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Global attractor for a nonlinear model with
periodic boundary value condition*
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Abstract. In this paper, we consider the existence of a global attractor for a nonlinear
model with periodic boundary value condition. Based on the iteration technique for regu-
larity estimates and the classical existence theorem of global attractors, we prove that the
equation possesses a global attractor on some a‰ne space of Hk ð0a k < þlÞ.
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1. Introduction

Let W ¼ ½0;L� � ½0;L�, where L > 0. Consider the nonlinear model describing the

process growing of a crystal surface:

ut ¼ �aD2u� m‘ � ‘u

1þ j‘uj2

 !
; ðx; tÞ a W� Rþ: ð1Þ

On the basis of physical considerations, equation (1) is supplemented with

u is L periodic; Et a Rþ;

and

uðx; 0Þ ¼ u0ðxÞ; Ex a W: ð2Þ

Equation (1) describes the process growing of a crystal surface. Here, a and m

are positive constants, and uðx; tÞ denotes a displacement of height of surface from
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the standard level ðu ¼ 0Þ at a position x a W. The term �aD2u in equation (1)

denotes a surface di¤usion of adatoms which is caused by the di¤erence of the

chemical potential. In the meantime, �m‘ �
�

‘u

1þj‘uj2

�
denotes the e¤ect of surface

roughening.

During the past years, many authors have paid much attention to equation (1).

It was Johnson et al. [6] who presented this equation for describing the process

of growing of a crystal surface on the basis of the BCF theory. Rost and Krug

[9] studied the unstable epitaxy on singular surfaces using equation (1) with a

prescribed slope dependent surface current. In their paper, they derived scaling

relations for the late stage of growth, where power law coarsening of the mound

morphology is observed. In [8], in the limit of weak desorption, O. Pierre-Louis

et al. derived equation (1) for a vicinal surface growing in the step flow mode.

This limit turned out to be singular, and nonlinearities of arbitrary order need to

be taken into account.

Recently, H. Fujimura and A. Yagi [1], [2] also considered equation (1). In

their papers, the uniqueness local solutions and the global solutions were obtained.

A dynamical system determined from the initial-boundary value problem of the

model equation was constructed, and the asymptotic behavior of trajectories

of the dynamical system was also considered. In [4], M. Grasselli, G. Mola and

A. Yagi showed that equation (1) endowed with no-flux boundary conditions

generates a dissipative dynamical system under very general assumptions on qW

on a phase-space of L2-type. They proved that the system possesses a global

as well as an exponential attractor. In addition, if qW is smooth enough, they

showed that each trajectory converges to a single equilibrium by means of a suit-

able Lojasiewicz–Simon inequality. An estimate of the convergence rate was also

obtained in [4].

There is much literature concerned with equation (1); for more results we refer

the reader to [3], [5], [10] and the references therein.

The dynamical properties of the fourth-order nonlinear equation (1), such as

global asymptotical behaviors of solutions and the global attractors, are important

for the study of nonlinear di¤usion systems, which ensures the stability of nonlin-

ear di¤usion phenomena and provides the mathematical foundation for the study

of nonlinear dynamics. During the past years, many authors have studied the

attractors of general nonlinear dynamical systems (see [11], [12], [13]). In [14],

Zhao and Liu considered a fourth-order parabolic equation in a bounded domain

WHR2,

ut þ gD2u� divðj‘ujp�2‘uÞ ¼ 0;

where g > 0, 7
2 < pa 4. Based on the regularity estimates for the semigroups and

the classical existence theorem of global attractors, the authors prove that the

222 X. Zhao and C. Liu



equation possesses a global attractor in Hk (0a k < 5) space, which attracts any

bounded subset of HkðWÞ in the Hk-norm.

In this paper, we are interested in the existence of global attractors for equation

(1). Based on Ma and Wang’s recent work [7], we shall prove that problem (1)–(2)

possesses a global attractor in Hk ð0a k < lÞ space, which attracts any bounded

subset of HkðWÞ in the Hk-norm.

It remains as an interesting open problem the question of showing whether the

global attractor is a bounded subset of HkðWÞ. We recall that this is indeed the

case for k ¼ 0 and k ¼ 1, as shown in [4].

2. Preliminaries

Using the same method as [1, 4], we summarize the result on the existence and

uniqueness of global solution for problem (1)–(2).

Lemma 2.1. Let u0 a H 1
perðWÞ. Then problem (1)–(2) possesses a unique global

solution uðx; tÞ such that

u a C
�
½0;lÞ;H 1

perðWÞ
�
BC1

�
ð0;lÞ;L2ðWÞ

�
BC

�
ð0;lÞ;H 4

perðWÞ
�
:

Noticing the total mass of uðx; tÞ for problem (1)–(2) is conserved, that is

ð
W

uðx; tÞ dx ¼
ð
W

u0ðxÞ dx; Etb 0:

We set a phase space

H ¼
n
u a H 1ðWÞ;

ð
W

uðx; tÞ dx ¼ 0
o
:

Hence, for u0 a H, let SðtÞu0 ¼ uðt; u0Þ, 0a t < l. It is easy to check that SðtÞ
defines a nonlinear semigroup acting on H.

In [4], the authors proved the existence of global attractor in H 1ðWÞ space for

equation (1) endowed with no-flux boundary conditions. In fact, the main result

in [4] holds true for functions with bounded—not necessarily zero—mean value.

Using the same method as [4], we give the following result on the existence of

global attractor for problem (1)–(2) in H 1ðWÞ space.

Lemma 2.2. Let u0 a H 1
perðWÞ, then the semigroup associated with problem (1)–(2)

possesses a global attractor in H which attracts all the bounded sets of H in the

H-norm.
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Now, for problem (1)–(2) we introduce the following spaces:

H ¼ fu a L2ðWÞ;
Ð
W uðx; tÞ dx ¼ 0g;

H1=2 ¼ H 2
perðWÞBH;

H1 ¼ H 4
perðWÞBH:

8><
>: ð3Þ

We define the linear operator L and the nonlinear operator G by

Lu ¼ �aD2u;

Gu ¼ ‘ � gðuÞ ¼ �‘ � m‘u

1þj‘uj2
:

(
ð4Þ

It is easy to check that L given by (4) is a sectorial operator and the tractional

power operator ð�LÞ1=2 is given by ð�LÞ1=2 ¼ �
ffiffiffi
a

p
D. The space H1=2 is the same

as (3), H1=4 is given by H1=4 ¼ closure of H1=2 in H 1ðWÞ and Hk ¼ H 4k BH1 for

kb 1.

We introduce the following Proposition 2.3, which can be found in [7], [11],

[14].

Proposition 2.3. Assume that L : H ! Hk is a sectorial operator which generates

an analytic semigroup TðtÞ ¼ etL. If all eigenvalues l of L satisfy Re l < �l0 for

some real number l0 > 0, then for LkðL ¼ �LÞ we have
(C1) TðtÞ : H ! Hk is bounded for all k a R1 and t > 0.

(C2) TðtÞLkx ¼ LkTðtÞx for all x a Hk.

(C3) For each t > 0, LkTðtÞ : H ! H is bounded and

kLkTðtÞkH aCkt
�ke�dt;

where some d > 0 and Ck > 0 is a constant depending only on k.

(C4) The Hk-norm can be defined by kxkHk
¼ kLkxkH.

Now we give the main result of this paper.

Theorem 2.4. Let u0 a HkðWÞ. Then, for any kb 0, the semigroup associated with

problem (1)–(2) possesses a global attractor in HkðWÞ which attracts all the bounded

sets of HkðWÞ in the Hk-norm.

Remark 2.5. In [4], Grasselli, Mola and Yagi studied the longtime behavior of

equation (1) endowed with the boundary conditions

qnu ¼ qnDu ¼ 0 on qW� Rþ:
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In their paper, they proved that equation (1) admits a global attractor in L2 space

and H 1 space. Here, we introduce a generalized space Hk (k a Rþ), which is a

fractional dimension space. Using the iteration technique for regularity estimates

and Sobolev’s embedding theorem, we obtain the result on the existence of global

attractor in the generalized space Hk.

3. Proof of Theorem 2.4

Based on [7], the solution uðt; u0Þ of the problem (1)–(2) can be written as

uðt; u0Þ ¼ etLu0 þ
ð t
0

eðt�tÞLGu dt ¼ etLu0 þ
ð t
0

ð�LÞ1=4eðt�tÞLgðuÞ dt: ð5Þ

In order to prove Theorem 2.4, we shall prove the following two lemmas.

Lemma 3.1. For any kb 0, the semigroup SðtÞ generated by the problem (1)–(2) is

uniformly compact in Hk.

Proof. It su‰ces to prove that for any bounded set U HHk, there exists a con-

stant C > 0 such that

kuðt; u0ÞkHk
aC; Etb 0; u0 a U HHk; kb 0: ð6Þ

For k ¼ 1
4 , this follows form Lemma 2.2, i.e. for any bounded set U HH1=4,

there is a constant C > 0 such that

kuðt; u0ÞkH1=4
aC; Etb 0; u0 a U HH1=4:

Then we shall prove (6) for any k > 1
4 , which will be shown in the following

steps.

Step 1. We prove that for any bounded set U HHk

�
1
4 < k < 3

4

�
there is a

constant C > 0 such that

kuðt; u0ÞkHk
aC; Etb 0; u0 a U ;

1

4
< k <

3

4
: ð7Þ

Note that

kgðuÞkH ¼
ð
W

jgðuÞj2 dx ¼ m2

ð
W

j‘uj2

ð1þ j‘uj2Þ2
dxaCk‘uk2H aCkuk2H1=4

;
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which means g : H1=4 ! H is bounded. Hence,

kuðt; u0ÞkHk
¼
���etLu0 þ

ð t
0

ð�LÞ1=4eðt�tÞLgðuÞ dt
���
Hk

aCku0kHk
þ
ð t
0

kð�LÞ1=4þk
eðt�tÞLgðuÞkH dt

aCku0kHk
þ
ð t
0

kð�LÞ1=4þk
eðt�tÞLk � kgðuÞkH dt

aCku0kHk
þ C

ð t
0

t�ee�dt dtaC; Etb 0; u0 a U HHk;

where e ¼ 1
4 þ k ð0 < e < 1Þ. Then (7) holds.

Step 2. We prove that for any bounded set U HHk

�
1
2 < k < 1

�
there is a

constant C > 0 such that

kuðt; u0ÞkHk
aC; Etb 0; u0 a U ;

1

2
< k < 1: ð8Þ

In fact, by the embedding theorems of fractional order spaces, Ekb 1
2 , we have

Hk ,! H 2ðWÞ. Then

kgðuÞk21=4aC

ð
W

j‘gðuÞj2 dx ¼ m2C

ð
W

jDuj
1þ j‘uj2

� 2j‘uj2jDuj
ð1þ j‘uj2Þ2

 !2

dx

a 2m2C

ð
W

jDuj2

ð1þ j‘uj2Þ2
þ 4j‘uj4jDuj2

ð1þ j‘uj2Þ4

 !
dx

aC

ð
W

jDuj2 dx

aCkuk2Hk
; ð9Þ

which means g : Hk ! H1=4 is bounded for kb 1
2 . Hence,

kuðt; u0ÞkHk
aCku0kHk

þ
ð t
0

kð�LÞ1=4eðt�tÞLgðuÞkHk
dt

aCku0kHk
þ
ð t
0

kð�LÞkeðt�tÞLk � kgðuÞkH1=4
dt

aCku0kHk
þ C

ð t
0

t�ke�dt dtaC; Etb 0; u0 a U HHk;

where 0 < k < 1. Then (8) holds.
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Step 3. We prove that for any bounded set U HHk

�
3
4 < k < 5

4

�
there is a

constant C > 0 such that

kuðt; u0ÞkHk
aC; Etb 0; u0 a U ;

3

4
< k <

5

4
: ð10Þ

In fact, by the embedding theorems of fractional order spaces, for all kb 3
4 , we

have

Hk ,! H 3ðWÞ; Hk ,! W 2;4ðWÞ:

Then

kgðuÞk2H1=2
aC

ð
W

jDgðuÞj2 dx

am2C

ð
W

j‘Duj
1þ j‘uj2

� 6j‘uj jDuj2

ð1þ j‘uj2Þ2
� 2j‘uj2j‘Duj
ð1þ j‘uj2Þ2

þ 8j‘uj3jDuj2

ð1þ j‘uj2Þ3

 !2

dx

aC

ð
W

ðj‘Duj2 þ jDuj4Þ dx

aCðkuk4Hk
þ kuk2Hk

Þ; ð11Þ

which means g : Hk ! H1=2 is bounded for kb 3
4 . Hence,

kuðt; u0ÞkHk
aCku0kHk

þ
ð t
0

kð�LÞ1=4eðt�tÞLgðuÞkHk
dt

aCku0kHk
þ
ð t
0

kð�LÞk�1=4
eðt�tÞLk � kgðuÞkH1=2

dt

aCku0kHk
þ C

ð t
0

t�ee�dt dtaC; Etb 0; u0 a U HHk;

where e ¼ k� 1
4 ð0 < e < 1Þ. Then (10) holds.

Step 4. We prove that for any bounded set U HHk

�
1 < k < 3

2

�
, there is a

constant C > 0 such that

kuðt; u0ÞkHk
aC; Etb 0; u0 a U ; 1 < k <

3

2
: ð12Þ

In fact, by the embedding theorems of fractional order spaces, Ekb 1, we have

Hk ,! H 4ðWÞ; Hk ,! W 2;4ðWÞ; Hk ,! W 2;6ðWÞ; Hk ,! W 3;4ðWÞ:
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Then,

kgðuÞk2H3=4
aC

ð
W

j‘DgðuÞj2 dx

am2C

ð
W

 
jD2uj

1þ j‘uj2
� 16j‘uDu‘Duj

ð1þ j‘uj2Þ2
� 6jDuj3

ð1þ j‘uj2Þ2
� 2j‘uj2D2u

ð1þ j‘uj2Þ2

þ 48j‘uj2jDuj3

ð1þ j‘uj2Þ3
þ 24j‘uj3jDu‘Duj

ð1þ j‘uj2Þ3
� 48j‘uj4jDuj3

ð1þ j‘uj2Þ4

!2

dx

aC

ð
W

ðjD2uj2 þ jDuj4 þ j‘Duj4 þ jDuj6Þ dx

aCðkuk2Hk
þ kuk4Hk

þ kuk6Hk
Þ;

which means g : Hk ! H3=4 is bounded for kb 1. Hence,

kuðt; u0ÞkHk
aCku0kHk

þ
ð t
0

kð�LÞ1=4eðt�tÞLgðuÞkHk
dt

aCku0kHk
þ
ð t
0

kð�LÞk�1=2
eðt�tÞLk � kgðuÞkH3=4

dt

aCku0kHk
þ C

ð t
0

t�ee�dt dtaC; Etb 0; u0 a U HHk;

where e ¼ k� 1
2 ð0 < e < 1Þ. Then (12) holds.

Using the same method as above, by iteration we can prove that for any

bounded set U HHk (kb 0) there exists a constant C > 0 such that (6) holds.

i.e., for all kb 0 the semigroup SðtÞ generated by problem (1)–(2) is uniformly

compact in Hk. r

Lemma 3.2. For any kb 0, problem (1)–(2) has a bounded absorbing set in Hk.

Proof. It su‰ces to prove that for any bounded set U HHk (kb 0), there exist

T > 0 and a constant C > 0 independent of u0, such that

kuðt; u0ÞkHk
aC; EtbT ; u0 a U HHk: ð13Þ

For k ¼ 1
4 , this follows from Lemma 2.2. So we shall prove (13) for any k > 1

4 .

We prove it in the following steps:

Step 1. We prove that for any 1
4 < k < 3

4 , problem (1)–(2) has a bounded

absorbing set in Hk. By (5), we deduce that

uðt; u0Þ ¼ eðt�TÞLuðT ; u0Þ þ
ð t
T

eðt�tÞLgðuÞ dt: ð14Þ
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Assume B is the bounded absorbing set of problem (1)–(2) and satisfy

BHH1=4, we also assume T0 > 0 such that

uðt; u0Þ a B; Et > T0; u0 a U HHk; k >
1

4
: ð15Þ

It is easy to check that

ketLkaCe�l21 t;

where l1 > 0 is the first eigenvalue of the equation

�
ffiffiffi
a

p
Du ¼ lu;

u is periodic;Ð
W u dx ¼ 0:

8><
>: ð16Þ

Thus, for any given T > 0 and u0 a U HHk

�
k > 1

4

�
, we deduce that

lim
t!l

keðt�TÞLuðT ; jÞkHk
¼ 0: ð17Þ

Using (14), (15) and (17), we have

kuðt; u0ÞkHk
a keðt�T0ÞLuðT0; u0ÞkHk

þ
ð t
T0

kð�LÞ1=4þk
eðt�tÞLk � kgðuÞkH dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ð t
T0

kð�LÞ1=4þk
eðt�tÞLk dx

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ðT�T0

0

t�ð1=4þkÞe�dt dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C;

where C > 0 is a constant independent of u0. Then, (13) holds for all 1
4 < k < 3

4 .

Step 2. We shall show that for any 1
2 < k < 1, problem (1)–(2) has a bounded

absorbing set in Hk. Using (14) and (9), we deduce that

kuðt; u0ÞkHk
a keðt�T0ÞLuðT0; u0ÞkHk

þ
ð t
T0

kð�LÞkeðt�tÞLk � kgðuÞkH1=4
dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ð t
T0

kð�LÞkeðt�tÞLk dx

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ðT�T0

0

t�ð1=4þkÞe�dt dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C;

where C > 0 is a constant independent of u0. Then (13) holds for all 1
2 < k < 1.
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Step 3. We shall show that for any 3
4 < k < 5

4 , problem (1)–(2) has a bounded

absorbing set in Hk. Using (14) and (11), we deduce that

kuðt; u0ÞkHk
a keðt�T0ÞLuðT0; u0ÞkHk

þ
ð t
T0

kð�LÞk�1=4
eðt�tÞLk � kgðuÞkH1=2

dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ð t
T0

kð�LÞk�1=4
eðt�tÞLk dx

a keðt�T0ÞLuðT0; u0ÞkHk
þ C

ðT�T0

0

t�ð1=4þkÞe�dt dt

a keðt�T0ÞLuðT0; u0ÞkHk
þ C;

where C > 0 is a constant independent of u0. Then (13) holds for all 3
4 < k < 5

4 .

By the iteration method, we have that (13) holds for all k > 1
4 . Thus the proof

is completed. r

Now we give the proof of the main result.

Proof of Theorem 2.4. By Lemma 3.1 and Lemma 3.2, the proof is complete. r

Remark 3.3. In this section we proved that there exists a global attractor in the

space Hk which attracts all the bounded sets in the Hk-norm. It is easy to check

that the global attractor in the space Hk also attracts the bounded subsets of each

less regular subspace Hk 0 , with k 0ak.
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