).

3. The companion sequence of Fibonacci numbers

As usual, the companion sequence (or associate sequence) of U_n defined by (3) is the sequence $V_n = \alpha^n + \beta^n$. In the case of Fibonacci sequence, its companion is denoted by $\{L_n\}_{n=0}^{\infty}$ and often called also Lucas sequence. In order to avoid the ambiguousness in U_n and L_n , we always call the terms L_n Fibonacci–Lucas numbers. At the first sight the application of PDT in solving the analogous problem of (2) for Fibonacci–Lucas numbers is impossible since $\{L_n\}_{n=0}^{\infty}$ is not a Lucas sequence in sense of (3). But the identities in the following lemma allow us to transform the problem

$$L_{n_1}L_{n_2}\dots L_{n_k} + 1 = L_m^2 \tag{8}$$

into an equivalent form containing only Fibonacci numbers.

Lemma 3.1.

$$L_m^2 - 1 = \begin{cases} F_{3m}/F_m & \text{if } m \text{ is even,} \\ 5F_{m-1}F_{m+1} & \text{if } m \text{ is odd.} \end{cases}$$
(9)

Proof. This can be easily obtained by using the explicit formulae for F_n and L_n .

Theorem 3.2. *The diophantine equation*

$$L_{n_1}L_{n_2}\dots L_{n_k} + 1 = L_m^2 \tag{10}$$

in non-negative integers k > 0, m and $n_1 < n_2 < \cdots < n_k$ $(n_i \neq 1)$ has only the single solution $L_2 + 1 = L_0^2$.

Before turning to the details of the proof, we note that $L_1 + 1 \neq L_m^2$. Therefore we may suppose that $n_i \neq 1$ (i = 1, ..., k). We also remark that $L_2 + 1 = L_0^2$ trivially satisfies the weaker equation $L_n L_{n+1} \dots L_{n+k-1} + 1 = L_m^2$.

Proof of Theorem 3.2. Considering a solution to (10), assume first that *m* is a positive even integer. Then (8), together with (9) and the well-known identity $F_nL_n = F_{2n}$, implies that

$$\frac{F_{2n_1}}{F_{n_1}}\frac{F_{2n_2}}{F_{n_2}}\dots\frac{F_{2n_k}}{F_{n_k}} = \frac{F_{3m}}{F_m}.$$
(11)

Suppose now that $m \ge 14$. Then F_{3m} has a primitive divisor by Theorem 1.1. Consequently, $2n_k = 3m$, i.e., $n_k = 3m/2 > m$. Obviously, $k \ne 1$, otherwise (11) reduces to $F_m = F_{n_1}$, and we arrive at a contradiction to $m = n_1$. Assuming k = 2, (11) simplifies to

$$\frac{F_{2n_1}}{F_{n_1}}F_m = F_{n_2}$$

Since $n_2 > m$, F_{n_2} contains a primitive divisor. Then $n_2 = 2n_1$ and $m = n_1$, which contradicts $n_2 = 3m/2$. If $k \ge 3$, observe that $n_{k-1} < m$ holds, otherwise it would contradict $L_{n_{k-1}}L_{n_k} < L_m^2$. Thus, again by $n_k = 2n_{k-1}$, we conclude that

$$\frac{F_{2n_1}}{F_{n_1}}\dots\frac{F_{2n_{k-2}}}{F_{n_{k-2}}}F_m = F_{n_{k-1}},$$
(12)

which has no solution since $m \ge 14$. Therefore F_m has a primitive divisor on the left-hand side of (12), which cannot exist on the right-hand side.

In the next part we must check the cases when the even *m* is at most 12. Factorizing the candidates $L_m^2 - 1$, none of them is a product of other Lucas numbers, except $L_0^2 - 1 = L_2$.

Assume now that the subscript m is odd. Then again by (8) and (9), we obtain

$$L_{n_1}L_{n_2}\dots L_{n_k} = 5F_{m-1}F_{m+1}.$$
(13)

Since 5 divides no Lucas numbers, (13) is impossible.

4. The sequence $U_n = AU_{n-1} - U_{n-2}$

Let A denote a positive integer. Assume that the terms of the linear recurrence $\{U_n\}_{n=0}^{\infty}$ satisfy the recurrence relation $U_n = AU_{n-1} - U_{n-2}$ with the initial values $U_0 = 0$ and $U_1 = 1$. Thus the Binet formula (3) is valid with

$$\alpha = \frac{A + \sqrt{A^2 - 4}}{2} \quad \text{and} \quad \beta = \frac{A - \sqrt{A^2 - 4}}{2}.$$
(14)

For example, the sequence of Balancing numbers is corresponding to A = 6.

In this section we consider a more general question than (2) for the sequence $\{U_n\}_{n=0}^{\infty}$. Namely, for $A \ge 3$ we study and solve the diophantine equation

$$U_{n_1}U_{n_2}\ldots U_{n_k}+U_t^2=U_m^2$$

in positive integers k, t, m and $2 \le n_1 < n_2 < \cdots < n_k$.

Note that if A = 1 then the sequence $\{U_n\}_{n=0}^{\infty}$ is the periodic repetition of the cycle

$$0, 1, 1, 0, -1, -1$$

and the posed problem is of no interest anymore. The case A = 2 is still beyond reach since it is exactly the original Brocard–Ramanujan problem if we prescribe t = 1, $n_1 = 1$ and $n_i + 1 = n_{i+1}$ for i = 1, ..., k - 1. In order to avoid the trivial and the very difficult cases above, we suppose that $A \ge 3$. Then $D = A^2 - 4 \ge 5$. Thus α and β are positive real numbers, moreover,

$$\{U_n\}_{n=0}^{\infty}: U_0 = 0, \quad U_1 = 1, \quad U_2 = A, \quad U_3 = A^2 - 1, \quad U_4 = A^3 - 2A,$$

 $U_5 = A^4 - 3A^2 + 1, \quad U_6 = A^5 - 4A^3 + 3A, \dots$

is strictly monotonically increasing.

The precise result is the following.

Theorem 4.1. Suppose that $A \ge 3$. All solutions to the diophantine equation

$$U_{n_1}U_{n_2}\dots U_{n_k} + U_t^2 = U_m^2$$
(15)

in positive integers k, t, m and $2 \le n_1 < n_2 < \cdots < n_k$ are determined by the two infinite families of solutions

- $U_{2t+1} + U_t^2 = U_{t+1}^2$,
- $U_{m-t}U_{m+t} + U_t^2 = U_m^2, m \ge t+2.$

The condition $2 \le n_1$ is prescribed in order to avoid the trivial factor $B_1 = 1$ on the left-hand side of (15). It does not cause any problem since if the product there contains only one term then $1 + U_t^2 = U_m^2$ is not soluble.

In the proof we will use the following identity.

Lemma 4.2. If $n \ge k$, then $U_n^2 - U_k^2 = U_{n-k}U_{n+k}$.

Proof. By (14), we have $\alpha\beta = 1$, and then

$$\left(\frac{\alpha^n - \beta^n}{\alpha - \beta}\right)^2 - \left(\frac{\alpha^k - \beta^k}{\alpha - \beta}\right)^2 = \frac{\alpha^{2n} + \beta^{2n} - \alpha^{2k} - \beta^{2k}}{(\alpha - \beta)^2} = \frac{\alpha^{n-k} - \beta^{n-k}}{\alpha - \beta} \frac{\alpha^{n+k} - \beta^{n+k}}{\alpha - \beta}.$$

We also need

Lemma 4.3. If $A \ge 3$, then $U_{2n} > U_n^2$ holds for any positive integer n.

Proof. Since (14) implies that $\alpha > \beta > 0$, and $\alpha - \beta > 1$ also holds, we conclude that

$$\frac{U_{2n}}{U_n} = \frac{\alpha^{2n} - \beta^{2n}}{\alpha^n - \beta^n} = \alpha^n + \beta^n > \frac{\alpha^n - \beta^n}{\alpha - \beta} = U_n.$$

Proof of Theorem 4.1. Suppose that (15) has a solution. Clearly, $m + t \ge 3$. By Lemma 4.2,

$$U_{n_1}U_{n_2}\dots U_{n_k} = U_{m-t}U_{m+t}$$
(16)

holds.

I. Assume first that m + t > 6. Now, by Theorem 1.1, U_{m+t} has a primitive divisor, consequently $n_k = m + t$. Simplifying (16) by U_{m+t} , we obtain

$$U_{n_1}U_{n_2}\dots U_{n_{k-1}} = U_{m-t}.$$
(17)

Now we distinguish two principal cases.

I/1. If m - t = 1, then $U_{n_1}U_{n_2}...U_{n_{k-1}} = 1$ is not soluble since $2 \le n_i$, $A \ge 3$ and the sequence $\{U_n\}_{n=0}^{\infty}$ is strictly monotonically increasing. Therefore k = 1, which together with the conditions m = t + 1 and $n_1 = m + t$ leads to the solution $U_{2t+1} + U_t^2 = U_{t+1}^2$, $t \ge 3$. Obviously, we can extend this family for t = 1, 2 as well.

I/2. Supposing $m - t \ge 2$, first consider the case m - t > 6. By (17) and PDT, $n_{k-1} = m - t$ follows. Thus we arrive at the second infinite family of solutions given by $U_{m-t}U_{m+t} + U_t^2 = U_m^2$, $m \ge t + 7$. Clearly, we may even write $m \ge t + 2$

to extend the validity by (4.2). Assume now that m - t = 6. Solving all the possible equations

$$A^{\delta_1}(A^2 - 1)^{\delta_2}(A^3 - 2A)^{\delta_3}(A^4 - 3A^2 + 1)^{\delta_4} = A^5 - 4A^3 + 3A$$

with $\delta_i \in \{0, 1\}$, we find no integer solution in $A \ge 3$.

Finally, for $2 \le m - t \le 5$ a similar investigation to the case m - t = 6 shows no further solution.

II. Let m + t = 6. Observe that m + t and m - t have the same parity. Therefore the right-hand side of (16) may contain only one of the terms U_4U_6 and U_2U_6 as a polynomial of A. Obviously, by Lemma 4.3, $n_k \le 11$ in both cases. The verifications

$$\prod_{i=2}^{11} U_i^{\delta_i} = U_j U_6$$

for j = 2 and then for j = 4 do not yield further solutions.

III. Let $4 \le m + t \le 5$. Now, by Theorem 1.1 and the analogous equation to (17), we must consider only $U_2 = U_3$. But the roots of $A = A^2 - 1$ are not integer.

IV. Finally, m + t = 3 gives t = 1 and m = 2. Here, due to Lemma 4.3, we conclude the following possibilities:

$$U_2^{\delta_2} U_3^{\delta_3} + 1 = U_2^2, \tag{18}$$

with $\delta_i \in \{0, 1\}$. Since (18) does not possess any additional solution, the proof of Theorem 4.1 is complete.

References

- Y. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75–122. Zbl 0995.11010 MR 1863855
- [2] R. D. Carmichael, On the numerical factors of the arithmetic forms αⁿ ± βⁿ. Ann. of Math. (2) 15 (1913), 30–48; *ibid.* 15 (1914), 49–70. JFM 44.0216.01 JFM 45.1259.10
- [3] D. Marques, The Fibonacci version of the Brocard–Ramanujan Diophantine equation. Portugal. Math. 68 (2011), 185–189. Zbl 05931044 MR 2849854
- [4] D. Marques, The Fibonacci version of a variant of the Brocard–Ramanujan Diophantine equation. *Far East J. Math. Sci. (FJMS)* **56** (2011), 219–224. MR 2895044

Received May 2, 2012

L. Szalay, Institute of Mathematics, University of West Hungary, 9400 Ady Endre utca 5, Sopron, Hungary

E-mail: laszalay@emk.nyme.hu

220