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generalized equations of mean curvature type

Pierre-Etienne Druet*

(Communicated by José Francisco Rodrigues)

Abstract. Mean curvature equations of general quasilinear type in connection with contact-
angle boundary conditions are considered in this paper. We investigate the existence,
uniqueness and continuous dependence of the solution in classical function spaces. On the
one hand, a survey of techniques and ideas developed in the 1970s and 1980s, mainly by
Uraltseva, is presented. On the other hand, extensions of these results are also proposed:
we formulate growth conditions for the general dependence of the potential on the xNþ1-
variable, and we extend the existence and uniqueness statements to this case. Moreover,
the regularity assumptions on the right-hand side are relaxed, and alternative proofs for
the higher-order estimates and the existence result are provided.

Mathematics Subject Classification (2010). Primary 35J93, 35B65, 58J99.

Keywords. Generalized mean curvature equation, contact-angle problem, classical solv-
ability.

1. Introduction

We consider the problem to determine in a domain WHRNþ1 (Nb 2 the space

dimension) a N-dimensional hypersurface SHW, obeying the relation

divS sqðx; nÞ þ sxðx; nÞ � n ¼ Fðx; nÞ; ð1Þ

where divS is the surface divergence operator, and n denotes a unit normal to S.

The potential s : W� RNþ1 ! R, ðx; qÞ 7! sðx; qÞ is given and one-homogeneous

in the q-variable. The right-hand side F : W� RNþ1 ! R is a given function. In

the case of isotropic data sðx; qÞ ¼ sðxÞjqj and Fðx; qÞ ¼ FðxÞ, the equation (1)
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reduces to the problem of surfaces with prescribed mean curvature. We consider

on the boundary SB qW the generalized contact-angle condition

sqðx; nÞ � nðxÞ ¼ kðxÞ; ð2Þ

where n is the outward unit normal to qW, and k : qW ! R is a given function.

More specifically, we are interested in graph-solutions to the problem (1), (2).

A graph-solution can be defined (after a suitable change of coordinates) if

W ¼ G � R with a bounded domain GHRN , and if S is represented as the graph

of a function c : G ! R. The problem (1), (2) on the manifold S reduces to

boundary value problem posed in the domain G. Define for ðx; xNþ1Þ a G � R

and for p a RN

sðx; xNþ1; pÞ :¼ sðx; xNþ1;�p; 1Þ: ð3Þ

and introduce a function F : G � R� RN via

Fðx; xNþ1; pÞ :¼ F
�
x; xNþ1; nðpÞ

�
; niðpÞ :¼

�piffiffiffiffiffiffiffiffiffiffi
1þjpj2

p ði ¼ 1; . . . ;NÞ;
1ffiffiffiffiffiffiffiffiffiffi

1þjpj2
p i ¼ N þ 1:

8><
>: ð4Þ

The problem (1), (2) is equivalent to the contact-angle problem

�div spðx;c;‘cÞ ¼ Fðx;c;‘cÞ in G; ð5Þ
�spðx;c;‘cÞ � nðxÞ ¼ kðx;cÞ on qG: ð6Þ

Physical applications of the model (1), (2) respectively (5), (6) are to find in ther-

modynamical contexts, where (1) is to interpret as the first variation of a surface

free energy. The equation (1) is known as generalized Gibbs-Thomson relation:

The surface S typically represents a phase transition, and s is the tensor of surface

tension on S; The right-hand side F in (1) may involve quantities such as chemical

potential, temperature and mechanical stresses on S: see the book [Vis96], Ch. IV

for models in crystallization. Technical applications for the model (1) are for

instance processes in industrial crystal growth, where curvature e¤ects on the

crystallization interface are assumed to be responsible for the formation of defects

(cf. [DDEN08]).

Equations of mean curvature type were thouroughly studied in the seventies,

in connection both with the Dirichlet and the contact-angle problem: see [Gia74],

[Ger74], [Giu76] among others for the BV approach, see [Fin65], [Ser69], [Ura73],

[Ura75], [Ura82], [SS76] a. o. for the classical approach, which also retains our

attention in this paper.

The existence of graph-solutions essentially relies on the gradient estimate for

the function c. To our knowledge local estimates were obtained first in [Mir67],
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[BDM69] for the problem of minimal surfaces (F ¼ 0, sðqÞ ¼ jqj). For general

quasilinear equations, the local boundedness of the gradient was proved in [LU70]

on the basis of profound results of geometric measure theory. Local estimates

employing other methods were also derived early (cf. [Tru73]) by the authors of

[GT01] (see Chapter 16). It is to note that the a priori estimate derived in these

papers for C2 solutions being local, they did not lead to the solvability of (5), (6).

The global estimate on the gradient for the contact angle problem (5), (6) was

first obtained in the papers [Ura71], [Ura73], [Ura75] for general s ¼ sðqÞ, mainly

via extension of the methods of [LU70]. In [Ura71] the validity of these results

was restricted to (strictly) convex C2;a-domains G, a vanishing angle of contact.

The theory for convex domains and a constant nonvanishing angle of contact

k was introduced in [Ura73]; The results were extended in [Ura75] to variable

k ¼ kðxÞ and nonconvex C3-domains, but only for the case s ¼ jqj (mean curva-

ture equation). In these papers, it is assumed that F ¼ FðxÞ. Other approaches to

the results of [Ura75] for the mean curvature equation were discussed in the papers

[SS76], Th. 3 or in [Ger79], that states the gradient estimate for (nonconvex) C4

domains. The boundedness result for gradient of solutions to the general quasi-

linear mean curvature equation with contact-angle k ¼ kðx; xNþ1Þ was proved in

[Ura82]. In the latest paper s is allowed to depend on the xNþ1-variable, but

only in a very particular way.

The arguments on existence, uniqueness and a priori estimates for the problem

(5), (6) are spread in the literature (mostly in papers by Uraltseva). Indeed the

paper [Ura82], where the general quasilinear case is treated, only deals with the

gradient estimate. In the present contribution, we aim at a complete overview on

the classical solvability of the problem (5), (6) in smooth settings. We also propose

two generalizations: A growth condition for the xNþ1-dependence of the function

s is formulated, and shown to yield well-posedness; The regularity assumptions

for F are weakened.

2. Notations and statement of the main results

Let Nb 2 denote the space dimension, and GHRN be a bounded domain of

class C2;a, a > 0, W :¼ G � R. Throughout the paper, the function s is assumed

to satisfy

s a C3
�
G � R� ðRNþ1nf0gÞ

�
: ð7Þ

We assume that there exist positive constants lj ( j ¼ 0; 2) and mi (i ¼ 0; . . . ; 4)

such that for all ðx; qÞ a W� RNþ1,

l0jqja sðx; qÞam0jqj; ð8aÞ
jsqðx; qÞjam1; ð8bÞ
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l2

jqj jxj
2
a
XNþ1

i; j¼1

sqi ;qjðx; qÞxixj a
m2
jqj jxj

2 for all x a RNþ1 such that x � q ¼ 0; ð8cÞ

Xnþ1

j¼1

sqi ;qj ðx; qÞqj ¼ 0 for i ¼ 1; . . . ;N þ 1; ð8dÞ

jsq;xðx; qÞjam3; jsq;x;xðx; qÞjam4: ð8eÞ

The hypotheses (8a), (8b), (8c) and (8d) are well-knwon, and in particular satisfied

if s is convex and positively homogeneous of degree one in the q variable

(cf. [LU70], [Ura71] for a proof ). We need special assumptions on the xNþ1-

derivatives of the function s. We assume at ðx; qÞ a W� RNþ1nf0g that

jsxNþ1
j þ jsxNþ1;xNþ1

jam5
jqNþ1j2

jqj ; ð9aÞ

jsx;xNþ1
j þ jsxNþ1;qj þ jsx;xNþ1;qj þ jsxNþ1;xNþ1;qjam6

jqNþ1j
jqj : ð9bÞ

One purpose of the paper is also to relax the requirement of continuous di¤erenti-

ability of the right-hand side. We shall require that F a V HW 1;lðW� RNþ1Þ,
where V is any closed linear subspace of W 1;l that allows for ‘F to have

bounded traces on both sides of smooth submanifolds (for instance, ‘F a Cpw or

even ‘F a W 1;1
pw ). We assume that

F a VðW� RNþ1Þ; k a C1;aðqG � RÞ ða > 0Þ: ð10Þ

Special assumptions are needed in connection with the xNþ1-derivatives of these

functions:

ess sup
W�RNþ1

FxNþ1
a�g0 < 0; kxNþ1

b 0: ð11Þ

Choosing l0 as in (8a), there is a compatibility condition between the functions k

and s:

sup
qG�R

jkj < l0; g1 :¼ l0 � kkkLlðqG�RÞ > 0: ð12Þ

For the existence and uniqueness of the solution, we have to assume that the

parameters g0, l2 and m5, m6 in the conditions (11), (8d) and (9) satisfy

g0 >
ðm5 þ m6 þ kFqkLlðW�RNþ1ÞÞ

2

4l2
: ð13Þ
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The main result on existence, uniqueness and regularity for the problem (5), (6) is

formulated in the following theorem.

Theorem 2.1. Let all the assumptions of this section be satisfied for the domain

G and the functions s, F and k. Then, the problem (5), (6) possesses a unique

solution c a C2;aðGÞ. Denoting S the graph of the function c, there is a constant

c depending on all the data in their respective norm, such that kD2ck
C aðGÞa

cðkFk
C aðSÞ þ kkkC 1; aðqSÞÞ.

A second result of the paper concerns the gradient estimate for solutions to (5),

(6), which is the most essential step of the proof. In comparison to the result of

[Ura82], we allow for a xNþ1 dependence of s, and we formulate the assumptions

for the function F as integrability conditions.

Proposition 2.2. Assumptions of Theorem 2.1 (the inequality (13) being not

needed ). Assume that c a C2ðGÞ is a solution to (5), (6). Let p and s be real

numbers such that p > N=2 and s > max
�
p;

2Np

2p�N

�
. Then, there is a continuous

( polynomial) function c such that

sup
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
a cðX ; kFkLsðSÞ; kFxkLsðSÞ; kFqkL2sðSÞÞ;

where X depends on all the data in their respective norm, but not on F.

Remark 2.3. We will give an elementary proof of Proposition 2.2 as stated.

Using the global Sobolev embedding on the manifold S, one can show that the

statement holds true for p > N=2 and s ¼ p.

Preliminary propositions. We terminate this section by stating explicitely a few

elementary consequences of the hypotheses (see [LU70] or [Ura73] for similar

considerations). Due to (8a) and the Taylor formula, there is for all ðx; qÞ a
W� RNþ1nf0g a l a �0; 1½ such that1

0 ¼ sðx; 0Þ ¼ sðx; qÞ � sqðx; qÞqþ
1

2
sqi ;qjðx; lqÞqiqj:

The properties (8d) and (8a) therefore implies for all q a RNþ1nf0g that

sðx; qÞ ¼ sqðx; qÞ � q; sqðx; qÞ � qb l0jqj: ð14Þ

For p a RN , q :¼ ð�p; 1Þ, it follows from (14) and the definition (3) that

spðx; pÞ � p ¼ sqðx; qÞ � q� sqNþ1
ðx; qÞ ¼ sðx; qÞ � sqNþ1

ðx; qÞ:

1Whenever confusion is impossible, we use the convention that repeated indices imply summation.
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Using (8a) and (8b), one therefore obtains from the previous assumptions on the

growth of s that

spðx; pÞ � pb l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q
� m1 for all ðx; pÞ a W� RN : ð15Þ

Since sqðx; qÞ � q ¼ sðx; qÞ, the assumption (8e) also implies that

jsxðx; qÞjam3jqj for all q a RNþ1: ð16Þ

For x; p a RN , the relation (8c) elementarily implies that

l2jxT j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q aspi ;pj ðx; pÞxixj a
m2jxT j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jpj2

q : ð17Þ

Here, xT ¼ xT ðpÞ :¼ x̂x� q

jqj
�
x̂x � q

jqj
�
a RNþ1, with x̂x :¼ ðx1; . . . ; xN ; 0Þ and q :¼

ð�p; 1Þ.
We also need extensions into G of the data n and k given on qG � R.

Remark 2.4 (Data extension). Since G has a C2;a boundary, the unit normal

has an extension n :¼ ‘ distð�; qGÞ into G such that n a ½C1;aðGÞ�N . Setting

nNþ1 ¼ 0 and extending nðxÞ by a constant in the N þ 1-direction, we obtain that

n a ½C1;aðG � RÞ�Nþ1. Under the assumption (10), it is possible to assume that

k a C1;aðG � RÞ. We can ensure that the inequality (12) is preserved.

Finally, we recall some notations associated with the surface S. For

c a C2ðGÞ, the graph SHRNþ1 of c is the set S :¼ fðx; xNþ1Þ a G � R : xNþ1 ¼
cðxÞg. A unit normal on the surface S is given by n

�
x;cðxÞ

�
:¼ n

�
‘cðxÞ

�
with

nðpÞ like in (4). The natural surface measure on the surface S is given by

dHN :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
dlN . For f a C1ðRNþ1Þ, the di¤erential operator

df :¼ ‘f � ð‘f � nÞn; ð18Þ

is identical on S with the surface gradient. Throughout the paper, we denote

qS :¼ fðx; xNþ1Þ a qG � R : xNþ1 ¼ cðxÞg. The tangential gradient of c on qG

given by ct :¼ ‘c� ð‘c � nÞn on qG. If a denotes the angle of contact between S

and qG � R (that is, cos a :¼ �‘c � n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
on qG), then

sin a ¼ 1þ jctj
2

1þ j‘cj2

 !1=2
on qG: ð19Þ
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Denote dHN�1 the standard surface measure on qG. Then, a natural surface mea-

sure on qS is defined by

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jctj

2
q

dHN�1 ¼ sin a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
dHN�1: ð20Þ

3. Global LT-estimate on ‘c

In this section, we are concerned with a priori estimates satisfied by ‘c in LlðGÞ
for a function c a C2ðGÞ satisfying (5), (6). The assumptions considered for the

data are those of Section 2. For local gradient estimates, we refer to the publica-

tions mentioned in the introduction. A gradient estimate up to the boundary of S

was first proved in [Ura71], [Ura73] for convex domains GHRN of class C2;a,

s ¼ sðqÞ, F ¼ FðxÞ, and k ¼ const. The proof was extended in [Ura75] for

sðqÞ ¼ jqj to nonconvex C3 domains, k ¼ kðxÞ. For the later case, results are

also to find in [SS76], [Ger79]. A worth-noticing di¤erence is the following: thanks

to the Sobolev embedding theorem up to the boundary of S, Uraltseva allows

for the limiting case g0 ¼ 0 (cf. the condition (11)), while the proof in the last

two papers can be carried out from more elementary considerations. Finally,

Uraltseva extended her methods in the paper [Ura82] to general quasilinear mean

curvature equations, k ¼ kðx; xNþ1Þ, and G of class C2.

In this section, we present a proof of the gradient estimate using Uraltseva’s

methods. We slightly extend the result of [Ura82] allowing for a general xNþ1

dependence of s via the conditions (9), and tracking the dependence on the right-

hand side in the gradient bound in terms of integrability conditions.

Throughout the section, SHRNþ1 denotes a N-dimensional submanifold that

satisfies (1), (2). We abbreviate s ¼ sðx; nÞ and F ¼ Fðx; nÞ on S. We start with

a method to estimate integrals over qS which was the new ingredient for the

advances in [Ura82] with respect to the former contributions [Ura71], [Ura73].2

In the following two lemmas, we recall the proof of this fundamental statement.

Lemma 3.1. Let SHRNþ1 denote a N-dimensional manifold that satisfies (1), (2).

Taking into account the assumptions (8b) and (8e) and the Remark 2.4, introduce

the function a0 :¼ jFj þ 2m1j‘nj þ m3. Then, for every nonnegative f a C1ðRNþ1Þ
ð
qS

f
ds

sin a
a g�1

1

�
m1

ð
S

jdf j dHN þ
ð
S

a0 f dHN

�
;

where d is defined by (18). The function sin a and the measure ds are defined in (19)

and (20).

2Some references on the original idea are also to find in [Ura82].
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Proof. On the surface S, define a vector field T :¼ �ðn � nÞsq þ ðsq � nÞn. Note

that T is tangent on S. Denote moreover n 0 :¼ sin a�1
�
n� ðn � nÞn

�
the conor-

mal on qS. We use the identity
Ð
S
T � df dHN þ

Ð
S
divS Tf dHN ¼

Ð
qS
ðT � n 0Þ f ds.

One easily verifies that

T � n 0 ¼ sin a�1ðsq � knÞ � nb ðl0 � kkkLlðqSÞÞ sin a�1 on qS: ð21Þ

We compute

divS T ¼ di
�
ðsq � nÞni � ðn � nÞsqi

�
¼ nidisq � nþ sq � n divS n� n � dinsqi � ðn � nÞ divS sq

þ nidin � sq � n � dinsqi : ð22Þ

Using the equation (1), it follows that divS sq ¼ F� sx � n. Using the symmetry

of the matrix fdinjg, we show that nidin � sq � n � dinsqi ¼ 0. For i a f1; . . . ; ng,
the property (8d) and the identity (14) yield disq � n ¼ sqj ; dinj þ sqj ;qldjnlnj ¼
sqj ; dinj ¼ sdi , where sdi ¼ sxi � ðn � sxÞni. Thus

divS T ¼ nisdi þ sq � n divS n� n � dinsqi � ðn � nÞðF� sx � nÞ; ð23Þ

and the estimate jdivS T ja a0 is an easy consequence of the contitions (8). The

claim follows combining jT jam1, (21) and (23). r

Note the following elementary precision concerning Lemma 3.1.

Lemma 3.2. Assumptions of Lemma 3.1. Then sin a > g1=m1 on qS.

Proof. Denote n 0 ¼ sin a�1ðn� cos anÞ. It is easy to verify that jn 0j ¼ 1 on qS.

From the conditions (8), it follows that m1b sq � n 0 ¼ sin a�1
�
s� ðn � nÞk

�
b

sin a�1ðl0 � kkkLlðqSÞÞ. r

We now turn to the core of the proof of the gradient estimate. It was noticed

for the first time in [Ura73] that under the condition (12), it is both convenient and

su‰cient to estimate the quantity

vðxÞ :¼ n�1
Nþ1

�
sðx; nÞ � kðxÞ

�
n � nðxÞ

��
; x a S ð24Þ

since the conditions (8a) and (12) imply the inequalities

g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
a va g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
on S; g2 :¼ m0 þ kkkLlðqG�RÞ: ð25Þ
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The following Lemma provides the corner stone for the gradient estimate. We

perform the computations for continuously di¤erentiable F. In the case that

F a V (cf. (10)), the same is valid usign either the right or the left trace of ‘F

on S.

Lemma 3.3. Let S be a N-dimensional hypersurface that satisfies (1), (2), such that

nNþ1 > 0 on S. Let v be defined by (24) on S. Then, there are functions a1, a2 and

b1; . . . ; bNþ1 such that for all h a C1ðSÞ, the relationð
S

n2Nþ1sqi ;qjdjvdih�
ð
S

FxNþ1
nNþ1vhþ

ð
qS

kxNþ1
nNþ1vh

ds

sin a

¼
ð
S

nNþ1fa1hþ b � dhg þ
ð
qS

nNþ1a2h
ds

sin a
ð26Þ

is valid. There are constants ci, i ¼ 1; . . . ; 4 depending only on the constants in the

conditions (8), (9), on kkxkLlðSÞ and on the domain G, such that a2a c3, jbja c4 and

a1a
�l22
2

jdnj2 þ c1ð1þ jFxj þ jFqjÞ þ c2ð1þ jFqjÞnNþ1jdvj: ð27Þ

Proof. Throughout the proof, sq ¼ sqðx; nÞ on S. Due to the assumption

nNþ1 > 0, S is the graph of a function c a C2ðGÞ. For k ¼ 1; . . . ;N, we denote dk
the tangential di¤erential operator dk :¼ qxk þ cxk

qxNþ1
on S. For h a C1ðRNþ1Þ,

we denote hdk :¼ hx � uk with the tangent vector field uk
i :¼ dki for i ¼ 1; . . . ;N,

uk
Nþ1 :¼ cxk

.

For k ¼ 1; . . . ;N þ 1, we introduce xk :¼ sqk � knk, and zk :¼ n�1
Nþ1nk, that is,

zk ¼ �cxk
for k ¼ 1; . . . ;N, and zNþ1 ¼ 1. The identity (14) yields

v ¼
XNþ1

k¼1

ðsqk � knkÞzk ¼ x � z on S: ð28Þ

For k a f1; . . . ;Ng, we can di¤erentiate the equation (5), multiply the result with

h � c ¼ hðx;cÞ (h a C1ðSÞ arbitrary), and use integration by parts to obtain that

ð
G

dspi
dxk

d

dxi
h � c ¼

ð
G

dF

dxk
h � cþ

ð
qG

ni
dspi
dxk

h � c dHN�1;

which is nothing else but the identity

�
ð
S

nNþ1dksqidih ¼
ð
S

nNþ1dkFh�
ð
qS

nNþ1dksqinih
ds

sin a
; ð29Þ
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with summation over i ¼ 1; . . . ;N. Choosing xkh as test function in (29), it fol-

lows that

�
ð
S

nNþ1xkdksqidih ¼
ð
S

nNþ1ðdksqidixk þ xkdkFÞh

�
ð
qS

nNþ1xkdksqinih
ds

sin a
; ð30Þ

with summation over i; k ¼ 1; . . . ;N. Using the symmetry of the matrix fdjnlg
and the fact that cxk

nNþ1 ¼ �nk, one verifies that

dknj ¼ dknj þ cxk
dNþ1nj ¼ �nNþ1djcxk

; j ¼ 1; . . . ;N þ 1: ð31Þ

For i a f1; . . . ;Ng, the latest yields

xkdksqi ¼ xksqi ;dk þ xksqi ;qj ðdknj þ cxk
dNþ1njÞ

¼ xksqi ;dk � nNþ1sqi ;qjdjcxk
xk ð32Þ

For j a 1; . . . ;N þ 1, using that zNþ1 ¼ 1 on S, we see that

XN
k¼1

djcxk
xk ¼ �

XNþ1

k¼1

djzkxk ¼ �djðz � xÞ þ
XNþ1

k¼1

zk djxk: ð33Þ

Using (8d), we compute that

nNþ1zk djxk ¼ sqk ;qlnk djnl þ nk
�
sqk ; dj � djðnkkÞ

�
¼ nk

�
sqk ; dj � djðnkkÞ

�
; ð34Þ

with summation over k ¼ 1; . . . ;N þ 1. Using (32), (33) and (34), we obtain for

i a f1; . . . ;Ng the identity

XN
k¼1

dksqixk ¼
XN
k¼1

xksqi ;dk � nNþ1sqi ;qj

�
�djvþ

XNþ1

k¼1

zk
�
sqk ; dj � djðnkkÞ

��

¼ sqi ;qj ðnNþ1djvþ ~bbjÞ þ
XN
k¼1

xksqi ;dk ;

~bbj :¼ �
XNþ1

k¼1

nk
�
sqk ; dj � djðnkkÞ

�
: ð35Þ

Due to (8d), we easily see that
PN

i¼1 sqi ;qj dih ¼
PNþ1

i¼1 sqi ;qjdih. Thus, we obtain

that
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ð
S

nNþ1xkdksqidih ¼
ð
S

nNþ1sqi ;qj ðnNþ1djvþ ~bbjÞdih

þ
ð
S

nNþ1

XN
k¼1

xksqi ;dkdih: ð36Þ

We easily verify that

ð
S

nNþ1xksqi ;dkdih ¼ �
ð
S

nNþ1diðxksqi ;dkÞhþ
ð
qS

nNþ1xksqi ;dkni
ds

sin a
:

with summation over k; i ¼ 1; . . . ;N, and we can rewrite (30) as

ð
S

nNþ1sqi ;qj ðnNþ1djvþ ~bbjÞdih

¼
ð
S

nNþ1

�
diðxksqi ;dk Þ � dksqidixk � xkdkF

�
h

þ
ð
qS

nNþ1ðxkdksqi � xksqi ;xkÞnih
ds

sin a
: ð37Þ

We consider in the first integral on the right-hand side the term diðxksqi ;dkÞ ¼
dixksqi ;dk þ xkdisqi ;dk . We compute

xkdisqi ;dk ¼ fsqi ;xk ;xi þ cxi
sqi ;xk ;xNþ1

þ sxk ;qi ;qj dinj

þ sqi ;xNþ1
ð�dizk þ zidNþ1zkÞ

� zkðsxi ;xNþ1;qi � zisqi ;xNþ1;xNþ1
þ sxNþ1;qi ;qj dinjÞgxk; ð38Þ

with summation over i; k ¼ 1; . . . ;N. In (38), we use that �xkzk ¼ �vþ sqNþ1
,

and the fact that
PN

i¼1 sxNþ1;qi ;qj dinj ¼
PNþ1

i¼1 sxNþ1;qi ;qjdinj (cp. (8d)) in order to

reexpress

�zkxksxNþ1;qi ;qj dinj ¼ ð�vþ sqNþ1
ÞsxNþ1;qi ;qjdinj

¼ �vðdisxNþ1;qi � sxNþ1;qi ; diÞ þ sqNþ1
sxNþ1;qi ;qjdinj: ð39Þ

Using (38), (39), we obtain the identity xkdisqi ;dk ¼ �vdisxNþ1;qi þ ~AA1

~AA1 :¼ fsqi ;xk ;xi þ cxi
sqi ;xk ;xNþ1

þ sxk ;qi ;qj dinj

þ sqi ;xNþ1
ð�dizk þ zidNþ1zkÞ � zkðsxi ;xNþ1;qi � zisqi ;xNþ1;xNþ1

Þgxk
þ vsxNþ1;qi ; di þ sqNþ1

sxNþ1;qi ;qjdinj : ð40Þ
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Therefore, using the preceding identities and the Gauss theorem, it follows thatð
S

nNþ1xkdisqi ;dkh ¼
ð
S

nNþ1
~AA1h�

ð
S

nNþ1vdisxNþ1;qih

¼
ð
S

nNþ1A1hþ
ð
S

nNþ1vsxNþ1;qidih

�
ð
qS

nNþ1vsxNþ1;qin
0
ih ds; ð41Þ

where we have set

A1 :¼ ~AA1 þ n�1
Nþ1sxNþ1;qi

�
diðnNþ1vÞ þ ni v nNþ1 divS n

�
: ð42Þ

Using (41), we can now express the relation (37) in the formð
S

n2Nþ1sqi ;qjdjvdihþ nNþ1ðsqi ;qj ~bbj � vsxNþ1;qiÞdih

¼
ð
S

nNþ1ðA1 þ dixksqi ;dk � dksqidixk � xkdkFÞh

þ
ð
qS

nNþ1ðxkdksqi � xksqi ;xk � vsxNþ1;qiÞnih
ds

sin a
: ð43Þ

On the other hand, using the relation (31) dksqidixk ¼ sqi ;dkdixk � A2

A2 :¼ nNþ1sqi ;qjdjcxk

�
sqk ;di � diðknkÞ � nNþ1sqk ;qjdjcxi

�
: ð44Þ

Due again to (31), we also have

xkdkF ¼ xkðFdk þFqj dknjÞ ¼ xkðFxk þ cxk
FxNþ1

Þ þ nNþ1Fqjxkdjzk;

with summation over k ¼ 1; . . . ;N and j ¼ 1; . . . ;N þ 1. Since xkcxk
¼

�vþ sqNþ1
, it follows that xkdkF ¼ �vFxNþ1

þ A3,

A3 :¼
XN
k¼1

xkFxk þ sqNþ1
FxNþ1

þ nNþ1Fqjdjv�Fqj

XNþ1

k¼1

nk
�
sqk ; dj � djðknkÞ

�
: ð45Þ

Finally, observe that xkdksqini ¼ xkdkðsq � nÞ � xkdkn � sq. Using the fact that

xkdk is a tangential di¤erential operator on qS, it follows from the boundary con-

dition (2) that

xkdksqini ¼ xkdkk� xkdkn � sq ¼ xkkxk þ ðsqNþ1
� vÞkxNþ1

� xkdkn � sq; ð46Þ
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with summation over k ¼ 1; . . . ;N. Define

a2 :¼ xkkxk þ sqNþ1
kxNþ1

� xkdkn � sq � ðxksqi ;xk þ vsqi ;xNþ1
Þni: ð47Þ

we have ðxkdksqi � xksqi ;xk � vsxNþ1;qiÞni ¼ �vkxNþ1
þ a2. For i ¼ 1; . . . ; n, we de-

fine bi :¼ sqi ;qj
~bbj � vsxNþ1;qi , and we set a1 :¼ A1 þ A2 þ A3. Then the representa-

tion (26) follows from (43). It remains to find the constants c1 . . . c4. Using the

definition (35) of ~bb and the assumptions (8), (10) and (14), we easily prove that

jbjam2
�
jsq;xj þ jdðknÞj

�
þ g2m6. In the definition (40) of ~AA1, we use the formula

(cp. (14))

Xn
i¼1

sqi ;xjcxi
¼ �

XNþ1

i¼1

sqi ;xjzi þ sqNþ1;xj ¼ �n�1
Nþ1sxj þ sqNþ1;xj ;

and analogously, that
PN

i¼1 sqi ;xj ;xlcxi
¼ �n�1

Nþ1sxj ;xl þ sqNþ1;xj ;xl , to prove with the

help of (31) that

j ~AA1ja jxjðjsq;x;xj þ jsx;xNþ1
jn�1

Nþ1 þ jsqNþ1;xjÞ þ nNþ1jsx;q;qj jdzj

þ jsq;xNþ1
j jdzj þ ðjsqNþ1;xNþ1

j þ jsxNþ1
jn�1

Nþ1Þjdnþ1zj

þ jzjðsx;q;xNþ1
� n�1

Nþ1sxNþ1;xNþ1
þ sqNþ1;xNþ1;xNþ1

Þ:

Due to the assumptions (8) and (9), we therefore have j ~AA1ja c1 þ c2nNþ1jdzj. To

estimate A1 (cf. (42)), we also use the facts

jn�1
Nþ1sxNþ1;qi jdiðnNþ1vÞjam6ðnNþ1jdvj þ n2Nþ1vjdzjÞ

jn�1
Nþ1sxNþ1;qini divS nvnNþ1j ¼ vjsxNþ1

j jdivS nja g2m5n
2
Nþ1jdzj:

This finally proves that jA1ja c1 þ c2nNþ1ðjdzj þ jdvjÞ.
Using that sqi ;qj di ¼ sqi ;qjdi, we readily see that

A2 ¼ nNþ1sqi ;qjdjcxk

�
sqk ;xi � diðknkÞ � nNþ1sqk ;qjdjcxi

�
a�n2Nþ1sqi ;qjsqk ;qjdjzidjzk þ nNþ1

�
jsq;xj þ jdðknÞj

�
jdzj: ð48Þ

The condition (8c) implies that sqi ;qjdjzksqk ;qldlzi b l22 jdzj
2. This yields the in-

equality A2a�l22n
2
Nþ1jdzj

2 þ cnNþ1jdzj. Using the conditions (8), we easily see

that

jA3jam1jFxj þ jFqj
�
jsx;qj þ jdðknÞj

�
þ nNþ1jFqj jdvj:

Thus, for the function a1 we have the following estimate:

a1a�l22 jdzj
2
n2Nþ1 þ CnNþ1jdzj þ ð1þ jFqjÞnNþ1jdvj þ Cð1þ jFxj þ jFqjÞ;
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where the constants depend on G, kkxkLlðSÞ and the constants of the conditions

(8), (9). It follows from Youngs inequality that

a1a� l22
2
jdzj2n2Nþ1 þ Cð1þ jFxj þ jFqjÞ þ Cð1þ jFqjÞnNþ1jdvj:

Finally, we use the assumptions (9) to show that ja2jam1ðjkxj þ jnxj þ jsq;xjÞ þ
g2m6aC. This concludes the proof. r

From Lemma 3.3, there are several ways to finish the proof. Uraltseva’s tech-

nique in [LU70], [Ura71], [Ura82] is based on estimating w :¼ log v. Assume that

FxNþ1
a 0 and kxNþ1

b 0. Choosing hv with h nonnegative as a test function in

(26), and using (25), one easily deduces that

ð
S

sqi ;qjdjwdihþ
ð
S

n2Nþ1sqi ;qjdjvdivh

aC1

ð
S

fð1þ jdwjÞhþ jdhjg þ C2

ð
qS

h
ds

sin a
:

Thus, Lemma 3.1 now yields
Ð
S
sqi ;qjdjwdihaC

Ð
S
fð1þ jdwjÞhþ jdhjg. It is pos-

sible to derive the boundedness of w like in the standard Stampacchia proof for

second order elliptic equation with Ll coe‰cients, provided that a Sobolev em-

bedding theorem is globally available on the manifold S (cf. [LU70], [MS73] for

local embedding results, [Ura71], [Ura82] for the extension to global embedding).

Here we rather show an elementary manner to finish the proof in the case that

g0 > 0 in the condition (11). Under this strong monotonicity condition, the esti-

mate on ‘c is only polynomial in the norm of the data.

Lemma 3.4. Same assumptions as in Lemma 3.3. Then, there is a constant K

depending on the constants in (8), (9), and on kkxkLlðSÞ and G such that for all

1a q < l

ð
G

vq�4j‘vj2 � 1

q

ð
G

FxNþ1
vqþ1

aK

ð
G

~aavq; ~aaa 1þ jFj þ jFxj þ jFqj2: ð49Þ

Proof. Choose in Lemma 3.3 h ¼ vq. We obtain that

ð
S

qn2Nþ1v
q�1sqi ;qjdjvdiv�

ð
S

FxNþ1
nNþ1v

qþ1 þ
ð
qS

kxNþ1
nNþ1v

qþ1 ds

sin a

¼
ð
S

nNþ1fa1vq þ qb � dvvq�1g þ
ð
qS

nNþ1a2v
q ds

sin a
:
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Due to (8b), sqi ;qjdjvdivb l2jdvj2. Applying Young’s inequality, and using the

bounds derived in Lemma 3.3 for the functions ai, jbj we can estimate

nNþ1a1v
q
a c1ð1þ jFxj þ jFqjÞnNþ1v

q þ l2q

6
n2Nþ1jdvj

2
vq�1

þ 3c22 jFqj2

2l2q
vq�1qnNþ1b � dvvq�1

a
l2q

6
n2Nþ1jdvj

2
vq�1 þ 3c24q

2l2
vq�1:

Using the fact that kxNþ1
b 0, and (25), we prove that

2ql2
3

ð
S

n2Nþ1v
q�1jdvj2 �

ð
S

FxNþ1
nNþ1v

qþ1

a

ð
S

3c22 jFqj2

2l2q
þ 3c24q

2l2
þ c1g2ð1þ j‘FjÞ

 !
vq�1 þ

ð
qS

nNþ1ja2jvq
ds

sin a
:

We apply the estimates (25) and (27) and the Lemma 3.1 to estimateð
qS

nNþ1ja2jvq
ds

sin a
a c3g2

ð
qS

vq�1 ds

sin a

a c3g2g
�1
1

�
ðq� 1Þ

ð
S

vq�2jdvj þ
ð
S

ja0jvq�1
�

a
l2q

6

ð
S

n2Nþ1jdvj
2
vq�1

þ
ð
S

3c23g
2
2ðq� 1Þ2

2l2g21q
n�2
Nþ1v

q�3 þ c3g2g
�1
1 ja0jvq�1

( )
:

Using (25) again and the bound derived in Lemma 3.1 for the function a0, we

derive the estimate

q

ð
S

nNþ1v
q�2jdvj2 �

ð
S

FxNþ1
vqaCq

ð
S

~aavq�1

~aa :¼ 1

q
ðqþ jFxj þ 1=qjFqj2 þ jFjÞ;

ð50Þ

where C depends on all the data but not on F. Note thatð
S

nNþ1v
q�2jdvj2 ¼

ð
G

vq�2jdvj2b
ð
G

n2Nþ1v
q�2j‘vj2:

The claim follows using again (25). r
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Proposition 3.5. Same assumptions as in Lemma 3.4. Let p > N=2 and a0 >
2Np

2p�N

arbitrary. Then, there exist a constant C depending on K, G, a0 and p, and

functions z0, z1 of a0 and p such that maxS vaCð1þ kFkLpðSÞ þ kFxkLpðSÞ þ
kFqk2L2pðSÞÞ

z1kvkz0
La0 ðGÞ.

Proof. Due to the condition (11), Lemma 3.4 implies that

ð
G

j‘vðq�2Þ=2j2a Kðq� 2Þ2

4

ð
G

~aavq: ð51Þ

We add kvðq�2Þ=2k2L2ðGÞ on both sides of (51). Thanks to Hölder’s inequality, it

follows that

ð
G

fj‘vðq�2Þ=2j2 þ jvjq�2ga Kðq� 2Þ2

4

ð
G

~aavq þmeasðGÞ2=qkvkq�2
LqðGÞ: ð52Þ

Define q0 :¼ a0=p
0, p 0 ¼ p=ðp� 1Þ. The choice of a0 garanties that q0 > N. De-

fine w :¼ q0�2
N�2

N
q0

if N > 2, and w a �p 0;þl½ arbitrary if N ¼ 2. The choice of a0
implies that w > p 0. We can also verify that

2wq
q�2 a

2N
N�2 for Nb 3,

2wq
q�2 < l for

N ¼ 2, for all q0a q < l. It follows that the embedding W 1;2ðGÞ ,! LrðGÞ for
r :¼ 2wq=ðq� 2Þ is continuous, and that the embedding constants are uniformly

bounded. The relation (52) implies that

kvkq�2
LwqðGÞ ¼ kvðq�2Þ=2k2LrðGÞ

a c
�
ðq� 2Þ2Kk~aakLpðGÞkvk

q

Lp 0qðGÞ þmeasðGÞ2=qþðq�2Þ=qpkvkq�2

Lp 0qðGÞ
�

a cmaxfðq� 2Þ2Kk~aakLpðGÞ;measðGÞ2=qþðq�2Þ=qpg

�maxfkvkq

Lp 0qðGÞ; kvk
q�2

Lp 0qðGÞg: ð53Þ

For m a N, set am :¼ w

p 0 am�1, Am :¼ kvkLam ðGÞ. As a consequence of (53) with

qm ¼ am=p
0, one finds the recursive inequalities Amþ1a c

1=ðqm�2Þ
m Axm

m that imply

Amþ1a c1=ðqm�2Þ
m

nYm�1

i¼0

½ci�xiþ1=ðqi�2Þ
o
A
Qm

i¼0
xi

0 ;

xm :¼ lm :¼ qm
qm�2 if Amb 1;

1 otherwise;

�
ð54Þ

cm :¼ c½ðqm � 2Þ2Kk~aakLpðGÞ þmeasðGÞ2=qmþðqm�2Þ=qmp�:
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We now provide rough bounds for the products appearing in (54). We abbreviate

~ww :¼ w=p 0 > 1. Note first that

log
�Ym

i¼0

xi

�
a
Xm
i¼0

log
�
qi=ðqi � 2Þ

�
a 2

Xm
i¼0

1

qi � 2
a

2

q0 � 2

Xl
i¼0

~ww�i;

Thus z0 :¼
Ql

i¼0 xi satisfies the estimate z0a exp
�
2~ww=ðq0 � 2Þð~ww� 1Þ

�
. Observe

also that

log
� Ym�1

i¼0

½ci�xiþ1=ðqi�2Þ
�
¼
Xm�1

i¼0

xiþ1

qi � 2
logðciÞ;

logðciÞa log cþ logðKk~aakLpðGÞÞ þ 2 logðqi � 2Þ

þ 2

qi
þ qi � 2

qi p

	 

logmeasðGÞ: ð55Þ

Using the estimate xiþ1a q0=ðq0 � 2Þ for i a N we can bound

Xm�1

i¼0

xiþ1

qi � 2
logðqi � 2Þa q0

q0 � 2

Xm�1

i¼0

i log ~wwþ log q0
~ww iq0 � 2

a
q0 log q0

ðq0 � 2Þ2
�Xm�1

i¼0

i þ 1

~ww i

�
;

and z1 :¼
Pl

i¼0
xiþ1

qi�2 , z2 :¼
Pl

i¼0
xiþ1

ðqi�2Þ
�

2
qi
þ qi�2

qi

�
are obviously finite. Therefore,

(55) implies that
Qm�1

i¼0 ½ci�xiþ1=ðqi�2Þ
a c1ðq0Þ

�
ðKk~aakLpðGÞÞ

z1 þmeasðGÞz2
�
, and the

claim follows from (54). r

Everything is therefore reduced to estimating the Lq0 -norm of v for a

a0 >
2Np

2p�N
. We directly obtain this bound, if we require the strong monotonicity

condition (11). It trivially follows from (50) that for all 2 < t < l

kvkLtðGÞa
Ct

g0
ð1þ kFkLtðSÞ þ kFxkLtðSÞ þ kFqkL2tðSÞÞ: ð56Þ

This achieves the proof of Theorem 2.2.

4. Higher-order estimates

The gradient bound is the corner stone in the problem (5), (6). Higher-order esti-

mates can be derived whenever a Ll-bound on the derivatives of c has been
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proved, since the equation (5) is then a uniformly elliptic equation of quasilinear

type, due to (cp. (17))

XN
i; j¼1

spi ;pjxixj b
l2jxT j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q b
l2jxj2

ð1þ j‘cj2Þ3=2
for all x a RN :

Define c6 :¼ supG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘cj2

q
. The following Lemma states the Hölder continuity

estimate.

Lemma 4.1. Assume that G is a domain of class C2. Let c a C2ðGÞ be a solution

to (5), (6). Then, for all b a ½0; 1½, there is c ¼ cðG; c6; bÞ such that

k‘ck
C 0; bðGÞa cð1þ k‘ðnkÞkLlðSÞ þ kFkLlðSÞÞ:

Proof. Due to Remark 2.4 and Gauss’s divergence theorem, c satisfies

ð
G

ðsp þ knÞ � ‘x ¼
ð
G

�
F� divðknÞ

�
x Ex a W 1;1ðGÞ: ð57Þ

Here and throughout the proof, the functions s and F are evaluated at ðx;c;‘cÞ.
In order to simplify the discussion, we prove the regularity in a smooth open

domain G0 HG, assuming that G0 :¼ qGBG0 is flat and such that the N � 1

first basis vectors are tangent on G0 and n ¼ eN on G0. In the general case, it is

possible to use the definition of a domain of class C2 to locally map a neighbour-

hood of x a qG onto the model configuration.

For l ¼ 1; . . . ;N � 1, we insert the test function qxlx for x a C1
c ðG0AG0Þ in

(57). Using integration by parts, it follows that

�
ð
G

fspi ;pjq2xj ;xlcþ spi ;xl þ spi ;xNþ1
qxlcþ qxl ðkniÞgqxix

þ
ð
qG

ðspi þ kniÞqxixnl ¼
ð
G

�
F� divðknÞ

�
qxlx: ð58Þ

Since nl ¼ 0 on G0, the choice of x yields vanishing of the surface integral. Equiv-

alentlyð
G

spi ;pjqxjcxl
qxix ¼

ð
G

V � ‘x; ð59Þ

Vi :¼ �spi ;xl � spi ;xNþ1
qxlc� qxl ðnikÞ �

�
F� divðknÞ

�
d il for i ¼ 1; . . . ;N: ð60Þ

Using in particular the growth assumptions (8), and (9b), it follows that jV ja
m2 þ m1 þ m6 þ k‘ðknÞkLlðSÞ þ kFkLlðSÞ. According to classical linear regularity
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theory (cf. for instance the Theorem 3.16 in [Tro87]), there is for 0a b < 1 arbi-

trary a constant c depending only on b, G0, the ellipticity constant of the matrix

fspi ;pjg and its norm in Ll such that

kcxl
k
C

0; b
loc

ðG0AG0Þa ckVk½LlðG0Þ�n : ð61Þ

It follows that ct :¼ ‘c� ðn � ‘cÞn a C
0;b
loc ðG0AG0Þ. Using an open covering

of qG, and applying the reasoning locally to each section, we obtain that

ct a C0;bðqGÞ with corresponding norm estimate. We show that also cn :¼ n � ‘c
satisfies a Hölder condition on qG. For x a G, y a R, define

Hðx; yÞ :¼ sp
�
x;cðxÞ;ctðxÞ þ nðxÞy

�
� nðxÞ þ k

�
x;cðxÞ

�
:

Using the growth condition (8b), jHðx; yÞjam1 þ kkkLlðSÞ for all ðx; yÞ a G � R.

Moreover, for x1; x2 a G, y a R

jHðx1; yÞ �Hðx2; yÞja ksp;xkLl jx1 � x2j þ ksp;xNþ1
kLl jcðx1Þ � cðx2Þj

þ ksp;pk
�
jctðx1Þ � ctðx2Þj þ jyj jnðx1Þ � nðx2Þj

�
þ kkxkLl jx1 � x2j þ kkxNþ1

kLl jcðx1Þ � cðx2Þj;

so that the following estimate holds:

jHðx1; yÞ �Hðx2; yÞj
jx1 � x2jb

a cð1þ kctkC 0; bðqGÞ þ jyj knk
C 0; bðGÞÞ: ð62Þ

By virtue of the condition (8c), note that

qyHðx; yÞ ¼ spi ;pj njðxÞniðxÞb l2ð1þ j‘cj2Þ�1=2�1� ðn � nÞ2
�
b l2c

�3
6 : ð63Þ

On the other hand, the boundary condition (6) implies that H
�
x;cnðxÞ

�
¼ 0 on

qG. For x; x 0 a qG arbitrary, it follows that

l2c
�3
6

�
cnðxÞ � cnðx 0Þ

�
a

ðcnðx 0Þ

cnðxÞ
qyHðx; sÞ ds

¼ H
�
x;cnðx 0Þ

�
�H

�
x;cnðxÞ

�
¼ H

�
x;cnðx 0Þ

�
�H

�
x 0;cnðx 0Þ

�
:

The latest yields

jcnðxÞ � cnðx 0Þj
jx� x 0jb

a c

��H�x;cnðx 0Þ
�
�H

�
x 0;cnðx 0Þ

���
jx� x 0jb

: ð64Þ
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Therefore, taking (62) into account

kcnkC 0; bðqGÞa cð1þ kctkC 0; bðGÞ þ c6knkC 0; bðGÞÞ ð65Þ

which finally implies that ‘c a C0;bðqGÞ. Return to (59) for x a C1
c ðG0Þ. With

the help of regularity results for linear equations (cf. for instance the Theorem

3.16 in [Tro87]), it now follow that qxlc a C
0;b
loc ðG0AG0Þ for l ¼ 1; . . .N � 1 with

corresponding norm estimate. Since the same relation is valid for l ¼ N if the

test function x vanishes on qG (note: the operator ðsp þ knÞ � ‘ is tangent on qG),

we can argue the same for cn in view of (65). r

The estimate in C2;a is obtained with similar ideas.

Lemma 4.2. Same assumptions as in Lemma 4.1. Then kD2ck
C aðGÞa

CðkFk
C aðSÞ þ kkkC 1; aðqSÞÞ, where C depends on the constants in the conditions (8),

(9), (12) and on c6.

Proof. Consider the relation (59). Lemma 4.1 implies that spi ;pj a C0;bðGÞ for all
b a ½0; 1½. Analogously, F a C0;bðGÞ for all b a ½0; 1½ (cf. (4) and (7)).

The definition (60) together with Lemma 4.1 now implies that V a ½C0;aðGÞ�N
(cp. (60)). Thus, the linear regularity theory (cf. Theorem 3.17 in [Tro87]) now

yields for l ¼ 1; . . . ;N � 1

kcxl
k½C 1; aðGÞ�N a ckVk½C 0; aðGÞ� n :

We are now allowed to di¤erentiate the relation H
�
x;cnðxÞ

�
¼ 0 in any tangential

direction t over qG, which yields qyH
�
x;cnðxÞ

�
ðt � ‘cnÞ ¼ t �Hx

�
x;cnðxÞ

�
for

x a qG. Due to commutation rules, the mixed-derivatives ct;n belongs to

C0;aðGÞ, with corresponding continuity estimates. In order to show that also

cn;n a C0;aðGÞ, we use the previous results in connection with equation (5) yield-

ing on G0

F�
XN�1

i; j¼1

spi ;pjcxi ;xj � 2
XN�1

i¼1

spi ;pNcxi ;xN � spi ;xi � spi ;xNþ1
cxi

¼ spN ;pNcn;n a C0;aðGÞ:

Since nispi ;pj nj b l2c
�3
6 , the function ðnispi ;pj njÞ

�1 belongs also to C0;aðqGÞ. We

finally can conclude that cn;n a C0;aðG0Þ, and that cn;n a C0;aðqGÞ due to local-

ization arguments. Thus D2c a C0;aðqGÞ, and the claim follows (Theorem 3.17 in

[Tro87]). r
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5. A priori estimates on c in LT

The natural W 1;1 estimate, and the global boundedness of weak solutions to (5),

(6) have been discussed in di¤erent papers. In the case that s and k do not depend

on the xNþ1 variable, and that F ¼ Fðx; xNþ1Þ the inequality kkkLlðqGÞ < l0 and

the condition (11) is known to be su‰cient to obtain these bounds. The arguments

easily carry over to the general case.

Lemma 5.1. Assume that c a W 1;1ðGÞ is a weak solution to (5), (6). Assume that

(11) is valid. Assume that p > 2N. Then, there is a constant depending on 2N � p,

on G, on the constants m1, g1 and g0, and on kkxð�; 0ÞkLlðGÞ such that

kckLlðGÞa c
�
1þ kFðx; 0;‘cÞk2LpðGÞ

�
:

Proof. Multiply the equation with x a W 1;1ðGÞ and integrate by parts. We add

the zero
Ð
G
div
�
kðx; 0Þnx

�
�
Ð
qG kðx; 0Þx, to obtain the identityð

G

�
sqðx;c;‘cÞ þ kðx; 0Þn

�
� ‘xþ

ð
qG

�
kðx;cÞ � kðx; 0Þ

�
x

¼
ð
G

�
Fðx;c;‘cÞ �Fðx; 0;‘cÞ

�
xþ

ð
G

�
Fðx; 0;‘cÞ � div

�
kðx; 0Þn

��
x:

Choose x ¼ ðc� kÞþ, k a Rþ. Due to (11),
�
kðx;cÞ � kðx; 0Þ

�
ðc� kÞþb 0, and�

Fðx;c;‘cÞ �Fðx; 0;‘cÞ
�
ðc� kÞþa�g0cðc� kÞþ. Using (15), and the con-

stant g1 from (12), we can prove that

g1

ð
G

j‘ðc� kÞþj � m1 measðAkÞ þ g0

ð
G

cðc� kÞþ

a

ð
G

�
jFðx; 0;‘cÞj þ

��div�kðx; 0Þn����ðc� kÞþ;

where Ak :¼ suppðc� kÞþ. Using Young’s and Hölder’s inequalities, we can

prove that

g1kðc� kÞþkW 1; 1ðGÞ

a m1 þ
g21
2g0

	 

measðAkÞ þ

1

2g0

ð
Ak

�
jFðx; 0;‘cÞj þ

��div�kðx; 0Þn����2
a m1 þ

g21
2g0

	 

measðAkÞ

þ 1

2g0

�
kFðx; 0;‘cÞk2LpðGÞ þ

��div�kðx; 0Þn���2
LpðGÞ

�
measðAkÞðN�1Þ=Nþe;
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with e :¼ 1=N � 2=p. It follows that ca c
�
1þ kFðx; 0;‘cÞk2LpðGÞ

�
(Stampac-

chia’s Lemma, cf. [Tro87], Lemma 2.9). We prove analogously a lower bound,

and the claim follows. r

6. Existence

It was shown for the first time in [Ura71] that a priori estimates on the gradient of

C2 solutions to (5), (6) joined to the Hölder estimate of Lemma 4.1 leads to an

existence theorem via continuation methods in Banach-spaces exposed in [LU68],

Ch. 10. Here, existence is obtained via the implicit function theorem.3 Note that

we need somewhat weaker hypotheses on F than usually in the literature. More-

over, the condition (13) seems not to be yet known in the present context. At first,

we formulate a simple continuation Lemma.

Proposition 6.1. Let X, Y, Z be Banach spaces such that Y ,! X with compact

embedding. For a; b a R, a < b, let G : X � �a; b½ ! Z be a Fréchet di¤erentiable

mapping, such that the derivative qxGðx�; l�Þ a LðX ;ZÞ is an isomorphism for

all ðx�; l�Þ a X � �a; b½. Assume that there is K > 0 such that for all l a �a; b½,
all solutions x a X to the equation Gðx; lÞ ¼ 0 belong to BKð0;YÞ. If there is

ðx0; l0Þ a X � �a; b½ such that Gðx0; l0Þ ¼ 0, then the equation Gðx; lÞ ¼ 0 has a

unique solution in BKð0;YÞ for all l a ½a; b�.

Proof. Define M :¼ fl a ½a; b� : bx a X ;Gðx; lÞ ¼ 0g. The set M is nonvoid

since Gðx0; l0Þ ¼ 0. Moreover l� :¼ supM belongs to M. To see this, choose

flkgk AN JM, lk ! l�. By definition, there is xk a X such that Gðxk; lkÞ ¼ 0.

By assumption xk a BKð0;YÞ for all k a N, and therefore, there is a subsequence

xkj that strongly converges in X to some x�. Obviously, Gðx�; l�Þ ¼ 0, implying

l� a M.

Seeking a contradiction, assume that l� < b. Then, due to the implicit function

theorem (see [GT01], Th. 17.6), there is an open neighborhood �l� � e; l� þ e½ in
�a; b½ such that the equation Gðx; lÞ ¼ 0 defines a unique implicit vector-valued

function l 7! xðlÞ a X . Therefore l�A supM, the contradiction. Analogously,

one shows that inf M ¼ a. This proves the existence.

If x1; x2 a X both solve Gðx; lÞ ¼ 0, then qxGðx�; lÞðx1 � x2Þ ¼ 0 for some

x� a ½x1; x2�. Due to the assumption that qxG is an isomorphism, the uniqueness

follows. r

3We thank the referree for the indication that a similar simplification of the existence proof was
already achieved in the second edition (1972) of the book [LU68], which unfortunately has not been
translated into English.
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Theorem 6.2. Assumptions of the Theorem 2.1. Then there is a unique

c a C2;aðGÞ that solves (5), (6).

Proof. In the first step, we prove the existence claim assuming that F a
C1;aðG � R� RNþ1Þ. Let 0 < b < a. Define two mappings G1 : C

2;bðGÞ �
��1; 1½ ! C bðGÞ and G2ðw; lÞ : C2;bðGÞ � ��1; 1½ ! C1;bðqGÞ via

G1ðw; lÞ :¼ � d

dxi
spiðx;w;‘wÞ �Fðx;w;‘wÞ

þ ð1� lÞ
�
qxispiðx; 0; 0Þ þFðx; 0; 0Þ

�
;

G2ðw; lÞ :¼ �spiðx;w;‘wÞniðxÞ � kðx;wÞ
þ ð1� lÞ

�
spiðx; 0; 0ÞniðxÞ þ kðx; 0Þ

�
:

We define a mapping Gðw; lÞ :¼
�
G1ðw; lÞ;G2ðw; lÞ

�
. Obviously, Gð0; 0Þ ¼ 0.

Moreover, due to the regularity assumptions on s, F and k, the mapping G is

clearly Fréchet-di¤erentiable. The derivative qwGðw�; l�Þ at an arbitrary point

ðw�; l�Þ a C2;bðGÞ � ��1; 1½ in the direction w a C2;bðGÞ has the expression

qwGðw�; l�Þw ¼
� d

dxi
ðs�

pi ;pj
qxjwþ s�

pi ;xNþ1
wÞ �F

�
xNþ1

w�F
�
pi
wxi ;

�ðs�
pi ;pj

qxjwþ s�
pi ;xNþ1

wÞniðxÞ � k�
xNþ1

w;

(

where the indice � means that the value is taken at
�
x;w�ðxÞ;‘w�ðxÞ

�
. In the

Lemma 6.3 below, we show that for every f a C bðGÞ � C1;bðqGÞ, the equation

qwGðw�; l�Þw ¼ f has a unique solution in w a C2;bðGÞ, that is nothing else but

the invertibility of the Fréchet derivative qwGðw�; l�Þ.
Moreover, any function w a C2;bðGÞ :¼ X satisfying Gðw; lÞ ¼ 0 solves

the problem (1), (2) with right-hand ~FFðx; qÞ :¼ Fðx; qÞ þ ð1� lÞ
�
sðx; 0; 0Þ�

Fðx; 0; 0Þ
�
, and with contact-angle ~kkðxÞ :¼ kðxÞ þ ð1� lÞ

�
sqðx; 0; 0Þ � nðxÞ�

kðx; 0Þ
�
. Due to the results of the preceding sections 3, 4 and 5, all solutions

to the equation Gðw; lÞ ¼ 0 lay therefore in a bounded set of C2;aðGÞ ¼: Y .

The assumptions of the Lemma 6.1 are satisfied, and we obtain in particular

the existence of a unique c a C2;aðGÞ such that Gðw; 1Þ ¼ 0, that is the claim.

In order to obtain the Fréchet di¤erentiability of G, we had to assume in the

first step of the proof that F a C1;a. In the second step, we have to show that

this assumption can be removed. Let F a V (cf. (10)). At first, we apply the

Sobolev extension operator outside of G in the x-variable, to obtain for arbitrary

fixed q a RNþ1 that Fð�; qÞ is in W 1;lðRNþ1Þ. Obviously, supRNþ1�RNþ1 FxNþ1
¼

supW�RNþ1 FxNþ1
a�g0. We choose Feðx; qÞ :¼

Ð
RNþ1 weðx� yÞFðy; qÞ dy, where

we is a smooth nonnegative mollifier. Then, the sequence fFeðqÞgHClðRNþ1Þ
is uniformly bounded in W 1;lðRNþ1Þ, and Fe;xNþ1

a�g0. Moreover FeðqÞ !
FðqÞ in W 1;pðWÞ for all 1a p < l.
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For e > 0, let ce a C2;aðGÞ denote the unique solution to (5), (6) with right-

hand Fe. This solution exists according to the first step. Moreover, the sequence

fceg is uniformly bounded in C2;aðGÞ, since the bounds obtained in Sections 3, 4

and 5 only depend on the W 1;l norm of Fe and on g0. The claim follows letting

e ! 0. r

Lemma 6.3. Assumptions of Theorem 6.2. For every w� a C2;bðGÞ and f a
C bðGÞ � C1;bðqGÞ, the equation qwGðw�; l�Þw ¼ f has a unique solution in

w a C2;bðGÞ.

Proof. Existence is clear and follows from standard linear theory (cf. for instance

the Theorem 3.28 in [Tro87]). For the uniqueness, we assume that wi a C2;bðGÞ
is a solution for i ¼ 1; 2. Then, the di¤erence ~ww satisfies qwGðw�; l�Þ~ww ¼ 0. We

abbreviate x :¼ ‘~ww. We moreover define q� :¼ ð‘w�;�1Þ a RNþ1, x̂x ¼ ðx; 0Þ a
RNþ1, and the orthogonal part to q� via xT :¼ x̂x�

�
x̂x � q�

jq�j
� q�

jq�j . Using also (14),

we obtain that

s�
p;xNþ1

� x ¼ �sq;xNþ1
ðx;w�; q�Þ � x̂x

¼ �s�
q;xNþ1

� xT � s�
q;xNþ1

� q�

jq�j
q�

jq�j � x̂x

¼ �s�
q;xNþ1

� xT þ ½q�
Nþ1�

�1s�
xNþ1

xT
Nþ1: ð66Þ

where s� ¼ value at ðx;w�; q�Þ. Using the assumptions (9), it follows that

js�
p;xNþ1

� xja ðm5 þ m6ÞjxT j=jq�j. On the other hand, it follows from (8d) that

s�
pi ;pj

xixj b l2jxT j2=jq�j. Thus, employing Young’s inequality, we obtain the in-

equality

s�
pi ;pj

xixj þ s�
pi ;xNþ1

xi ~wwb ð1� d1Þl2
jxT j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j‘w�j2
q � ðm5 þ m6Þ

2

4d1l2
~ww2; ð67Þ

with d1 a �0; 1½ arbitrary. On the other hand, using the definition (4) of njðpÞ for
j ¼ 1; . . . ;N þ 1, we compute for i ¼ 1; . . . ;N the derivative

qpinjðpÞ ¼
�1ffiffiffiffiffiffiffiffiffiffi
1þjpj2

p �
d
j
i �

pi pj

1þjpj2
�

for j a f1; . . . ;Ng
�pi

ð
ffiffiffiffiffiffiffiffiffiffi
1þjpj2

p
Þ3=2

if j ¼ N þ 1:

8><
>:

We have for k ¼ 1; . . . ;N that qpjnkð‘w�Þxj ¼ xT
k =jq�j. Since Fpj ¼ FqkqpjnkðpÞ,

we easily see that jF�
pj
xjja jFqj jxT j=jq�j. It follows for d2 a �0; 1½ arbitrary that

jF�
qj
xj ~wwja d2l2

jxT j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j‘w�j2

q þ jFqj2

4d2l2
~ww2: ð68Þ
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Summarizing, (67) and (68) imply for d1 þ d2a 1 the inequality

s�
pi ;pj

xixj þ s�
pi ;xNþ1

xi ~ww�F�
xNþ1

~ww2 �F
�
pj
xj ~wwb g0 �

ðm5 þ m6Þ
2

4d1l2
þ jFqj2

4d2l2

 !
~ww2: ð69Þ

Due to the equation qwGðw�; l�Þ~ww ¼ 0, we have the identity

ð
G

fs�
pi ;pj

qi ~wwqj ~wwþ s�
pi ;xNþ1

qi ~ww~ww�F�
xNþ1

~ww2 �F
�
pj
qj ~ww~wwg þ

ð
qG

k�
xNþ1

~ww2 ¼ 0:

Since kxNþ1
b 0, we can use (69) and the assumption to show that ~ww ¼ 0. r
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