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Abstract. We consider, for a fixed odd prime number p, monic polynomials in one variable
over the finite field Fp which are equal to the sum of their monic divisors. Call them perfect

polynomials. We prove that the exponents of each irreducible factor of any perfect polyno-
mial having no root in Fp and p irreducible factors are all less than p� 1. We completely
characterize those perfect polynomials for which each irreducible factor has degree two and
all exponents do not exceed two.
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1. Introduction

Let p be a prime number. For a monic polynomial A a Fp½x� let

sðAÞ ¼
X

d jA;d monic

d

be the sum of all monic divisors of A (1 and A included). Observe that A and sðAÞ
have the same degree. Let us call oðAÞ the number of distinct monic irreducible

polynomials that divide A. The function sigma is multiplicative on co-prime poly-

nomials while the function omega is additive (on co-prime polynomials), a fact

that shall be used many times without more reference in the rest of the paper.

A perfect polynomial is a monic polynomial A such that:

sðAÞ ¼ A:

This notion is a good function field analogue of the notion of a multiperfect

natural number n that satisfies: n divides sðnÞ. For example, 120 is a multiperfect

number since 120 divides 360 ¼ sð120Þ. Indeed, since degðAÞ ¼ deg
�
sðAÞ

�
, if a

monic polynomial A a Fp½x� divides sðAÞ, then both are forced to be equal.



We say that a polynomial A is odd (resp. even) if it has no root in Fp (that is:

gcdðA; xp � xÞ ¼ 1) (resp. it is not odd). So, the even polynomials are the poly-

nomials with at least one divisor D of (the usual) absolute value equal to p, i.e.,

jDj :¼ pdegðDÞ ¼ p; for example, T ¼ xp þ x is even since x divides T , with

jxj ¼ p.

Throughout the paper, we shall assume that ‘‘a polynomial’’ means a monic

polynomial and that the notion of polynomial irreducibility is defined over Fp.

For some recent results about even or splitting perfect polynomials see e.g. [10]

and the references therein. Important results about perfect polynomials appear

in the work of Canaday ([4]) and Beard et al. ([3], [1]). However, little is known

about odd perfect polynomials.

Observe that any odd perfect polynomial in F2½x� must be a perfect square. In-

deed, if A is odd perfect, then

sðAÞ ¼ A20 mod x: ð1Þ

If A is not a square, then there exists an irreducible polynomial P and an integer

m such that: A ¼ P2mþ1 � C, where C a Fp½x�, degðPÞb 2 and gcdðP;CÞ ¼ 1. So,

sðAÞ ¼ sðP2mþ1Þ � sðCÞC 0 mod sðP2mþ1Þ. Since Pð0Þ ¼ 1, we have sðP2mþ1Þ ¼
1þ Pþ � � � þ P2mþ1C 0 mod x. Thus, sðAÞC 0 mod x, which contradicts (1).

Also trivially, there is no odd perfect polynomial over F2 with oðAÞ ¼ 1.

Canaday [4], Theorem 17, proved the inexistence of odd perfect polynomials

over F2 with two irreducible factors, i.e., with oðAÞ ¼ 2. We proved in [7], [9]

(resp. [8]) the inexistence of odd perfect polynomials over F2 with oðAÞ a f3; 4g
(resp. over F3 with oðAÞ ¼ 3).

A perfect polynomial over Fp must have np minimal irreducible divisors

(see Lemma 2.1), so trivially there is no perfect polynomial over Fp with less

than p irreducible factors. However, we prove in [5] that there exist odd perfect

polynomials over Fp for infinitely many values of p. We elaborated on Link’s

construction (described in [12] and more detailed in [2]) of an explicit odd

perfect polynomial of degree 11 over F11. More precisely, we were able to find

odd perfect polynomials A over Fp with oðAÞ ¼ p for primes p congruent to

11 or 17 modulo 24.

The question that arises naturally is the following: For a given odd prime

number p, how can we describe the odd perfect polynomials over Fp with exactly

p irreducible factors?

Motivated by Link’s construction mentioned above, we will consider the small-

est possible unknown case, besides some general results displayed in Theorem 1.1.

Namely, we would like (see Theorem 1.2) to determine all odd perfect polynomials

of the form A ¼ Pa1
1 . . .P

ap
p , where for any j, degðPjÞ ¼ 2 and aj a f1; 2g.

Our main objective is to prove the following results:
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Theorem 1.1. Let p be an odd prime number. Let A ¼ Pa1
1 . . .P

ap
p be an odd

perfect polynomial over Fp, with p irreducible factors. Then

i) aj is even for at least one j a f1; . . . ; pg,
ii) aj a p� 2 for any j a f1; . . . ; pg,
iii) aj þ 1F p� 1 for at least one j a f1; . . . ; pg,
iv) aj a p� 3 whenever xp � x does not divide Pj � 1.

Theorem 1.2. Let p be an odd prime number. Let A ¼ Pa1
1 . . .P

ap
p be an odd

perfect polynomial over Fp, such that for any j, Pj is irreducible, degðPjÞ ¼ 2 and

aj a f1; 2g. Then A is perfect over Fp if and only if

aj ¼ 2 for any j;

either ðpC 11 mod 24Þ or ðpC 17 mod 24Þ:

�

In this case such a polynomial is unique and equals
Q

a A Fp

�
ðxþ aÞ2 � 3=8

�2
.

Note that if p ¼ 3, then conditions i) and ii) of Theorem 1.1 imply that aj ¼ 2

and aj ¼ 1 for at least one j a f1; 2; 3g, which is impossible. So again we get

Theorem 2.10 in [8]: There exists no odd perfect polynomial over F3 with 3

irreducible factors.

2. Preliminaries

2.1. Some useful facts. We denote as usual by N (resp. by N�) the set of non-

negative integers (resp. of positive integers). For a set S we denote byaS the car-

dinal of S. For polynomials A;B a Fp½x�, we write An kB if An jB but Anþ1 FB.

A basic but important result is

Lemma 2.1 ([6], Lemma 2.5). Let p be a prime number. Let A a Fp½x� be a perfect

polynomial. Then the number of irreducible divisors of A, having minimal degree, is

a multiple of p.

We immediately get

Corollary 2.2. If A a Fp½x� is a perfect polynomial with exactly p irreducible

factors P1; . . . ;Pp, then degðP1Þ ¼ � � � ¼ degðPpÞ.

According to Corollary 2.2, we are interested to know the factorization of

sðPaÞ into irreducible divisors of the same degree as P, for any polynomial P

and for any positive integer a such that Pa kA.
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We generalize Lemma 6 in [4] (that covered the case p ¼ 2):

Lemma 2.3. Let p be a prime number and let P a Fp½x� be an irreducible poly-

nomial. If sðPaÞ ¼ Qc1
1 . . .Qct

t , where Ql is irreducible, gcdðP;QlÞ ¼ 1, degðPÞ ¼
degðQlÞ, for any l, and pF aþ 1, then cl a f0; 1g for any l.

Proof. If cl b 2 for some l, then put

1þ � � � þ Pa ¼ QmC where m ¼ cl and Q ¼ Ql :

We get

Paþ1 � 1 ¼ ðP� 1ÞQmC: ð2Þ

Then by taking derivatives on both sides of (2), one has

0A ðaþ 1ÞPaP 0 ¼ Qm�1
�
P 0QC þ ðP� 1ÞðmQ 0C þQC 0Þ

�
so that, with the observation that gcdðP;QÞ ¼ 1,

Qm�1 jP 0:

Thus, we get the contradiction

degðPÞa ðm� 1Þ degðPÞ ¼ ðm� 1Þ degðQÞadegðP 0Þ < degðPÞ: r

2.2. Notations. Given an odd prime number p, an irreducible polynomial

P a Fp½x� and an integer a a N�, we would like to understand, as mentioned

in Section 2.1, how sðPaÞ ¼ 1þ Pþ � � � þ Pa may be factorized into irreducible

divisors of the same degree as P:

sðPaÞ ¼ Qc1
1 . . .Qct

t with degðPÞ ¼ degðQlÞ for any l:

We may write a :¼ Npn � 1 for some N, n a N, such that Nb 1 and pFN. In

that case we put d :¼ gcdðN; p� 1Þ and denote by LN the splitting field of

xN � 1 over Fp, which is a strict subset of the algebraic closure Fp of Fp.

Moreover, since pFN, the polynomial xN � 1 has no multiple root (in LN ). It

is well known that the set WN of N-th roots of unity in Fp consists exactly of d

elements:

WN :¼ fm a Fp : m
N ¼ 1g; aWN ¼ d ¼ gcdðN; p� 1Þ:

Consider the Frobenius map: fpðtÞ ¼ tp for t a LN , acting over LN . The action

is extended trivially to LN ½x� by sending x to x. The Galois group G of the exten-
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sion LN over Fp is generated by fp. The Galois group Ge of the extension ring

LN ½x� over Fp½x� is isomorphic to G and acts as G on the coe‰cients of any ele-

ment A a LN ½x�.
We say that two elements t; u a LN are conjugate if t ¼ rðuÞ for some r a G.

In the same manner, two polynomials A;B a LN ½x� are conjugate if A ¼ rðBÞ for
some r a Ge.

Finally, we put for m a LN and for R a LN ½x�:

ConjðmÞ :¼ fl a LN : l and m are conjugateg;
ConjðRÞ :¼ fS a LN ½x� : S and R are conjugateg:

Throughout Sections 2.3 and 2.4, we keep the notations

a ¼ Npn � 1; d ¼ gcdðN; p� 1Þ with N; n a N; Nb 1 and pFN:

2.3. The case N j p� 1. In Section 3, we will very often use the following obvi-

ous fact:

Lemma 2.4. Let P a Fp½x� be an odd irreducible polynomial. Then there exists

m a Fpnf0g such that P� m is even and hence reducible over Fp.

Proof. It su‰ces to remark that the monomial x always divides P� Pð0Þ. r

We give now some information on o
�
sðPaÞ

�
for an irreducible polynomial

P a Fp½x� such that any irreducible divisor of sðPaÞ has the same degree as P.

Lemma 2.5. If N j p� 1 and if P a Fp½x� is irreducible such that sðPaÞ ¼
Qc1

1 . . .Qct
t , with t ¼ o

�
sðPaÞ

�
, degðPÞ ¼ degðQjÞ for any j and Qj irreducible,

then t a fN � 1;Ng and for any j there exists mj a WN such that Qj ¼ P� mj ,

cj ¼ pn � 1 if mj ¼ 1, and cj ¼ pn if mj A 1.

Proof. Since N j p� 1 and pFN, the polynomial xN � 1 splits over Fp and has no

multiple root. Hence,

1þ xþ � � � þ xa ¼ xaþ1 � 1

x� 1
¼ ðxN � 1Þp

n

x� 1
¼

Y
m AWN

ðx� mÞcm ;

where c1 ¼ pn � 1 and cm ¼ pn if mA 1. So,

sðPaÞ ¼ 1þ Pþ � � � þ Pa ¼ ðPN � 1Þp
n

P� 1
¼

Y
m AWN

ðP� mÞcm :
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Still by hypothesis, any irreducible divisor of sðPaÞ is of degree degðPÞ, so each

P� m must be irreducible whenever cmb 1. Thus, t ¼ N � 1 (resp. N) if n ¼ 0

(resp. nb 1). r

2.4. The case N F pC 1. In this section we will give detailed information on

the possible irreducible factors of S ¼ sðPaÞ in the extension field LN and its

consequences on the irreducible factors of S in the ground field Fp.

First of all, recall that aWN ¼ d and d < N because N F p� 1. We may

write

WN ¼ fx1 ¼ 1; x2; . . . ; xdgH Fp:

Now we factor xN � 1 over Fp:

xN � 1 ¼
Qd

l¼1ðx� xlÞ � B1 . . .Br;

where each Bj is odd and irreducible; for 1a ja r ¼ oðxN � 1Þ � d:

(
ð3Þ

Furthermore, for any j a f1; . . . ; rg, Bj splits over LN , namely,

there exists mj a LNnFp such that Bj ¼
Y

l AConjðmjÞ
ðx� lÞ: ð4Þ

It follows that, for any j,

vj :¼ degðBjÞ ¼aConjðmjÞb 2: ð5Þ

Thus, one has

sðxaÞ ¼ 1þ xþ � � � þ xa ¼ ðxN�1Þp
n

x�1 ¼ ðx� 1Þp
n�1

A
pn

1 A
pn

2 ;

where A1 ¼ 1 if d ¼ 1; A1 ¼ ðx� x2Þ . . . ðx� xdÞ; if db 2;

A2 ¼ B1 . . .Br;

mi and mj are not conjugate if iA j:

A2 is of degree v1 þ � � � þ vr ¼ N � d:

8>>>>>><
>>>>>>:

ð6Þ

We get two intermediate results:

Lemma 2.6. We suppose that N F p� 1 and db 2. Let A a Fp½x� be odd and

perfect with oðAÞ ¼ p. If Pa kA for some odd irreducible polynomial P, then

P� x2; . . . ;P� xd are all irreducible divisors of A:

Moreover, P� 1 is also irreducible and divides A if nb 1.
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Proof. By substituting x by P in (6), we see that P� x2; . . . ;P� xd divide sðPaÞ
and thus divide sðAÞ ¼ A. It follows by Corollary 2.2 that P� x2; . . . ;P� xd
must be irreducible. If nb 1, we may add the polynomial P� 1. r

Lemma 2.7. We suppose that N F p� 1. Let P a Fp½x� be odd irreducible such that
sðPaÞ ¼ Qc1

1 . . .Qct
t , where t ¼ o

�
sðPaÞ

�
, degðPÞ ¼ degðQlÞ for any l a f1; . . . ; tg.

Then P� mj is reducible over LN for any j a f1; . . . ; rg.

Proof. By substituting x by P in (6), we have

sðPaÞ ¼ ðP� 1Þp
n�1�

A1ðPÞ
�pn�

A2ðPÞ
�pn

;

where

A2ðPÞ ¼ B1ðPÞ . . .BrðPÞ; BjðPÞ ¼
Y

l AConjðmjÞ
ðP� lÞ:

If P� mj is irreducible over LN for some j, then the polynomial BjðPÞ is irreduc-
ible over Fp and divides sðPaÞ, with deg

�
BjðPÞ

�
> degðPÞ. But this is impossible.

r

According to Lemma 2.6, we may put without loss of generality:

Q1 :¼ P� 1; . . . ;Qd :¼ P� xd if nb 1;

Q1 :¼ P� x2; . . . ;Qd�1 :¼ P� xd if n ¼ 0:

In other words, the number of irreducible divisors of sðPaÞ, of the form

P� x a Fp½x�, is exactly

d � 1þminð1; nÞ:

More precise results follow.

Lemma 2.8. With the same hypothesis and notations as in Lemma 2.7, for any

kb d þminð1; nÞ, there exist j a f1; . . . ; rg and l a f1; . . . ;wjg such that Vjl is an

irreducible divisor of P� mj and Qk ¼
Q

S AConjðVjlÞ S.

Proof. We recall that

sðPaÞ ¼ ðP� 1Þp
n�1�

A1ðPÞ
�pn�

A2ðPÞ
�pn

;

where

A2ðPÞ ¼ B1ðPÞ . . .BrðPÞ; BjðPÞ ¼
Y

l AConjðmjÞ
ðP� lÞ:
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Put, for any j a f1; . . . ; rg,

P� mj ¼ V
gj1
j1 . . .V

gjwj
jwj

and Rjl ¼
Y

S AConjðVjlÞ
S;

where each Vjl is irreducible over LN , wj is the number of irreducible divisors

(in LN ½x�) of P� mj and gjl b 1 for any l a f1; . . . ;wjg. Then each Rjl lies on

Fp½x� and is irreducible (over Fp). We see that

BjðPÞ ¼ R
gj1
j1 . . .R

gjwj
jwj

:

Hence, Rjl divides A2ðPÞ and sðPaÞ. Thus, we may put Qk ¼ Rjl which is of

degree vj degðVjlÞ. r

Lemma 2.9. With the same hypothesis and notations as in (the proof of ) Lemma

2.8, we have

i) degðRjlÞ ¼ vj degðVjlÞ, degðVjlÞ ¼ degðVjkÞb 1, for any l; k a f1; . . . ;wjg,
ii) ðgj1 þ � � � þ gjwj

Þbj ¼ degðPÞ ¼ degðRjlÞ ¼ vjbj where bj :¼ degðVjlÞ,
iii) vj ¼ gj1 þ � � � þ gjwj

for any j a f1; . . . ; rg,
iv) ck ¼ gjl p

n if Qk ¼ Rjl.

Proof. i) For any l; k a f1; . . . ;wjg, we have

degðRjlÞ ¼aConjðVjlÞ � degðVjlÞ ¼aConjðmjÞ � degðVjlÞ ¼ vj degðVjlÞ;

vj degðVjlÞ ¼ degðRjlÞ ¼ degðPÞ ¼ degðRjkÞ ¼ vj degðVjkÞ:

So, degðVjlÞ ¼ degðVjkÞ.
ii) Since P� mj ¼ V

gj1
j1 . . .V

gjwj
jwj

and Rjl ¼
Q

S AConjðVjlÞ S, we obtain

ðgj1 þ � � � þ gjwj
Þbj ¼ degðPÞ ¼ degðRjlÞ ¼ vjbj:

iii) follows from ii).

iv) is obtained from the fact that the exponent of Rjl in the factorization of

sðPaÞ is exactly gjl p
n.

Note that vj b 2 for any j a f1; . . . ; rg, but bj may equal 1 for some j,

fQdþminð1;nÞ; . . . ;Qtg ¼ fRjl : 1a ja r; 1a lawjg;

Xt

l¼dþminð1;nÞ
cl ¼

Xr

j¼1

Xwj

l¼1

gjl p
n ¼ pn

Xr

j¼1

ðgj1 þ � � � þ gjwj
Þ ¼ pn

Xr

j¼1

vj ¼ ðN � dÞpn;

Xt

l¼1

cl ¼
Xd�1þminð1;nÞ

l¼1

cl þ ðN � dÞpn ¼ pn � 1þ ðd � 1Þpn þ ðN � dÞpn ¼ a: r
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Corollary 2.10. With the same hypothesis and notations as in (the proof of )

Lemma 2.8,

i) sðPaÞ has at most N irreducible distinct divisors if nb 1.

ii) sðPaÞ has exactly N � 1 irreducible distinct divisors if n ¼ 0.

Proof. First of all, we have, for any j,

wj a gj1 þ � � � þ gjwj
¼ vj:

i) If nb 1, the irreducible distinct divisors of sðPaÞ are:

P� 1;P� x2; . . . ;P� xd ;

R11; . . . ;R1w1
;

..

.

Rr1; . . . ;Rrwr
:

So there are d þ w1 þ � � � þ wr such divisors with

d þ w1 þ � � � þ wra d þ v1 þ � � � þ vr ¼ d þ ðN � dÞ ¼ N:

ii) If n ¼ 0, then P� 1 does not divide sðPaÞ, and by Lemma 2.3, sðPaÞ is

square free. Thus, gjl ¼ 1 for any j, l.

Therefore, wj ¼ gj1 þ � � � þ gjwj
¼ vj for any j. Thus, the number of irreducible

distinct divisors of sðPaÞ is

d � 1þ w1 þ � � � þ wr ¼ d � 1þ v1 þ � � � þ vr ¼ d � 1þ ðN � dÞ ¼ N � 1: r

3. The proof of Theorem 1.1

By using notations from Section 2.2, we obtain our main results including several

su‰cient conditions for non perfection as stated in Corollary 3.4.

Propositions 3.1 and 3.2 give the first and second part of our theorem. Corol-

lary 3.5 iv) gives the third part. The last part is obtained from Proposition 3.6.

Proposition 3.1. There are no odd perfect polynomials A a Fp½x� with p irre-

ducible divisors P1; . . . ;Pp, of the form A ¼ Pa1
1 . . .P

ap
p , where ai is odd for any

i a f1; . . . ; pg.

Proof. Since a1 is odd, P1 þ 1 divides sðPa1
1 Þ. P1 þ 1 cannot be composite since

any of its irreducible factors should have degree < d. So P1 þ 1 is an irreducible

divisor of A. By applying the same argument to P1 þ 1, we see that P1 þ 2 is
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also an irreducible divisor of A, and so on. Thus, fP1; . . . ;Ppg ¼ fP1;P1 þ 1;

P1 þ 2; . . . ;P1 þ ðp� 1Þg and hence P� m is irreducible for any m a Fp. This

contradicts Lemma 2.4. r

Proposition 3.2. There are no odd perfect polynomials A a Fp½x� with p irreducible

divisors P1; . . . ;Pp, of the form A ¼ Pa1
1 . . .P

ap
p , where for any i a f1; . . . ; pg,

ai ¼ Ni p
ni � 1; Ni; ni a N; Ni b 1; pFNi; Ni j p� 1:

Proof. Since Ni j p� 1, we may write

sðPai
i Þ ¼

Y
m AWNi

ðPi � mÞcm :

Hence,

A ¼ sðAÞ ¼
Y
i

sðPai
i Þ ¼

Y
i

Y
m AWNi

ðPi � mÞcm :

Therefore, we may put

A ¼
Y
i

Ai ¼
Y
i

Y
x A Fp

ðPi � xÞbx ;

where bx a N (may be equal to 0) and Pi � Pj B Fp if iA j.

It follows that, for any iA j, gcdðAi;AjÞ ¼ 1 ¼ gcd
�
Ai; sðAjÞ

�
. We see that

A is perfect if and only if each Ai is perfect. Hence oðAiÞ ¼ p, i ¼ 1 and

aWN1
¼ p� 1, N1 ¼ p� 1. So each P� m is irreducible for any m a Fp. This

contradicts Lemma 2.4. r

Proposition 3.3. Let A ¼ Pa1
1 . . .P

ap
p be an odd perfect polynomial with p irre-

ducible divisors, with ai ¼ Ni p
ni � 1, Ni; ni a N, Ni b 1, pFNi.

If nl ¼ 0 for some l, then Nl � 1a p� 2 and nj ¼ 0 for any j such that Pl

divides sðPaj
j Þ.

Proof. If Nl j p� 1 then Nl � 1a p� 2.

We suppose that Nl F p� 1. If nl ¼ 0, then by Corollary 2.10, Nl � 1 <

oðAÞ ¼ p. So, Nl � 1a p� 1. Since pFNl , we must have Nl � 1a p� 2.

If j a f1; . . . ; rg such that Pl j sðPaj
j Þ, then the exponent of Pl in sðAÞ is at least

pnj � 1, and the exponent of Pl in A is al ¼ Nl � 1a p� 2. So we must have

pnj � 1a al a p� 2:

Thus, nj must be equal to 0. r
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Corollary 3.4. Let A ¼ Pa1
1 . . .P

ap
p a Fp½x� be an odd polynomial, with oðAÞ ¼ p

and degðP1Þ ¼ � � � ¼ degðPpÞ. Then A is not perfect if at least one of the following

conditions holds:

i) There exists j such that vj does not divide degðP1Þ.
ii) There exists j such that sðxajÞ is irreducible over Fp and Nj � 1F degðP1Þ.
iii) There exists j such that aj ¼ Npn � 1, sðxaj Þ ¼ ðx� 1Þp

n�1
A

pn

1 A
pn

2 , where A2 is

irreducible (over Fp) and N � d F degðP1Þ, d ¼ gcdðN; p� 1Þ.
iv) a1 ¼ � � � ¼ ap ¼ Npn � 1 with ðnb 1Þ or ðgcdðN; p� 1Þb 2Þ.
v) For any j, aj ¼ Njp

nj � 1 with ðnj b 1 for any jÞ or ðNj ¼ N; gcdðN; p� 1Þb 2

for any jÞ.

Proof. Observe that ii) and iii) follow from i), and v) implies iv). It su‰ces to

prove i) and v).

i) We will proceed by proving the contrapositive: If A is perfect, then by

Lemma 2.9, we must have degðP1Þ ¼ vjbj for any j. So vj divides degðP1Þ.
v) If nj b 1 for any j, then after re-indexing, we have P2 ¼ P1 � 1, P3 ¼

P2 � 1 ¼ P1 � 2; . . . ;Pp ¼ P1 � ðp� 1Þ. So P1 � m is irreducible for any m a Fp.

This contradicts Lemma 2.4.

If for any j, Nj ¼ N and gcdðN; p� 1Þ ¼ db 2, then after re-indexing, we

have P2 ¼ P1 � x2, P3 ¼ P1 � 2x2; . . . ;Pp ¼ P1 � ðp� 1Þx2 and P1 which are

both irreducible. This again contradicts Lemma 2.4. r

By part v) of Corollary 3.4, if A is perfect then the set L ¼ fi : ni ¼ 0g is not

empty. More precisely, we get

Corollary 3.5. Let A ¼ Pa1
1 . . .P

ap
p be an odd perfect polynomial over Fp, with

oðAÞ ¼ p, and for each i, ai ¼ Ni p
ni � 1, Ni; ni a N, Ni b 1, pFNi. Then

i) for any i B L, there exists j B L such that Pj ¼ Pi � 1.

ii) L ¼ f1; 2; . . . ; pg ðthat is, for any i, ni ¼ 0Þ,
iii) for any i, Pi � 1 does not divide sðPai

i Þ,
iv) for any i, ai ¼ Ni � 1a p� 2.

Proof. Here, Ni may divide p� 1 for some i.

i) If ni b 1, then

sðPai
i Þ ¼

ðPNi � 1Þp
ni

Pi � 1
¼ ðPi � 1Þp

ni�1 � C for some polynomial C;

where pni � 1b p� 1b 1. Hence, Pi � 1 must be irreducible. Put Pj ¼ Pi � 1.

If j a L, then the exponent of Pj in A is Nj � 1 and Nj � 1a p� 2 by Proposition
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3.3, the exponent of Pj in sðAÞ is at least pni � 1. So p� 2bNj � 1b

pni � 1b p� 1, which is impossible.

ii) We prove that for any i, ni ¼ 0. If not, let i such that ni b 1. Then i B L.

Put Pi1 ¼ Pi � 1. We have i1 B L. By putting Pi2 ¼ Pi1 � 1 ¼ Pi � 2, we have

i2 B L, and so on. The polynomials Pi;Pi � 1;Pi � 2; . . . ;Pi � ðp� 1Þ are all

irreducible. This contradicts Lemma 2.4.

iii) follows from ii).

iv) follows from ii) and from Proposition 3.3. r

Proposition 3.6. Let A ¼ Pa1
1 . . .P

ap
p be an odd perfect polynomial over Fp, with

oðAÞ ¼ p such that xp � x does not divide P1 � 1. Then a1a p� 3.

Proof. We know, by Corollary 3.5-iv), that a1a p� 2. If a1 ¼ p� 2, then

sðPa1
1 Þ ¼ Pa1þ1

1 � 1

P1 � 1
¼ P

p�1
1 � 1

P1 � 1
¼ ðP1 � 2Þ . . .

�
P1 � ðp� 1Þ

�
:

Since xp � xF ðP1 � 1Þ, we have P1ðxÞA 1 for some x a Fp. So P1ðxÞ a
f2; 3; . . . ; p� 1g,

�
sðPa1

1 Þ
�
ðxÞ ¼ 0, and x� x divides sðAÞ ¼ A. This contradicts

the fact that A is odd. r

4. The proof of Theorem 1.2

We did some computational work to find some perfect polynomials satisfying the

hypothesis of this theorem, but despite several attempts, we did not find any. The

main di‰culty appeared to be the random nature of the irreducible factors of A.

More precisely, if we try to build an odd perfect polynomial A with p irreduc-

ible factors, we begin by taking an irreducible polynomial R1 ¼ ðxþ c1Þ2 � d1 of

degree 2 such that R1 kA or R2
1 kA.

• If R1 kA, then we apply the sigma function s, sðR1Þ ¼ 1þ R1 ¼ ðxþ c1Þ2 �
ðd1 � 1Þ ¼ R2, which must be an irreducible divisor of sðAÞ ¼ A. We do not

know whether R2 kA or R2
2 kA.

If R2 kA, then as above we get R3 ¼ sðR2Þ ¼ 1þ R2 ¼ ðxþ c1Þ2 � ðd1 � 2Þ.
Again we do not know the exponents e a f1; 2g such that Re

3 kA.
If R2

2 kA, then sðR2
2Þ ¼ R3R4, where R3 and R4 are irreducible divisors of A.

For each j a f3; 4g, we get two cases as above.

• If R2
1 kA, then sðR2

1Þ ¼ R2R3, where R2 and R3 are irreducible divisors of A.

We obtain similar results.

Hence, if we apply several times the sigma function s, we see immediately that

we obtain a kind of graph where each vertex is of degree 2 (i.e., there are two edges
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incident to each vertex). This indicates that the computation time, necessary to

consider all cases, may grow too fast.

Observe, that if m is the greatest integer such that for any 1a jam, Rj kA
and Rjþ1 ¼ sðRjÞ ¼ 1þ Rj, then by repeating the procedure m times from R1 to

Rmþ1,

R1 ! sðR1Þ ¼ R2 ! � � � ! sðRmÞ ¼ Rmþ1;

we see that the mþ 1 elements d1; d1 � 1; d1 � 2; . . . ; d1 �m of Fp must be all non-

square. The maximum value of such an m is bounded above by
ffiffiffi
p

p
(see [11]), a

nice result that, unfortunately, we were unable to apply here.

However, we were able to refine our method so that it leads us to consider two

main cases:

ðaj ¼ 1 for at least one j a f1; . . . ; pgÞ and ðaj ¼ 2 for any jÞ:

We need the following obvious fact (for which we omit a proof ):

Lemma 4.1. i) Any irreducible polynomial P over Fp of degree 2 may be written as

P ¼ ðxþ aÞ2 � f where a; f a Fp and f is not a square:

ii) For any odd irreducible polynomials P and Q over Fp, sðP2Þ ¼ sðQ2Þ if and
only if P ¼ Q.

We see that we must deal with irreducible polynomials of degree 2, which may

be written (Lemma 4.1) as: Ta; f ðxÞ ¼ ðxþ aÞ2 � f , where a; f a Fp and f is not

a square. We must indicate how sðTa; f Þ and s
�
ðTa; f Þ2

�
are factorized into a

product of irreducible polynomials of the same kind.

We shall give some preliminary results in order to prove Theorem 1.2. Su‰-

ciency follows from Proposition 4.12. We obtain necessity by Proposition 4.4 and

Corollary 4.14.

Now we prove a crucial result:

Lemma 4.2. Let p be an odd prime number such that ð�3Þ is not a square in Fp.

Let P ¼ x2 � f , Pj ¼ ðxþ ajÞ2 � fj and Pk ¼ ðxþ akÞ2 � fk be odd irreducible.

Then PjPk ¼ sðP2Þ if and only if the following conditions are satisfied:

fj ¼ fk; ak ¼ �aj A 0 for any j; k;

1� f þ f 2 is a square: 1� f þ f 2 ¼ a2; a a Fp;

2f � 1� 2a is not a square and fj þ a is a square;

fj ¼ 2f�1�2a
4 ¼ a2j � a;

fj ¼ �3
16a2

j

; f ¼ fj þ a2j þ 1
2 ¼ fj � 3

16fj
þ 1

2 :

8>>>>>>><
>>>>>>>:
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Proof. Su‰ciency is obtained by direct computations.

Necessity: We have

sðP2Þ ¼ 1þ Pþ P2 ¼ ð1� f þ f 2Þ þ ð1� 2f Þx2 þ x4;

PjPk ¼ Ajk þ Bjkxþ Cjkx
2 þ ð2aj þ 2akÞx3 þ x4;

where Ajk ¼ ða2j � fjÞða2k � fkÞ, Bjk ¼ 2akða2j � fjÞ þ 2ajða2k � fkÞ,

Cjk ¼ 4ajak þ ða2j � fjÞ þ ða2k � fkÞ:

Therefore,

aj þ ak ¼ 0;

2akða2j � fjÞ þ 2ajða2k � fkÞ ¼ 0;

4ajak þ ða2j � fjÞ þ ða2k � fkÞ ¼ 1� 2f ;

ða2j � fjÞða2k � fkÞ ¼ 1� f þ f 2:

Hence, either

ak ¼ aj ¼ 0;

fj þ fk ¼ 2f � 1;

fj fk ¼ 1� f þ f 2:

ð7Þ

or

ak ¼ �aj A 0;

fj ¼ fk;

2a2j þ 2fj ¼ 2f � 1;

ða2j � fjÞ2 ¼ 1� f þ f 2:

ð8Þ

In the first case fj and fk satisfy the quadratic equation

t2 � ð2f � 1Þtþ 1� f þ f 2 ¼ 0:

Thus, its discriminant D ¼ ð2f � 1Þ2 � 4ð1� f þ f 2Þ ¼ �3 must be a square in

Fp, which contradicts our hypothesis on p.
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Thus, the second case must hold. It follows that

1� f þ f 2 is a square: 1� f þ f 2 ¼ a2; a ¼ a2j � fj a Fp;

fj þ a ¼ a2j is a square;

fj ¼ 2f�1�2a
4 :

8>><
>>:

Since fj is not a square, we see that 2f � 1� 2a is not a square. By (8), we get

f ¼ fj þ a2j þ
1

2
and fj ¼

�3

16a2j
: r

Corollary 4.3. Let p be an odd prime number such that ð�3Þ is not a square in Fp.

Let Pi ¼ ðxþ aiÞ2 � fi, Pj ¼ ðxþ ajÞ2 � fj and Pk ¼ ðxþ akÞ2 � fk be odd irre-

ducible polynomials such that PjPk ¼ sðP2
i Þ. Then

fj ¼ fk; ak A aj ; ai ¼ ajþak
2 ;

fj ¼ �3
4d 2

jk

; fi ¼ fj þ
d 2
jk

4 þ 1
2 ¼ fj � 3

16fj
þ 1

2 ; where djk ¼ aj � ak:

8<
:

Proof. Put Pi ¼ Piðx� aiÞ ¼ x2 � fi, Pj ¼ ðxþ aj � aiÞ2 � fj, Pk ¼ ðxþ ak �
aiÞ2 � fk. We get

PjPk ¼ sðPi
2Þ.

The result follows from Lemma 4.2. r

For the rest of the paper, we keep the notations:

A ¼ Pa1
1 . . .Pap

p ; where degðPiÞ ¼ 2 and ai a f1; 2g for any i:

4.1. The case aj F 1 for at least one j a {1, . . . , p}. We prove the following

result:

Proposition 4.4. There exists no odd perfect polynomial with p irreducible factors

P1; . . . ;Pp, of the form A ¼ Pa1
1 . . .P

ap
p , where for any i, degðPiÞ ¼ 2, ai a f1; 2g,

and ak ¼ 1 for some k.

4.1.1. The case ai F 1 for any i a {1, . . . , p}. In this case, after re-indexing, we

may write:

P2 ¼ sðP1Þ ¼ P1 þ 1;P3 ¼ P2 þ 1 ¼ P1 þ 2; . . . ;Pp ¼ Pp�1 þ 1 ¼ P1 þ p� 1:

Hence, P1;P1 þ 1; . . . ;P1 þ p� 1 are all irreducible. This contradicts Lemma 2.4.
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4.1.2. The case: aj F 1, akF 2 for some j, k a {1, . . . , p}. We remark that

1þ 1 ¼ 2 always divides p� 1. If 2þ 1 ¼ 3 divides p� 1, then, by Theorem

1.1 iii), A is not perfect. It remains the case pC 2 mod 3.

We also adopt the following convention: we denote P $ Q to mean that P and

Q verify PQ ¼ sðR2Þ for some R.

We immediately obtain from Corollary 4.3:

Corollary 4.5. If P $ Q and if P ¼ ðxþ aÞ2 � f , Q ¼ ðxþ bÞ2 � g, where f , g

are not square in Fp, then f ¼ g.

Lemma 4.6. The polynomial A may be written as

A ¼ A1 . . .Ar;

where Aj ¼ RjðRj þ 1Þ . . . ðRj þmjÞðRj þmj þ 1Þ2C2
j1 . . .C

2
jnj

for any j a f1; . . . ; rg,
and either Rj � 1 is of exponent 2 or Rj � 1 does not divide A.

Proof. We may write

A ¼ P1 . . .PsP
2
sþ1 . . .P

2
p :

By putting R1 ¼ P1, we see that R1 þ 1 ¼ sðR1Þ divides sðAÞ ¼ A. If R1 þ 1 is of

exponent 1, then we continue the process. After a finite number (say m1 þ 1) of

steps, the exponent of R1 þm1 þ 1 equals 2. Observe that 1am1 þ 1a s < p.

We may suppose that

P1 ¼ R1; P2 ¼ R1 þ 1; . . . ;Pm1þ1 ¼ R1 þm1:

Now we may apply the process to R2 ¼ Pm1þ2. After m2 þ 1 steps we get

Pm1þ2 ¼ R2; . . . ;Pm1þ2þm2
¼ R2 þm2

and so on. Altogether, we obtain

1a ðm1 þ 1Þ þ ðm2 þ 1Þ þ � � � þ ðmr þ 1Þ ¼ s < p: r

Lemma 4.7. If A is perfect, if C2 divides A, and if CARj þmj þ 1 for any ja r,

then there exist C1, C2 such that C1 $ C $ C2.

Proof. It follows from the fact that C must appear two times in sðAÞ ¼ A. The

case C ¼ Rj þmj þ 1 is excluded since C j sðRj þmjÞ. r

298 L. H. Gallardo and O. Rahavandrainy



Corollary 4.8. With the same hypothesis and notations as in Lemma 4.6, for any

ja r, one has the following graph:

Rj þmj þ 1 $ Cj1 $ � � � $ Cjtj $ Sj ;

where Sj is of exponent 1 and each Ckl is of exponent 2.

Corollary 4.9. With the same hypothesis and notations as in Lemma 4.6, there

exists va r such that, after re-indexing, one has the following graphs:

R1 þm1 þ 1 $ C11 $ � � � $ C1t1 $ S1;

R2 þm2 þ 1 $ C21 $ � � � $ C2t2 $ S2;

..

.

Rv þmv þ 1 $ Cv1 $ � � � $ Cvtv $ Sv ¼ R1;

where S1 ¼ R2 þ l1, S2 ¼ R3 þ l2; . . . ;Sv�1 ¼ Rv þ lv�1, 0a ltamt.

Corollary 4.10. There exists no odd perfect polynomial with p irreducible factors

P1; . . . ;Pp of the form A ¼ Pa1
1 . . .P

ap
p , where for any j, degðPjÞ ¼ 2, and ak ¼ 1,

al ¼ 2 for some k, l.

Proof. Put R1 þm1 þ 1 ¼ x2 � g, Rj þmj þ 1 ¼ ðx� djÞ2 � gj and Sj ¼ ðx� sjÞ2
� hj, where g, gj, hj are not square in Fp. We obtain from Corollary 4.5

g1 ¼ g ¼ h1; hj ¼ gj; hv ¼ gv ¼ gþm1 þ 1:

Moreover, for 2a ja v, hj�1 ¼ gj þmj þ 1� lj�1 since Sj�1 ¼ Rj þ lj�1. There-

fore,

g ¼ h1 ¼ g2 þm2 þ 1� l1 ¼ h2 þm2 þ 1� l1 ¼ g3 þm3 þ 1� l2 þm2 þ 1� l1

and so on. We get

g ¼ gv þ ðm2 þ 1Þ þ � � � þ ðmv þ 1Þ � ðl1 þ � � � þ lv�1Þ
¼ gþ ðm1 þ 1Þ þ ðm2 þ 1Þ þ � � � þ ðmv þ 1Þ � ðl1 þ � � � þ lv�1Þ:

But this is impossible since

1a ðm1 þ 1Þ þ � � � þ ðmv þ 1Þ � ðl1 þ � � � þ lv�1Þ < p: r

In the next section we prove that there exists at most one odd perfect poly-

nomial having exactly p irreducible divisors, each factor being of degree 2 with
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exponent 2. We give the exact conditions on p that guarantee the existence of

such polynomials. These polynomials were first constructed in [5].

4.2. The case aj F 2 for any j a {1, . . . , p}. Our proof is inspired by the proof

of Theorem 2 in [5], which in turn is obtained by generalizing Link’s construction

in [12] and [2]. We recall this theorem here together with the main ideas to get it.

But first, we need the following elementary fact.

Lemma 4.11. Let p be an odd prime number. Then ð�2Þ is a square in Fp and

ð�3Þ is not if and only if

pC 11 or 17 mod 24:

Proof. We consider the Legendre symbol
�
p

�
. We have, by using Gauss’s law of

quadratic reciprocity:

1 ¼ �2

p

� �
¼ �1

p

� �
2

p

� �

¼ ð�1Þðp�1Þ=2ð�1Þðp
2�1Þ=8 () ðpC 1 mod 8Þ or ðpC 3 mod 8Þ;

�1 ¼ �3

p

� �
¼ �1

p

� �
3

p

� �

¼ ð�1Þðp�1Þ=2ð�1Þðð3�1Þ=2Þððp�1Þ=2Þ p

3

� �
¼ p

3

� �
() ðpC 2 mod 3Þ:

Thus,

�2

p

� �
¼ 1 and

�3

p

� �
¼ �1 () ðpC 1 or 3 mod 8Þ and ðpC 2 mod 3Þ

() pC 11 or 17 mod 24: r

Proposition 4.12 ([5], Theorem 2). Let p be prime number such that pC 11 or

17 mod 24. Then the polynomial A ¼
Q

a A Fp

�
ðxþ aÞ2 � 3=8

�2
is odd and perfect

over Fp.

Proof. By Lemma 4.11, we may write �2 ¼ a2 for some a a Fp, whereas 3=8 ¼
ð�3Þ=a6 is not a square. So, for any a a Fp, the polynomial Ta ¼ ðxþ aÞ2 � 3=8

is irreducible (over Fp). We remark that

sðT 2
0 Þ ¼ 1þ ðx2 � 3=8Þ þ ðx2 � 3=8Þ2 ¼ Ta=2 � T�a=2;
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and

sðAÞ ¼
Y
a A Fp

sðT 2
a Þ ¼

Y
a A Fp

ðTaþa=2 � Ta�a=2Þ ¼
Y
b A Fp

Tb �
Y
c A Fp

Tc ¼ A: r

To finish the proof of Theorem 1.2, it remains to prove two things (which are

given by Corollary 4.14):

the polynomial
Q

a A Fp

�
ðxþ aÞ2 � 3=8

�2
is the only one that is odd and perfect

over Fp, with all degrees and exponents equal to 2 if pC 11 or 17 mod 24,

if p does not satisfy pC 11 or 17 mod 24, then there exists no such odd perfect

polynomial over Fp.

Lemma 4.13. Let A ¼ P2
1 . . .P

2
p be an odd perfect polynomial with p irreducible

divisors P1; . . . ;Pp such that, for any j, Pj ¼ ðxþ ajÞ2 � fj. Then for any i, there

exists a unique 4-tuple ð j; k; l;mÞ such that

jA i; k B fi; jg; l B fi; jg; m B fi; kg; PiPj ¼ sðP2
l Þ; PiPk ¼ sðP2

mÞ:

Proof. Existence and uniqueness follow from the fact that each Pi appears exactly

two times in A ¼ sðAÞ. r

Corollary 4.14. Let A ¼ P2
1 . . .P

2
p be an odd polynomial with p irreducible divisors

P1; . . . ;Pp, such that, for any j, Pj ¼ ðxþ ajÞ2 � fj , with aj; fj a Fp, fj not a square.

Then A is perfect if and only if

either ðpC 11 mod 24Þ or ðpC 17 mod 24Þ;
fj ¼ fk ¼ f ¼ 3=8 for any j; k:

�

Proof. Su‰ciency is obtained from Proposition 4.12.

Necessity: We remark, from Theorem 1.1 iii), that p must satisfy pC 2 mod 3

so that ð�3Þ is not a square in Fp. By Corollary 4.3 and Lemma 4.13, for any i,

there exists a unique pair ð j; kÞ such that

jA i; kA i; jA k; fj ¼ fi ¼ fk:

We then obtain a graph of the form j $ i $ k. Hence, by Corollary 4.5, we have

fj ¼ fi ¼ fk. After re-indexing, we get, for any l a
�
1; . . . ;

p�3

2

�
,

3 $ 1 $ 2; 2l $ 2l þ 2 $ 2l þ 4;

2l þ 3 $ 2l þ 1 $ 2l � 1; p� 1 $ p $ p� 2:

Thus, for any l a
�
1; . . . ;

p�3

2

�
, we have

f2lþ2 ¼ f2 ¼ f1 ¼ f3 ¼ f2lþ1 ¼ fp ¼ fp�1:
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It follows that fj ¼ fk for any j; k a f1; . . . ; pg. By putting fj ¼ fk ¼ f , Lemma

4.2 gives

fj ¼ fk ¼ f for any j; k;

1� f þ f 2 is a square: 1� f þ f 2 ¼ a2; a a Fp;

2f � 1� 2a is not a square and f þ a is a square;

f ¼ � 2aþ1
2 :

8>>><
>>>:

We may write A ¼
Q

c A Fp

�
ðxþ cÞ2 � f

�2
. Since A is perfect, we can write

s
�
ðx2 � f Þ2

�
¼

�
ðxþ aÞ2 � f

��
ðxþ bÞ2 � f

�
;

and we obtain by comparing coe‰cients (see (8) with aj ¼ a, fj ¼ f )

b ¼ �a; �2a2 � 1 ¼ 0; ða2 � f Þ2 ¼ 1� f þ f 2:

Therefore,

a2 ¼ �1=2; �3=4þ 2f ¼ 0;

and thus

ð�2Þ ¼ ð1=aÞ2 is a square in Fp; f ¼ 3=8; a ¼ �7=8 since f ¼ � 2aþ 1

2
:

Now, since f ¼ 3=8 ¼ ð�3Þ
�
1=ð�2Þ

�3
, with ð�2Þ a square and f not a square, we

see that ð�3Þ is not a square in Fp. By Lemma 4.11 we obtain

pC 11 or 17 mod 24: r
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