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The classical solvability of the contact angle problem for
generalized equations of mean curvature type
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Abstract. Mean curvature equations of general quasilinear type in connection with contact-
angle boundary conditions are considered in this paper. We investigate the existence,
uniqueness and continuous dependence of the solution in classical function spaces. On the
one hand, a survey of techniques and ideas developed in the 1970s and 1980s, mainly by
Uraltseva, is presented. On the other hand, extensions of these results are also proposed:
we formulate growth conditions for the general dependence of the potential on the xy, -
variable, and we extend the existence and uniqueness statements to this case. Moreover,
the regularity assumptions on the right-hand side are relaxed, and alternative proofs for
the higher-order estimates and the existence result are provided.
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1. Introduction

We consider the problem to determine in a domain Q = R¥*! (N > 2 the space
dimension) a N-dimensional hypersurface S < Q, obeying the relation

divs g, (x,v) + oc(x,v) - v = D(x,v), (1)

where divg is the surface divergence operator, and v denotes a unit normal to S.
The potential ¢ : Q x RV*! = R, (x,¢) — a(x, q) is given and one-homogeneous
in the g-variable. The right-hand side ® : Q x R¥*! — R is a given function. In
the case of isotropic data a(x,¢q) = o(x)|¢| and ®(x,g) = ®(x), the equation (1)

*This research is supported by DFG Research Center ‘Mathematics for Key Technologies’ Matheon
in Berlin.
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reduces to the problem of surfaces with prescribed mean curvature. We consider
on the boundary S n dQ the generalized contact-angle condition

a4(x,v) - n(x) = K(x), (2)

where 7 is the outward unit normal to 0Q, and x : 0Q — R is a given function.

More specifically, we are interested in graph-solutions to the problem (1), (2).
A graph-solution can be defined (after a suitable change of coordinates) if
Q = G x R with a bounded domain G = R¥, and if S is represented as the graph
of a function ¥ : G — R. The problem (1), (2) on the manifold S reduces to
boundary value problem posed in the domain G. Define for (X,xy11) € G x R
and for p € RY

G(X,xn+1,p) = 0(X, Xy 41, —p, 1). (3)

and introduce a function ® : G x R x R" via

2 (j=1,...,N),

B xwi,p) = O(%xv (), )= VI @)
Ve
The problem (1), (2) is equivalent to the contact-angle problem
—div &, (X, 1, Vi) = B(%,¥, VY)  in G, (5)
(U VY) n(®) = K(%Y)  ondG. (6)

Physical applications of the model (1), (2) respectively (5), (6) are to find in ther-
modynamical contexts, where (1) is to interpret as the first variation of a surface
free energy. The equation (1) is known as generalized Gibbs-Thomson relation:
The surface S typically represents a phase transition, and ¢ is the tensor of surface
tension on S; The right-hand side ® in (1) may involve quantities such as chemical
potential, temperature and mechanical stresses on S: see the book [Vis96], Ch. IV
for models in crystallization. Technical applications for the model (1) are for
instance processes in industrial crystal growth, where curvature effects on the
crystallization interface are assumed to be responsible for the formation of defects
(cf. [DDENOS]).

Equations of mean curvature type were thouroughly studied in the seventies,
in connection both with the Dirichlet and the contact-angle problem: see [Gia74],
[Ger74], [Giu76] among others for the BV approach, see [Fin65], [Ser69], [Ura73],
[Ura75], [Ura82], [SS76] a. o. for the classical approach, which also retains our
attention in this paper.

The existence of graph-solutions essentially relies on the gradient estimate for
the function yy. To our knowledge local estimates were obtained first in [Mir67],
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[BDM69] for the problem of minimal surfaces (® =0, o(¢) = |¢|). For general
quasilinear equations, the local boundedness of the gradient was proved in [LU70]
on the basis of profound results of geometric measure theory. Local estimates
employing other methods were also derived early (cf. [Tru73]) by the authors of
[GTO1] (see Chapter 16). It is to note that the a priori estimate derived in these
papers for C? solutions being local, they did not lead to the solvability of (5), (6).

The global estimate on the gradient for the contact angle problem (5), (6) was
first obtained in the papers [Ura71], [Ura73], [Ura75] for general ¢ = o(g), mainly
via extension of the methods of [LU70]. In [Ura71] the validity of these results
was restricted to (strictly) convex #**-domains G, a vanishing angle of contact.
The theory for convex domains and a constant nonvanishing angle of contact
rc was introduced in [Ura73]; The results were extended in [Ura75] to variable
x = K(%) and nonconvex %>-domains, but only for the case o = |¢g| (mean curva-
ture equation). In these papers, it is assumed that ® = ®(x). Other approaches to
the results of [Ura75] for the mean curvature equation were discussed in the papers
[SS76], Th. 3 or in [Ger79], that states the gradient estimate for (nonconvex) %*
domains. The boundedness result for gradient of solutions to the general quasi-
linear mean curvature equation with contact-angle x = x(X, xy,1) was proved in
[Ura82]. In the latest paper o is allowed to depend on the xy,;-variable, but
only in a very particular way.

The arguments on existence, uniqueness and a priori estimates for the problem
(5), (6) are spread in the literature (mostly in papers by Uraltseva). Indeed the
paper [Ura82], where the general quasilinear case is treated, only deals with the
gradient estimate. In the present contribution, we aim at a complete overview on
the classical solvability of the problem (5), (6) in smooth settings. We also propose
two generalizations: A growth condition for the xy.-dependence of the function
o is formulated, and shown to yield well-posedness; The regularity assumptions
for @ are weakened.

2. Notations and statement of the main results

Let N > 2 denote the space dimension, and G = R" be a bounded domain of
class €** o >0, Q := G x R. Throughout the paper, the function ¢ is assumed
to satisfy

g e C*(G x R x (RV\{0})). (7)

We assume that there exist positive constants 4; (j =0,2) and g; (i=0,...,4)
such that for all (x,¢q) € Q x RV*!,

Zolql < a(x,9) < polal, (8a)
|og(x,9)| < ., (8b)
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N+l
|%2|f|2 < Z Oyq, (X, )& < %Iéf\z for all ¢ € RV*! such that - ¢ =0, (8c)
|

n+1
Cgq/(X,q)q; =0 fori=1,...,N+1, (8d)
=1

J=

|00 (, D) < pi3; 0y x (X, 9)] < 4 (8e)

The hypotheses (8a), (8b), (8c) and (8d) are well-knwon, and in particular satisfied
if ¢ is convex and positively homogeneous of degree one in the ¢ variable
(cf. [LU70], [Ura71] for a proof). We need special assumptions on the xy.-
derivatives of the function o. We assume at (x,q) € Q x R¥"1\{0} that

|611v+1|2
|O-XN+1 ‘ + |O-XN-17XN+1| < Hs |C]| ’ (93)
lgn+1]
|O-5‘-,XN+1| + |O-XN+1-,‘]‘ + |O-«‘Ey»\'N+qu| + |O-XN+1~,XN+17‘I| < He . (9b)

lq

One purpose of the paper is also to relax the requirement of continuous differenti-
ability of the right-hand side. We shall require that ® € ¥ < Wh*(Q x RV 1),
where V' is any closed linear subspace of W!® that allows for V® to have
bounded traces on both sides of smooth submanifolds (for instance, V® € C,,, or
even VO € W), We assume that

DeV( QxR xeC'(0GxR) (a>0). (10)

Special assumptions are needed in connection with the xy . ;-derivatives of these
functions:

esssup Dy, < —79 <0, Ky, =0. (11)
QxRN

Choosing 4 as in (8a), there is a compatibility condition between the functions x
and o

sup || < Ao, ;= 2o — K[| x (a6xm) > O (12)
IGXR

For the existence and uniqueness of the solution, we have to assume that the
parameters y,, 42 and us, i in the conditions (11), (8d) and (9) satisty

2
- (s + 15 + [ Dgll L (@xrr+1))
70 47 ‘

(13)
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The main result on existence, uniqueness and regularity for the problem (5), (6) is
formulated in the following theorem.

Theorem 2.1. Let all the assumptions of this section be satisfied for the domain
G and the functions a, ® and k. Then, the problem (5), (6) possesses a unique
solution y € C*>*(G). Denoting S the graph of the function \, there is a constant
¢ depending on all the data in their respective norm, such that |D*}|| c(G) =

(1@l ¢y + llrell cragos))-

A second result of the paper concerns the gradient estimate for solutions to (5),
(6), which is the most essential step of the proof. In comparison to the result of
[Ura82], we allow for a xy; dependence of g, and we formulate the assumptions
for the function ® as integrability conditions.

Proposition 2.2. Assumptions of Theorem 2.1 (the inequality (13) being not
needed). Assume that y € C*(G) is a solution to (5), (6). Let p and s be real
numbers such that p > N/2 and s > max{ p,ﬁ}. Then, there is a continuous
(polynomial) function ¢ such that

2
sup /1 + VY |" < (X, D] Logsys 1Pl sy 1Pl 225
where X depends on all the data in their respective norm, but not on ®©.

Remark 2.3. We will give an elementary proof of Proposition 2.2 as stated.
Using the global Sobolev embedding on the manifold S, one can show that the
statement holds true for p > N/2 and s = p.

Preliminary propositions. We terminate this section by stating explicitely a few
elementary consequences of the hypotheses (see [LU70] or [Ura73] for similar
considerations). Due to (8a) and the Taylor formula, there is for all (x,q) €
Q x RY*1\{0} a 4 €0, 1] such that!

1 )
0= 0(x,0) = 0(x.q) ~ 64 )9 + 5 0.0, (. 210
The properties (8d) and (8a) therefore implies for all g € R¥ ™1\ {0} that

a(x,q) = 04(x,9) -4, 04(x,4) - 4 = kolgl- (14)
For p € RV, ¢ := (—p, 1), it follows from (14) and the definition (3) that

Gp(x,p) - p=04(x,q) g — 0gy,, (X,9) = 0(X,9) — 04, (X, q).

!"Whenever confusion is impossible, we use the convention that repeated indices imply summation.
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Using (8a) and (8b), one therefore obtains from the previous assumptions on the
growth of ¢ that

G,(x,p)-p =\ 1+|p> —py forall (x,p) € Q x RV, (15)
Since o,(x,q) - ¢ = o(x, q), the assumption (8e) also implies that
lox(x, )| < pslg|  forall g e RV, (16)

For &, p € RY, the relation (8c) elementarily implies that

T2
_ 2118
S O-Ih Dj ('x7 p)élé] < 2| | .

L+ |p? L+ Pl

Here, ¢"=¢"(p) =&~ 4 (¢ %) e RV, with &:=(&),....¢n,0) and ¢:=
We also need extensions into G of the data n and x given on 0G x R.

(17)

Remark 2.4 (Data extension). Since G has a ¥>* boundary, the unit normal
has an extension n:= Vdist(-,dG) into G such that ne [CY*(G)]". Setting
ny41 = 0 and extending n(X) by a constant in the N + 1-direction, we obtain that
ne [Ch%(G x R)]M!. Under the assumption (10), it is possible to assume that
x € C1*(G x R). We can ensure that the inequality (12) is preserved.

Finally, we recall some notations associated with the surface S. For
Y € C*(G), the graph S = RY*! of y is the set S := {(X,xy11) € G x R: xy 1 =
¥(X)}. A unit normal on the surface S is given by v(x, (%)) := v(Vy/(x)) with
v(p) like in (4). The natural surface measure on the surface S is given by

dHy :=1/1+ |Vlﬁ|2diN. For f € Cl([R{N“), the differential operator

Of == Vf — (Vf - vy, (18)

is identical on S with the surface gradient. Throughout the paper, we denote
0S :={(X,xy41) € 0G x R: xy;1 = ¥(X)}. The tangential gradient of y on 0G
given by ¥, := Vi — (Vi - n)n on 9G. 1If o denotes the angle of contact between S

and 0G x R (that is, coso := —Viy - n/4/1 + |Viy|* on 8G), then

| S\1/2
Py L 7 on 8G. (19)
1+ [Vy
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Denote dHy_; the standard surface measure on 0G. Then, a natural surface mea-
sure on 0S is defined by

ds=\/1+ |y,|> dHy_1 = sinon/1 + |Vy|> dHy_;. (20)

3. Global L*-estimate on Vi

In this section, we are concerned with a priori estimates satisfied by Vi in L*(G)
for a function y € C?(G) satisfying (5), (6). The assumptions considered for the
data are those of Section 2. For local gradient estimates, we refer to the publica-
tions mentioned in the introduction. A gradient estimate up to the boundary of S
was first proved in [Ura71], [Ura73] for convex domains G = R" of class 4>,
g =o0(q), ®=®(x), and x = const. The proof was extended in [Ura75] for
a(q) = |q| to nonconvex %° domains, x = x(%). For the later case, results are
also to find in [SS76], [Ger79]. A worth-noticing difference is the following: thanks
to the Sobolev embedding theorem up to the boundary of S, Uraltseva allows
for the limiting case y, = 0 (cf. the condition (11)), while the proof in the last
two papers can be carried out from more elementary considerations. Finally,
Uraltseva extended her methods in the paper [Ura82] to general quasilinear mean
curvature equations, x = x(X, xy 1), and G of class %°.

In this section, we present a proof of the gradient estimate using Uraltseva’s
methods. We slightly extend the result of [Ura82] allowing for a general xy.
dependence of ¢ via the conditions (9), and tracking the dependence on the right-
hand side in the gradient bound in terms of integrability conditions.

Throughout the section, S = RV*! denotes a N-dimensional submanifold that
satisfies (1), (2). We abbreviate ¢ = g(x,v) and ® = ®(x,v) on S. We start with
a method to estimate integrals over S which was the new ingredient for the
advances in [Ura82] with respect to the former contributions [Ura71], [Ura73].?
In the following two lemmas, we recall the proof of this fundamental statement.

Lemma 3.1. Let S < RY*! denote a N-dimensional manifold that satisfies (1), (2).
Taking into account the assumptions (8b) and (8¢) and the Remark 2.4, introduce
the function ay = |®| + 2u4,|Vn| + 5. Then, for every nonnegative f € C'(RV*1)

sin o

LS f.ﬂ <y’ (m L 0f | dHy + L ao deN>7

where 0 is defined by (18). The function sin o and the measure ds are defined in (19)
and (20).

2Some references on the original idea are also to find in [Ura82].
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Proof. On the surface S, define a vector field 7 := —(n-v)o, + (g, - v)n. Note
that 7 is tangent on S. Denote moreover v’ :=sina ' (n — (v-n)v) the conor-
mal on 6S. We use the identity [ T'-0f dHy + [ dive Tf dHy = [,o(T - V') f ds.
One easily verifies that

T-v' =sina (o, —xn)-v= (o — 17l e (as)) sing™! on 4S. (21)
We compute

divs T = 6;((og - v)ni — (v- n)ay,)
=nio;o, - v+a,-vdivgn —v-ona, — (v-n)divs g,
+nio;v - o, —n-ovoy,. (22)
Using the equation (1), it follows that divso, = ® — o, - v. Using the symmetry
of the matrix {6;y;}, we show that n;0;v-o, —n-d;va,, =0. Forie{l,... ,n},
the property (8d) and the identity (14) yield 6,0, -v = 0,,5V; + 04;.q0V1V; =
04,5,V = 0s,, where a5, = gy, — (v- 0,)v;. Thus

divg T = njos, + g, - vdiven — v-onay, — (v-n)(® — o, - v), (23)

and the estimate |divs 7| < ap is an easy consequence of the contitions (8). The
claim follows combining | 7| < g, (21) and (23). O

Note the following elementary precision concerning Lemma 3.1.
Lemma 3.2. Assumptions of Lemma 3.1. Then sino. > y, /1, on 0S.
Proof. Denote n' = sina~! (v — cosan). It is easy to verify that |[n'| =1 on 8S.
From the conditions (8), it follows that p; > g, -n' =sina™'(oc— (v-n)x) >
sina ™! (Zo — [I] - as))- O
We now turn to the core of the proof of the gradient estimate. It was noticed

for the first time in [Ura73] that under the condition (12), it is both convenient and
sufficient to estimate the quantity

v(x) == vy (o(x,v) = k(x)(v-n(x))), xeS (24)

since the conditions (8a) and (12) imply the inequalities
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The following Lemma provides the corner stone for the gradient estimate. We
perform the computations for continuously differentiable ®. In the case that
® e V (cf. (10)), the same is valid usign either the right or the left trace of VO
on S.

Lemma 3.3. Let S be a N-dimensional hypersurface that satisfies (1), (2), such that
i1 > 0on S. Let v be defined by (24) on S. Then, there are functions ay, ay and
by,...,bny1 such that for all n € C'(S), the relation

ds
J V]2\7+lo-qi,q/5jvéi’7 - J CI)XN+1 VN4+1UH + J Ky vN+lU777
s s as S o
{an +b -0} + ds (26)
=1 v a . VN1d21] —
¢ N+1d17] n : N+1 msmoc
is valid. There are constants c¢;, i = 1,...,4 depending only on the constants in the

conditions (8), (9), on kx|« (s) and on the domain G, such that a> < ¢3, |b| < ¢4 and

2
12

a; < o2+ e1(1 + |y + |Dy]) + c2(1 + |Dy|)vys1]0v]. (27)

Proof. Throughout the proof, g, =0g,(x,v) on S. Due to the assumption
vyi1 > 0, Sis the graph of a function y € C*(G). Fork =1,..., N, we denote dj
the tangential dlfferentlal operator dy := Oy, + ¥, Oxy,, on S. F orneC! ([RN “)

we denote 7, =17, - u* with the tangent vector field u/ —51‘ fori=1,...,N,
uN+1 = w)g/‘
Fork =1,...,N + 1, we introduce &, := 6, — kny, and == vy! v, that is,

=~y fork=1,...,N,and {y;; = 1. The identity (14) yields
N+l
v="> (04 —xkm){=¢-C onS. (28)

k=1

For k € {1,..., N}, we can differentiate the equation (5), multiply the result with
noy =n(x,¥) (y e C'(S) arbitrary), and use integration by parts to obtain that

da, d d® da,
O & S e P Hy_1,
J dxy dxz nev Jdeknow+LGn kalyowd N

which is nothing else but the identity

ds

—J VN 1dkOgdin = J VN 1d @y — J VN 1Tl ——, (29)
S S oS S o
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with summation over i = 1,..., N. Choosing &7 as test function in (29), it fol-
lows that

*J VN 1Ckdi0 g din = J V11 (dkog diéy + & di D)
s

s

- Ls VN+15kdk0qiniﬂS;I%a (30)

with summation over i,k =1,...,N. Using the symmetry of the matrix {d;v;}
and the fact that ¥, vy 41 = —V, one verifies that

divy = 0vj + Y On1vy = —vnidithy,  j=1,...,N+1. (31)

Forie {1,..., N}, the latest yields

Ckdiay, = &0y, + $k0q,,q; OV + Y, On1V))

= ékaq:’,dk - VN+1O-[1i-,lI/5jlpxkfk (32)

For jel,...,N+ 1, using that {y,; = 1 on S, we see that

N N+1 N+1
D o= =Y 0l = =L O+ D Lok (33)
k=1 k=1 k=1

Using (8d), we compute that

V18k0iCk = g q k01 + Vi (g0, — 0j(nikc) )
= Vk(Uq,”é/ _5.f<nkK))a (34)

with summation over k = 1,..., N + 1. Using (32), (33) and (34), we obtain for
i €{l,..., N} the identity

N+1

N N
Z dkaq,ék = Z ékaq;?dk — VN+10yq;,q; (_5]'1) + Z Ck (O-qk,(S,- - 5j(nkK)))
k=1 k=1 k=1

N
= 04,4, (ON100 +B)) + D &40y, 4,
k=1

N+1

b = — Z Vi (G405, — 0 () ). (35)

k=1

Due to (8d), we easily see that S, O q,dill = SV 044,01 Thus, we obtain
that
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J VN+1Ckdi0g,dil] = J VN+10g,,q,(VN+10;V + by)oin
N N

N
+ J VN+1 Z $k 0y, dill- (36)
S k=1
We easily verify that

ds
J VN1+18k 0, dil] = —J VN+1di(ékaqi,dk)ﬂ+J VN 18k g i -
s s oS sina
with summation over k,i = 1,..., N, and we can rewrite (30) as
J VN+10'q,»,q‘/(VN+15jU + Ej)éi”
s
= J w1 (di(Ex0g,.a,) — Ao dicx — Epdi @)y
s
ds
+ N VN1 (Crdiay, — ékaqi,xk)niﬂﬁ- (37)

We consider in the first integral on the right-hand side the term d;(¢ioy,4,) =
di&04, a4, + Exdioy, a,. We compute

ékdio-qhdk = {aqhka\‘[ + lpx,-UIbebeﬂ + O'xk,q[.,q,-divj
+ O-q,-,xNH (_éigk + €i5N+1Ck)
- Ck(o-xistH-,(Ii - Ciaqhx/wuxwﬂ + UXNHA,%(I/diV/')}éka (38)
with summation over i,k =1,...,N. In (38), we use that —&.{, = —v+ay,.,,
N N+1 .
and the fact that ) ;") 0vy,1.q.0,dV) = Doin Oxyoriaiq0; (cp. (8d)) in order to
reexpress
_CkékaNJrlaqis‘/jdivj = (—D + O-lINH)O.XNH-,qi:‘Ijéivj

= _U(éiaxl\fﬂ-qi - O-XN+1,q[-t5f) + O-qN+|O-XN+|J]i1qj5fvf' (39)
Using (38), (39), we obtain the identity &y dioy, 4, = —v0i0,., 4, + A,
A~1 = {O-qiaxlmxi + lpx,-o-qhkaNH + axlf7qis‘1jdiV/

+ Og;,xn+1 (_51'Ck + €i5N+1Ck) - Ck (O-Xf,XNH,lh - Cio-qistJrlwaH)}ék

+ UOxy.1,q:,0; + O-qiv+10-xN+1~,qi7(1/5ivj' (40)
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Therefore, using the preceding identities and the Gauss theorem, it follows that
J VN+1fkdi0q,~,dk77 = J VN+1A~17’I - J VN+105iGXAr+1,(],-77
s s s
= J vw1Ain + J VN+1UUxN+1,q,-5i77
N N

- J VN+1UO-XN+1-,%V;77dS’ (41)
as

where we have set
A=A, + v;,lqaxh,“,qi (6i(va+10) + viv vy divg ). (42)

Using (41), we can now express the relation (37) in the form
L V4104007000 + VN +1(0g.0,0) = V01,001

= J Vi1 (A1 + diéroy, q, — drog,dicy — Erdr®@)n
s

ds

=+ Ls vN+1(EkdiOy, — SkOg,x, — UO_XNHJ]i)ninﬁ- (43)

On the other hand, using the relation (31) dyo,,diy = 0,4, a.dilx — Aa
As = VN 110y, 4,0V, (0g.ar — di(rng) — VN+10'qk,q,-5j‘//x,)- (44)
Due again to (31), we also have
Eedr @ = & (D, + @y i) = Ei (P, + Yy, Picyy) + Vv1 Dy, Eki ks

with summation over k=1,...,N and j=1,...,N+1. Since &, =
—v+ 0y,,,, it follows that & dy® = —v®,, . + 43,

N N+1
Az = Z ékq)xk + 04N+1q)XN+1 + VN+1(I)11/5./U - q)lij Z Vi (0%(5/ - éf(’cnk))' (45)
k=1 k=1

Finally, observe that & dio,n; = &di(o, - n) — Edin - 04 Using the fact that
&rdy 1s a tangential differential operator on 08, it follows from the boundary con-
dition (2) that

ékdko-qfni = ékdk’c - ékdkn “O0q = ékak + (Gq/vu - U)Kx.w’+l - ékdkn *0q, (46)
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with summation over k = 1,..., N. Define
az = ékak + Oy Koxyey — Cidin - Oq — (éko—l],‘,xk + V0g;, xy )I’l,‘. (47)
we have (& dioy, — &0y v, — V0xy,, g0 = —UKy,., +a. Fori=1,... n, we de-

fine b; := 0y, 4,b; — VO, 4, and we set aj := A; + Ay + A3. Then the representa-
tion (26) follows from (43). It remains to find the constants c;...cs. Using the
definition (35) of b and the assumptions (8), (10) and (14), we easily prove that
b| < w5 (Jog,«| + [6(kn)|) + pus. In the definition (40) of Ay, we use the formula
(cp. (14))

n N+1

_ _ -1
E :Jclf-,ijx,- - E Gclf,XjCi + Ogyi1,x; = “VN+10x; + Ogy.i1,x)5
i=1 i=1

and analogously, that le 1 OgiaW, = —VNh10x.x & Ogy,r x.x,» tO prove with the
help of (31) that

|41] < [E](log 5.5 + |0'X‘,XN+1|VXI}&-1 + 104y, 2l) + vvi1lo5 4.4 16
+ |0-q~,xN+]| |5Z:‘ + (|O-L]N+];XN+I‘ + |O-XN+] |V;/£r1)‘5n+1é|
—1
+ |C|(0-i.,q,x,v+1 - vN+lo-xN+17XN+l + O-qN+1-,XN+17XN+1)'

Due to the assumptions (8) and (9), we therefore have [4,| < ¢ + cavy11]0¢|. To
estimate 4, (cf. (42)), we also use the facts

|VXIEHO-XN+1alIi|5i(vN+lv)| < p(vns1lov] + V12v+1v|5C|)
|V1T7}|»10-X/V-17q[v[ divS VUVN+1| = U|O-XN+1| |div5 V| < ]/2/15V12v+1 ‘5C|

This finally proves that |A4;| < ¢ + c2vn+1(|0C] + [0v]).
Using that g, ;. di = 9, 4,0i, we readily see that

A = vN+lo-qi:(If5jlpxk (O-qk-,xi - 5i(’€nk) - VN+10-qkeqj5.flej)
< VN 41040049, 9C0 Ck + VN4 (|0 5] + 0(m) ) 0L (48)
The condition (8c) implies that g, ;,0;{k0y, 4,01 = 236C|*. This yields the in-

equality 4, < -2, e |* + cvn4110¢|. Using the conditions (8), we easily see
that

|A3] < 1| @s + | @[ (|05, 4| + 10(x7)[) + viv-1 Dy |o0].
Thus, for the function ¢; we have the following estimate:

a1 < =J310L17vy 1 4 Cow a0 + (1+ [ @y vy 1100 + C(1+ @] + |@)),
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where the constants depend on G, |||, (s and the constants of the conditions
(8), (9). It follows from Youngs inequality that

1< ——I5C| Vi1 + U+ [@xf + |@g]) + C(1+ [@yJvy.41/00]-

Finally, we use the assumptions (9) to show that |ay| < p (x| + |ny| + |0y 5]) +
yatts < C. This concludes the proof. O

From Lemma 3.3, there are several ways to finish the proof. Uraltseva’s tech-
nique in [LU70], [Ura71], [Ura82] is based on estimating w := logv. Assume that
®,,., <0 and xy,,, >0. Choosing nv with # nonnegative as a test function in
(26), and using (25), one easily deduces that

L Ogi,q0W0il + JS VA 1104,.4,0/00i0

ds
< CIJ {1+ 16wy + o]} + czj -5
S oS

S o

Thus, Lemma 3.1 now yields [¢a,, 4 dwom < C [{(1+[0w|)n + |on|}. It is pos-
sible to derive the boundedness of w like in the standard Stampacchia proof for
second order elliptic equation with L* coefficients, provided that a Sobolev em-
bedding theorem is globally available on the manifold S (cf. [LU70], [MS73] for
local embedding results, [Ura71], [Ura82] for the extension to global embedding).
Here we rather show an elementary manner to finish the proof in the case that
7o > 0 in the condition (11). Under this strong monotonicity condition, the esti-
mate on Vi is only polynomial in the norm of the data.

Lemma 3.4. Same assumptions as in Lemma 3.3. Then, there is a constant K
depending on the constants in (8), (9), and on ||Kx| ;-5 and G such that for all
l1<g<

1
[ v"’4|VU|2——J o, vt SKJ avl,  a<l+|®+|D]+|D,)% (49)
G qJ)c G

Proof. Choose in Lemma 3.3 # = v4. We obtain that

ds
2 q+1 +1
J qvy v aql 0jV0;v — J Dy Vv + J Ky V41077 ——
s s s smo
_ ds
= | wii{av? + gb - dvv? 1} + | yyprav?—
S oS Sin o
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Due to (8b), gy, 40000 > /12|5v|2. Applying Young’s inequality, and using the
bounds derived in Lemma 3.3 for the functions «;, |b| we can estimate

7
wveaw? < ea (14 0] + [ uvsrv? + vk ool 0!

362|(Dq|

2ind vy 1b - ovvd!

/12Q2 2 41 3561 1
= Vi lov] o™ 2/12 vl

Using the fact that ., > 0, and (25), we prove that

26]}.2
3 L ARCAN low|® JSQXAN'+IVN+IUq+1

331®,|* | 3¢iq 1 J ds
< 1 Q) |v1 1
_QL< S an (VD) o 4 | vl

We apply the estimates (25) and (27) and the Lemma 3.1 to estimate

g ds g1 ds
il —— < ey, | 07—
oS sin o oS sin o

< i (01| o720+ | o)

A
SB[ e
S

+J szl —I)ZV_Z 0977 + e3pyp Haolv?™!
s 2)\’2qu N+1 2/1

Using (25) again and the bound derived in Lemma 3.1 for the function ao, we
derive the estimate

qJ 10920 —J D, 07 < CqJ av?!
s S s

21
a:= 5(61 + ||+ 1/4|D, > + |@]),
where C depends on all the data but not on ®. Note that
J R P :J v 2|ov|* > J v, 0072Vl
s G G

The claim follows using again (25). O
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Proposition 3.5. Same assumptions as in Lemma 3.4. Let p > N /2 and o9 > 5~ N
arbitrary.  Then, there exist a constant C depending on K, G, oy and p, and
functions o, {; of wy and p such that maxsv < C(1+ [|®[,s) + || x|

Lo(s
5 0
1@l 220(5)) " 10l 220 G-
Proof. Due to the condition (11), Lemma 3.4 implies that
w2 Klg=2)?
J |Vole=2/22 < 7J a?. (51)
G 4 G

We add |42/ ZHiz(G) on both sides of (51). Thanks to Holder’s inequality, it
follows that

_ K(g—2)[ . _
JG{|VU<42>/2|2+ [0]47%} < %J0a0q+meas((¥)2/‘]|v||zq(26). (52)

Define qo = oco /p's p' = p/(p—1). The choice of oy garanties that gy > N. De-
fine y := 1f N > 2, and y € |p’, +oo] arbitrary if N =2. The choice of o
implies that y S p'. We can also verify that qz/ 4 < 2 for N > 3, 24 4 < oo for
N =2, for all go < g < co. It follows that the embedding W!2(G) — L (G) for
r:=2yq/(q — 2) is continuous, and that the embedding constants are uniformly

bounded. The relation (52) implies that

_ 2
||U||L/‘1 Hv(q 2)/2||L"(G)
2 2 2
< ¢((¢=2)°Klal o) I0ll} 1, ) + meas(G) fatl )/"”||v||LM &)
< cmax{(q — 2)2K||d||L,) meas(G)z/‘f+ 4=2)/ar)
x max{|[ollf,, g ||v||m 5 (53)
For m e N, set a,, := %ocm_l, A, = ||v||L1m(G). As a consequence of (53) with

1/(gm—2)

gm = o /p’, one finds the recursive inequalities 4,1 < ¢y ASr that imply

3

Aps < Clln/(flnﬁ2){ [Ci] 5:’+1/(qi—2)}A})—[iioéi7

i

: ,_{imtijiz if 4, =1, (54)
" otherwise,

Il
=

em = c[(qm — 2)° K| () + meas(G)>/ 4@ anr).
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We now provide rough bounds for the products appearing in (54). We abbreviate
% :=y/p’ > 1. Note first that

10g<Hfi) < Z log(q:/(q: — Z qoz_z < P
i=0 i=0

:0 i=0

Thus { := [, & satisfies the estimate {5 < exp(2/(q0 —2)(x — 1)). Observe
also that

m—1 m—1 )
log( [Tl é"*‘/(q"72>) = Z—qf’ilz log(c:),

i=0 i=0

log(¢;) < loge + log(KHaHU ) +2log(q; — 2)

2 gi—2
+ ( +4 ) log meas(G). (55)
qi qip

Using the estimate ;.1 < ¢go/(qo — 2) for i € N we can bound

1—1 .

m—1 m
vl Vilog7 +logqo _ gologgo i+1
E ——log(q; —2) < E <
i:()qi_z ( ) QO_z qu_ q—2 (lo Xl )

and {) = Y7 G = 20, (C’“ ( +4= ) are obviously finite. Therefore,

i=0¢;—2> 2)
(55) implies that ], [¢;]"/ @) < cl(qo)((K||Ez||L,)<G))c‘ + meas(G)“), and the
claim follows from (54). O

Everything is therefore reduced to estimating the L%-norm of v for a

oy > %. We directly obtain this bound, if we require the strong monotonicity

condition (11). It trivially follows from (50) that for all 2 < 7 <

Ct
10l L) < V_o(l + Dl sy + 1Pxll sy + 1Pyl L21(s))- (56)

This achieves the proof of Theorem 2.2.

4. Higher-order estimates

The gradient bound is the corner stone in the problem (5), (6). Higher-order esti-
mates can be derived whenever a L*-bound on the derivatives of y has been
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proved, since the equation (5) is then a uniformly elliptic equation of quasilinear
type, due to (cp. (17))

L) ET? - Jolé|?

N
Z 6Pf,ﬁféiéj = = 2.3/2
by Sl A+

Define ¢ := supg4/1 + [V/|>. The following Lemma states the Holder continuity
estimate.

for all £ € RY.

Lemma 4.1. Assume that G is a domain of class 6°. Let y € €*(G) be a solution
to (5), (6). Then, for all § € [0, 1], there is ¢ = ¢(G, cg, §) such that

IVl conigy < e(U+ V()| o5y + 1P| ) -

Proof. Due to Remark 2.4 and Gauss’s divergence theorem, y satisfies

J (G, + Kn) - VE = J (@ —div(kn))¢  Vée WH(G). (57)
G G

Here and throughout the proof, the functions & and ® are evaluated at (¥,y, V).
In order to simplify the discussion, we prove the regularity in a smooth open
domain Gy = G, assuming that Iy := G N G, is flat and such that the N — 1
first basis vectors are tangent on 'y and n = ey on I'y. In the general case, it is
possible to use the definition of a domain of class %? to locally map a neighbour-
hood of X € dG onto the model configuration.

For /=1,...,N —1, we insert the test function 0,,¢ for ¢ € C}(Go uTy) in
(57). Using integration by parts, it follows that

- JG{6p1717ja§/,X1w + 6]’17«‘61 + 617f-,~\1v+lale7b + aX/(Kni)}axié

+ J (8, + Ki)nEm = J (® — diviem)) a2, (58)
oG G

Since n; = 0 on I'y, the choice of ¢ yields vanishing of the surface integral. Equiv-
alently

J 6]1,'717/63(,!103616?6;5 = J V ! Véa (59)
G G
Vii= —Gpxy — Gproxyn O — Ox (i) — (@ — div(xn))o; fori=1,...,N. (60)

Using in particular the growth assumptions (8), and (9b), it follows that |V| <
o+t + g+ [|V(n) || e (s) + | P 05y According to classical linear regularity
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theory (cf. for instance the Theorem 3.16 in [Tro87]), there is for 0 < f < 1 arbi-
trary a constant ¢ depending only on f, Gy, the ellipticity constant of the matrix
{Gp..p;} and its norm in L* such that

Wil corioy < NV Gy (61)

It follows that v, :=Viy — (n-Vy)n e Cl(z;f (GouTy). Using an open covering
of 0G, and applying the reasoning locally to each section, we obtain that
Y, € C%P(0G) with corresponding norm estimate. We show that also v, := n- Vi

satisfies a Holder condition on 0G. For X € G, y € R, define

H()_Cv y) = 511 ()_C, l,b()_c), ':bt(x) + n(x)Y) ’ n()_c) + K()_C> lﬁ()_c))

Using the growth condition (8b), |H (X, y)| < sy + [[x[| . (s) for all (%, y) € G x R.
Moreover, for X1, X, € G, y e R

=l

[H(%1,9) = H(X2, p)| < [|0p el = X1 = %ol 4 10y v [ 2 [ (1) = ¥(32))]
115y pll (W, (F1) = (%) + [¥] n(31) — n(52)])

( 2
A lresll e 130 = Xof + [y e [ (1) = Y(x2)],

so that the following estimate holds:

|H()_Clay) —H()_Cz,y)|
%1 — %o

< c(T+ Wl eoniog) + VIRl cosgg))- (62)
By virtue of the condition (8c), note that
8, H(%, 3) = Gy (%) = i1+ [VY) 2 (1= (v-0)%) = Jacg?. (63)

On the other hand, the boundary condition (6) implies that H (x,,(x)) =0 on
0G. For X, X' € 0G arbitrary, it follows that

im%%@—m@»sj 0,H(,5) ds

The latest yields

) = (] JH () = ()|
/| - /|

(64)

|x - x X — %
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Therefore, taking (62) into account

[Wall corgosy < €U+ 11Well congy + csllnll o) (65)

which finally implies that Vi € C®#(0G). Return to (59) for & € C(Gy). With
the help of regularity results for linear equations (cf. for instance the Theorem
3.16 in [Tro87]), it now follow that 0.,y € Cl(())’cﬁ(Go uTly) for/=1,...N — 1 with
corresponding norm estimate. Since the same relation is valid for / = N if the
test function & vanishes on 0G (note: the operator (G, + xn) - V is tangent on 0G),
we can argue the same for , in view of (65). ]

The estimate in C%>* is obtained with similar ideas.

C||®l co5) + llxll c12a5)), where C depends on the constants in the condltlons (8)
9), (12) and on cg.

Lemma 4.2. Same assumptions as in Lemma 4.1.  Then |D? l//HC“ <

Proof. Consider the relation (59). Lemma 4.1 implies that G,, ,, € C*#(G) for all
B e [0,1[. Analogously, ® € C*#(G) for all § € [0, 1] (cf. (4) and (7)).

The definition (60) together with Lemma 4.1 now implies that ¥ e [C%*(G)]"
(cp. (60)). Thus, the linear regularity theory (cf. Theorem 3.17 in [Tro87]) now
yields for/=1,...,N — 1

||lpv1||[cl 2(G) N < CH VH [C0-%(G))"*

We are now allowed to differentiate the relation H (X,,(X)) = 0 in any tangential
direction t over 0G, which yields 8,H (%,,(%))(z- Vy,) = 7 He (X, ¥, (X)) for
X €dG. Due to commutation rules, the mixed-derivatives ,, belongs to
C%*(G), with corresponding continuity estimates. In order to show that also
¥, , € C¥*(G), we use the previous results in connection with equation (5) yield-
ing on Ty

N-1 N-1
O — E : O-Pi-,ﬂjlpx[,x,- -2 E :G[’iﬁpwwx[,xiy = Opi,x; — Gpi:xNHle;
ij=1 i=1
_ = 0,00
- O‘[’Ns]’/\"‘p}’l.n eC (G)

Since 1,Gy, »,n; > Aa¢q°, the function (ni&php,n,‘)_l belongs also to C%*(0G). We
finally can conclude that v, , € C%*(I), and that v, , € C**(3G) due to local-
ization arguments. Thus D?y € C%*(0G), and the claim follows (Theorem 3.17 in
[Tro87]). 0
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5. A priori estimates on y in L®

The natural W! estimate, and the global boundedness of weak solutions to (5),
(6) have been discussed in different papers. In the case that o and x do not depend
on the xy. variable, and that ® = ®(X, xy+1) the inequality ||« g, < 40 and
the condition (11) is known to be sufficient to obtain these bounds. The arguments
easily carry over to the general case.

Lemma 5.1. Assume that y € W1(G) is a weak solution to (5), (6). Assume that
(11) is valid. Assume that p > 2N. Then, there is a constant depending on 2N — p,
on G, on the constants py, y, and y,, and on ||z (-,0)| ;-G such that

Wl () < e(1+ [D(%,0, V)| Z,6)-

Proof. Multiply the equation with ¢ € W!!(G) and integrate by parts. We add
the zero [ div(i(x,0)n&) — [, x(X,0)¢, to obtain the identity

J (G4(%, %, V) + K(X,0)n) - VE + J (rk(%,¥) — k(%,0))¢&
G G
= JG( (X, ¥, V) — ®(x,0, V))& +J (@(x,0,Vy) — div(x(x,0)n))E.

0)) (Y — k)* >0, and

Choose & = (y — k)", k e R*. Due to (11), (r(x, ) —K(
k)*. Using (15), and the con-

(D%, 9, V) — D(,0, Vi) (¥ — k)" < —p(Y —

stant y; from (12), we can prove that

" jG V() — k)| — g meas(4y) +yoj VW — k)"

G

< JG(|(T)(>‘C,O,V¢)| + |div((x, 0)n)|) (¥ — k)™,

where A :=supp(y — k). Using Young’s and Holder’s inequalities, we can
prove that

1l —k) ||W11(G

<ﬂ1 n V;O) meas(Ay) + oJ (|CD(x 0,Vy)| + ’le( K(X, O)n)‘)z
)

IA

Ay

IA

V

— (Ar)
< 2 meas(Ay)
+

2—(||7()_C,O,le)||i,,<0) + Hle( K(Xx, 0) )‘ )meas(Ak)(N—l)/N“'S’

Lr(G)
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with ¢:=1/N —2/p. It follows that Y <c¢(1+ ||&D(X,O,Vw)||i,,(6>) (Stampac-
chia’s Lemma, cf. [Tro87], Lemma 2.9). We prove analogously a lower bound,
and the claim follows. ]

6. Existence

It was shown for the first time in [Ura71] that a priori estimates on the gradient of
C? solutions to (5), (6) joined to the Holder estimate of Lemma 4.1 leads to an
existence theorem via continuation methods in Banach-spaces exposed in [LU68],
Ch. 10. Here, existence is obtained via the implicit function theorem.® Note that
we need somewhat weaker hypotheses on @ than usually in the literature. More-
over, the condition (13) seems not to be yet known in the present context. At first,
we formulate a simple continuation Lemma.

Proposition 6.1. Let X, Y, Z be Banach spaces such that Y — X with compact
embedding. For a,b e R, a <b, let G : X x]a,b| — Z be a Fréchet differentiable
mapping, such that the derivative 0,%(x*,.") e L(X,Z) is an isomorphism for
all (x*,2") € X xJa,b|. Assume that there is K > 0 such that for all /. € |a,b|,
all solutions x € X to the equation 4(x,A) =0 belong to Bk (0;Y). If there is
(x0,0) € X x ]a,b[ such that 9(xo, ) = 0, then the equation %(x,.) =0 has a
unique solution in Bg(0; Y) for all ). € [a, b).

Proof. Define M := {4 € [a,b]:3x € X,%(x,A) =0}. The set M is nonvoid
since %(xg,249) = 0. Moreover 1" := sup M belongs to M. To see this, choose
{ M} ien E M, A — A", By definition, there is x; € X such that %(xg, Ax) = 0.
By assumption x; € Bg(0; Y) for all k € N, and therefore, there is a subsequence
Xy, that strongly converges in X to some x*. Obviously, %(x*,1") = 0, implying
e M.

Seeking a contradiction, assume that 1 < b. Then, due to the implicit function
theorem (see [GTO1], Th. 17.6), there is an open neighborhood |.* — ¢, 1" + ¢[ in
|a, b[ such that the equation ¥%(x, /) = 0 defines a unique implicit vector-valued
function 4 — x(1) € X. Therefore 1" # sup M, the contradiction. Analogously,
one shows that inf M = a. This proves the existence.

If x1,x, € X both solve %(x,1) =0, then 0,%(x*,4)(x; — x2) =0 for some
x* € [x1,x2]. Due to the assumption that 0,9 is an isomorphism, the uniqueness
follows. O

3We thank the referree for the indication that a similar simplification of the existence proof was
already achieved in the second edition (1972) of the book [LU68], which unfortunately has not been
translated into English.
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Theorem 6.2. Assumptions of the Theorem 2.1. Then there is a unique
W € C*%(G) that solves (5), (6).

Proof. In the first step, we prove the existence claim assuming that ® e
CY*(GxRx RN, Let 0<f<a Define two mappings % : C>#(G) x
]-1,1[ — C#(G) and %, (w, 1) : C*P(G) x |1, 1] — C"F(0G) via

G (w, 1) == —%&pi(fc, w, V) — ®(x, w, Vw)

+ (1 = 2) (05,85, (%,0,0) + @(x,0,0)),

Gr(w, L) == =6, (X, w, Vw)n;(X) — (X, w

We define a mapping %(w, 2) := (%1(w, ), %(w,4)). Obviously, %(0,0) = 0.
Moreover, due to the regularity assumptions on o, ® and x, the mapping ¥ is
clearly Fréchet-differentiable. The derivative 0,,4(w*,1*) at an arbitrary point
(w*, %) € C*#(G) x ]—1, 1] in the direction w € C*>#(G) has the expression

— 4 (5 pOxWHa, W — D w—D wy,
&ﬁq(w*,/l*)w = dx;i ( Xi +1 )_ xN;rl pi i
—(a, ax] WG, w)ni(x) —Ki W
where the indice * means that the value is taken at (¥, w*(X),Vw*(X)). In the

Lemma 6.3 below, we show that for every f e C/(G) x C" 1 /3 (8G) the equation
0,%(w*, A" )w = f has a unique solution in w € C>#(G), that is nothing else but
the inver‘ublhty of the Fréchet derivative 0,4 (w*, 1").

Moreover, any function we C>#(G):= X satisfying %(w,A) =0 solves
the problem (1), (2) with right-hand ®(x,q) := ®(x,q) + (1 — 1) (0(x,0,0) —
®(x,0,0)), and with contact-angle #(x) :=x(x)+ (1 — 1)(g4(x,0,0) - n(x) —
K (X, 0)). Due to the results of the preceding sections 3, 4 and 5, all solutions
to the equation %(w, ) = 0 lay therefore in a bounded set of C>*(G) =: Y.

The assumptions of the Lemma 6.1 are satisfied, and we obtain in particular
the existence of a unique i € C>*(G) such that %(w, 1) = 0, that is the claim.

In order to obtain the Fréchet differentiability of %, we had to assume in the
first step of the proof that ® € C!*. In the second step, we have to show that
this assumption can be removed. Let ® € ' (cf. (10)). At first, we apply the
Sobolev extension operator outside of G in the X-variable, to obtain for arbitrary
fixed ¢ € RV*! that @(-,¢q) is in WL (RY*!). Obviously, supgri, gyn @y, =
sUpq, pvit Puyy < —7p. We choose ®;(x, q) == [pva wi(x — y)®(p, q) dy, where
w, is a smooth nonnegative mollifier. Then, the sequence {®,(q)} = C*(RV*!)
is uniformly bounded in W *(RV*!) and @, , , < —y,. Moreover ®,(q) —
®(q) in Whr(Q) forall 1 < p < oo.
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For ¢ > 0, let , € C>*(G) denote the unique solution to (5), (6) with right-
hand ®.. This solution exists according to the first step. Moreover, the sequence
{i,} is uniformly bounded in C**(G), since the bounds obtained in Sections 3, 4
and 5 only depend on the W' * norm of ®, and on y,. The claim follows letting
e—0. 0

Lemma 6.3. Assumptions of Theorem 6.2. For every w* e C>F(G) and f €
CH(G) x CVF(0G), the equation 0,%9(w*,.")w = f has a unique solution in
we CHP(G).

Proof. Existence is clear and follows from standard linear theory (cf. for instance
the Theorem 3.28 in [Tro87]). For the uniqueness, we assume that w; € C>#(G)
is a solution for i = 1,2. Then, the difference w satisfies 9,,%(w*, A" )w =0. We
abbreviate & := Vw. We moreover define ¢* := (Vw*, —1) e RV E=(£,0) ¢
RM*! and the orthogonal part to ¢* via &7 := f (f ‘ ‘) ‘q_‘ Using also (14),
we obtain that e

E;JNH <= “0¢,xn11 (xX,w*,q")- &
- T q* q* .
- _6;-,?5.?\14 <= O-;-,XNH ’ m m .
T 1
- q XN+1 é [qI*VJrl] ;V+16N+l (66)

where ¢* = value at ()‘c w*,¢*). Using the assumptions (9), it follows that
| pMH < (,u5 —|—,u6)|f |/|lg*|- On the other hand, it follows from (8d) that
Ty &g > Jo|ET \ /lg*|. Thus, employing Young’s inequality, we obtain the in-
equahty

_ , 7 (s +,116)2 2
0_';1"]9]_@6] +5;l Wﬂf w > (1 —51)A2 — 4500 w”, (67)
1+ |[Vws]? 172

with d; € ]0, 1 arbitrary. On the other hand, using the definition (4) of v;(p) for
j=1,...,N+1, we compute for i = 1,..., N the derivative

—1 J Pip; ;
o7 — ;) forje{l,....N
O vi(p) = \/1+\p\2( ' 1+‘l’|') jed J
—— if j=N+1.
V1+ph?
We have for k = 1,..., N that 8, (Vw*)& = &[ /|g*|. Since @, = @8, vi(p),
we easily see that |(T);/_éj| < |®,]|€7|/1g*]. Tt follows for 3, € ]0, 1[ arbitrary that

T2 2
—_— ,°
@, ] <2k <] +| d” 52 (68)

v/ 14 |VW*|2 40202
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Summarizing, (67) and (68) imply for J; + J, < 1 the inequality

2 2
Us + ) D"\ -,
PPy syl L CL)

_ _ - 2 (
O-;hp/éiéj + O-;ux/vﬂ iw = (D;\r+1w B (Dpféfw 2 <V0 o
Due to the equation 0,,%(w*, 1*)w = 0, we have the identity

J G oW+ & O — D
G

Pis XN+1 XN+1

PRI Py x =2
wo =, 0w} + J‘G Ky, W™ =0.
o

Since xy,,, =0, we can use (69) and the assumption to show that w = 0. O
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