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Abstract. In this paper, we shall define the concepts of completion and complete part with
respect to n-ary (H, G)-hypergroups. Moreover, we present a way to obtain a new n-ary
hypergroup, starting with other n-ary hypergroups. Finally, we introduce the fundamental
relation of an m-ary hypergroup and prove some results. Examples in known classes of
n-ary (H, G)-hypergroups are also investigated.
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1. Introduction and preliminaries

Algebraic hyperstructures are a suitable generalization of classical algebraic struc-
tures. In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two elements is
a set. More exactly, if H is a non-empty set and p*(H) is the set of all non-empty
subsets of H, then we consider the maps of the following type:

fitHx H— o"(H),

where i € {1,2,...,n}. The maps f; are called (binary) hyperoperations. For all
x, y of H, fi(x,y) is called the (binary) hyperproduct of x and y. The algebraic
system (H, fi,...,fy) is called a (binary) hyperstructure, where usually n =1 or
n = 2. Under certain conditions, imposed on the maps f;, we obtain the so-called
semihypergroups, hypergroups, hyperrings or hyperfields. Since 1934, when Marty
[26] introduced for the first time the notion of a hypergroup, the hyperstructure
theory had applications to several domains. Several books have been written on
this topic, for example see [5], [6], [11], [32]. A recent book on hyperstructures [6]
outlines applications in rough set theory, cryptography, codes, automata, proba-
bility, geometry, lattices, binary relations, graphs and hypergraphs.
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Let H be a non-empty set and let p*(H) be the set of all non-empty subsets of
H. A hyperoperation on H is amap o : H x H — p*(H) and the couple (H, o) is
called a hypergroupoid. 1f A and B are non-empty subsets of H, then we write

AoB=|){aoblae A,be B}, xoA={x}od and Aox=Ao{x}.

A hypergroupoid (H, o) is called a semihypergroup if for all x, y, z of H we have
(xo y)oz=xo(yoz), which means that

|J uoz= {J xouw.

uexoy veyoz

We say that a semihypergroup (H,o) is a hypergroup if for all x € H, we have
xoH =Hox=H. If a hypergroup H contains an element ¢ with the property
that, for all x in H, one has x € x¢ (resp. x € &x), we say that ¢ is a right identity
(resp. left identity) of H. If xe = {x} (resp. ex = {x}), for all x in H, then ¢ is
a right scalar identity (resp. left scalar identity). The element ¢ is said to be an
identity (resp. scalar identity) if it is both right and left identity (resp. right and
left scalar identity). If H is a hypergroup with identity ¢, then an element x’ € H
is called inverse of an element x € H if ¢ € xx’ nx'x. A hypergroup H is said to
be of type U on the right if it fulfills the following conditions:

(Uy) H has a right scalar identity ¢;
(U,) forallx,ye H xexy=y=c¢.

In [16], Fasino and Freni exploited the aforementioned properties in order to
complete the classification of hypergroups of type U. The class of n*-complete
hypergroups is introduced by De Salvo and Lo Faro [14]. Several properties
and examples are found and a geometric interpretation is given by means of
hypergraphs. The class of y’-complete hypergroups is studied by Davvaz and
Karimian [10]. In [7], Cristea and Stefanescu found sufficient and necessary con-
ditions for partial hypergroupoids associated with binary relations in order to
be reduced hypergroups. They also determined when the cartesian product of
two hypergroupoids associated with a binary relation is a reduced hypergroup.
A convolution on a hypergroup, especially in the generalization called H,-group
is given by Vougiouklis [34]. In [20], Hoskova and Chvalina presented trans-
formation hyperstructures, namely semihypergroups and hypergroups, acting on
tolerance spaces. One knows the construction of a hypergroup K having as core
a fixed hypergroup H. In [13], the aforesaid construction is generalized to a large
class of hypergroups obtained from a group and from a family of fixed sets, and
its properties are analyzed especially in the finite case. Also see [2], [1], [4], [28],
[30], [33].
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As a generalization of the notion of a group, the notion of an n-ary group
(n-group) was introduced by Dornate in 1928 [15]. In 1940, Post published an ex-
tensive study of n-groups in which the well-known Post’s Coset Theorem appeared
[29]. Hosszu [21] and Gluskin [19] described n-groups for = 3 using one group,
one automorphism of this group and a constant. Notice that if (G, ) is a group
and n > 2, then we obtain an n-ary group (G, f), where f(x1,...,X,;) = X1 ... Xy,
but for every n > 2 there are n-groups which are not of this form. The reader will
find in [31] a deep discussion of n-group theory.

Recently, research about n-ary hyperstructures has been initiated by Davvaz
and Vougiouklis, who introduced these structures in [12]. They were studied by
Anvariyeh, Davvaz, Dudek, Ghadiri, Leoreanu-Fotea Mirvakili, Vougiouklis,
Zhan and others, see [3], [8], [9], [18], [24], [25], [23], [27], [35]. m-ary hypergroups
are a generalization of hypergroups in the sense of Marty. Also, we can consider
n-ary hypergroups as a nice generalization of n-ary groups.

In this paper, the notion of n-ary (H, G)-hypergroups, as a subclass of n-ary
hypergroups and generalization of n-ary (H, G)-groups is defined. In fact, the
n-ary (H,G)-hypergroup is an n-ary hypergroup in the general sense can be
obtained using an n-ary group and a family of fixed sets. In addition, we in-
troduce the completion of an n-ary hypergroup and prove some results in this
respect. Finally, examples in known classes of n-ary (H, G)-hypergroups are also
investigated.

Let H be a non-empty set. A mapping & : H" — o*(H) is called an n-ary
hyperoperation and n is called the arity of hyperoperation.

Let & be an n-ary hyperoperation on H and Ay, ..., 4, be non-empty subsets
of H. We define

h(Ay, ..., Ay) = \J{h(x1,. ... x0) | xi € Ajyi = 1,...,n}.

We shall use the following abbreviated notation: the sequence x;, Xit1, ..., x; will
be denoted by x/. Also, for every a € H, we write h(a,...,a) = h(gz)) and for
——

. . n
J < i, x! is the empty set. In this convention for j < i, x/ is the empty set and also

R(X1, oy Xy Vigls oo s Vis Xjg 1y - -+ 5 Xn)

is written as A(x{, y/ |, x% ).

A non-empty set H with an n-ary hyperoperation i : H" — p*(H) is called
an n-ary hypergroupoid and is denoted by (H, ).

An n-ary hypergroupoid (H,h) is an n-ary semihypergroup if and only if the
following associative axiom holds:

i i - i—1 i—1 -
(™ Ry, )y = (xR, ),

forevery i, j € {1,2,...,n} and x1,x2,...,x2,1 € H.
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An n-ary semihypergroup (H, /), in which the equation b € h(ai~!, x;, al' ;) has
a solution x; € H for every ay,...,a;_1,diy1,...,d,,b € H and 1 <i < n, is called
an n-ary hypergroup. An n-ary hypergroup (H,h) is called an n-ary group if for
every aj, h(a}) is singleton.

Example 1. Let H be a set and |H| > 3. Suppose that u,v € H and u # v. Define
an n-ary hyperoperation f as follows:

H—{u}, if () = @0,
(n=1)

H, if x{ e H and (x]) # (u, v ).

J(xp) =

Then f(xi!, f(x2t1),x2.1) = H for every i,je{l,...,n} and x}""' € H.

)i
Hence, f is associative and (H, f) is a non-commutative n-ary hypergroup.

Example 2 ([9]). Let Z4 be the additive group of order 4 and let H = Z4 U {0}
and x{ € Z4. Define the commutative n-ary hyperoperation f as follows:

if (x1 +x24+---+x,+2) =0 (mod4), then f(x}) = {0,0},

if (x; +x24+ -+ x, +2) #0 (mod4), then
(i) (i)
S(x7) = (x1+x2 4+ +x,+2) (mod4) and f(0,x/,,) = f(0,x],).
Then (H, f) is a commutative n-ary hypergroup.

Example 3. Let (G,o) be an abelian group. We define a ternary (3-ary) hyper-
operation on G in the following way:

f(x,y,z2)=x0yloz, forallx,yzeG.

Then (G, f') is a ternary (3-ary) group.

Example 4. Let G = (Zj6,-) and H =27;5. Now we define a ternary(3-ary)
hyperoperation on H in the following way:

f(x,y,z)=x-y-z+4, forallx,yzeH.
/ is associative since for every x; € R we have
S x3) = f (s f(3), x5) = [ (31 /(x3)) = 4

It is not difficult to see that (H, /') is a ternary group.

i—1 n—i
An element ¢ € H is called a neutral element if x = h(( e >,x,( e >), for every

I <i<nandforevery x € H.
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Example 5. Let (H, <,+) be a totally ordered group and x} € H. Set k €

{i|x; = max{xj,...,x,}} and ¢ = card{i|x; = max{x;,...,x,}}. Now suppose
that
te H|t<xi}, ife>1,
S(x1,.0,x) = { | e} )
X ife=1.

It follows that (H, f) is an n-ary hypergroup. If e = min{x|x € H}, then e is a
neutral element of H.

- o
An element e € H called a weak neutral element if x € h((le ), X, (1el>), for every
1 <i<nand forevery x € H.

Example 6. Let (H, /) be the n-ary hypergroup in Example 2. For n = 3 it has
two weak neutral elements 1 and 3, for n = 4 it has only one weak neutral element
2, for n = 5 it has no weak neutral elements. Also, it has not a weak neutral ele-
ment for every n.

Let (4, f) and (B, g) be two n-ary hypergroups. A homomorphism from 4 to
B is a mapping ¢ : A — B such that ¢(f(a})) = f(¢(a1),...,¢(a,)) holds for all
aj € A.

According to [17], an n-ary polygroup is an n-ary hypergroup (P, f) such that
the following axioms hold for all I <i,j <nand x,x] € P:
(n—i)
0),

2. There exists an unitary operation — on P such that x € f(x]) implies x; €
f(_xifh ceey TXL X, T Xy e _xiJrl)'

(i-1)
1. There exists a unique element 0 € P such that x = f( 0 ,x,

It clear that every 2-ary polygroup is a polygroup. Also, every n-ary group with a
scaler neutral element is an n-ary polygroup.

Also, Leoreanu in [22] defined a canonical n-ary hypergroup. A canonical
n-ary hypergroup is a commutative n-ary polygroup.

Let (H,f) be a commutative n-ary hypergroup and a,b] € H, set a/b] =
{x]ae f(x,b])}. H issaid to an n-join space [25] if for any a, c, b}, d|' of H the
following implication holds:

afby veldy #0 = fla,d) ~ f(e.b]) #9.

2. n-ary (H, G)-hypergroups

Definition 2.1. Let (H, f) be an n-ary hypergroup and (G, /) be an n-ary group
with a neutral element e. Also, let {4,} geg be a family of non-empty subsets
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indexed in G such that for all x, y € G, x # y, AcnAdy = 0, and 4, = H. We set
K= Uge ¢ Ay and we define the hyperoperation f in K in the following way:

f(x) = f(x) forall (x}) e H",
f(xm = Apgry forall (x7) € Ay x -+ x Ay, # H".

Theorem 2.2. The structure (K, f) is an n-ary hypergroup.

Proof. Since (H,f) and (G,h) are associative, so (K, f) has the associative

property.

If ye K and x{‘l,xi’jrl € H, since (H,f) is an n-ary hypergroup, then the
equation y € f(xi~!, x,x/ ) has the solution x = b € H.

Now let y e f(xi™!,x,x",) and x; ¢ H for 1 < j<n. Hence, there exists
gj € 4j, such that x; € 4,. Since (G,h) is an n-ary group, the equation
zeh(gi~!,1,g",) has the solution /=ce G and so ye f(xI! x,x! ) =A4. =

Ah(gl"lyc,g,ll)' 0

Definition 2.3. The n-ary hypergroup (K, f) in Theorem 2.2, is called an n-ary
(H, G)-hypergroup with support K = UgeG Ay.

Example 7_. Let G= {0, 1,2} with a ternary operation /1(xy, x2, x3) = x| + X3 + X3
and H = {0, 1} with a commutative ternary hyperoperation f defined as follows:

f((_)v(_)7(_)):(_)7 f(ia(_)v(_)):faalu ):f(LLi):H'

It is easy to see that (G, /) is a ternary group and (H, f) is a ternary hypergroup.
Let Ag = H, Ay = {a,b} and 4, = {c}. Now, f is a commutative ternary hyper-
operation defined as follows:

£(0,0,0) =0, £(1,0,0) = f(1,1,0) = f(1,1,1) = H,

£(0,0,a) = £(0,0,b) = £(0,1,a) = £(0,1,b) = f(1,1,a) = f(1,1,b) = 4,
f(0,0,¢) = 7(0,1,¢) = f(I,1,¢) = 4,

f(0,a,a) = £(0,a,b) = f(0,b,b) = f(1,a,a) = f(1,a,b) = f(1,b,b) = A,
f(0,a,¢) = f(0,b,c) = f(1,a,¢) = f(1,b,c) = H,

f(,¢,¢)=f(0,¢,c) = Ay, and f(c,c,c)=H,

f(xl,xz,x3):H, f(xl,xz,c):Al, f(xl,c,c):Ag for all x1,xp,x3 € Ay,

and (K = {0,1,a,b,c}, f) is a ternary hypergroup.
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In the paper, we consider card G > 1, because in the opposite case the n-ary
hypergroup K is identified with H.

Lemma 2.4. The n-ary hypergroup (K, f) is weak commutative if and only if the
n-ary hypergroup (H, f) is weak commutative and the n-ary group (G,h) is com-
mutative.

Proof. This is obvious. O

Lemma 2.5. The n-ary hypergroup (K, f) is commutative if and only if the n-ary
hypergroup (H, f) and the n-ary group (G,h) are commutative.

Proof. For all x,y € G, if x # y, Acn A, =0, then by Lemma 2.4 the proof is
obvious. |

Lemma 2.6.

(1) If an n-ary hypergroup (H,f) has a weak neutral element, then the n-ary
(H, G)-hypergroup (K, f) has a weak neutral element.

(2) If n =2, then the converse of (1) is true, too.

Proof. (1) Let e € H be a weak neutral element of (H,f) and xe K. If
x € A, = H, then we obtain

(n—i) (n—i)

i—1 _ (-1
we (" = 78 ),
If x € A; and g # e, then
= (i=1)  (n=i)
xed, = Ah(("z”,g_("g“) =f(e,x, &)

Therefore, ¢ € K is a weak neutral element of (K, f).

(2) Let ¢ € K be a weak neutral element of (K, f). If e € H = A,, then ¢ is a
weak neutral element of (H, ). Now let there exists g € G — {e} such thate € 4,,.
So, for every x e H, x € f(x, &) = Ape,q) = Ay, which contradicts x € H = A,.

U

Example 8. The part (2) of Lemma 2.6 is not true for n > 2. Let H be a set such
that |[H| > 3 and e,a € H. For every x, y € H, we define a hyperoperation + as
follows:

N e if (x,y)=(e,e)orx+#e#y,
X =
4 H—{e} if (x,y) # (e,e)and x=cor y =e.

Set f(x,y,z) =a+x+ y+z Then (H,f) has not any weak neutral element.
In fact, for every x € H, f(e,x,x) = H —{e}. If (G = Zy,h) with h(x, y,z) =
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X+ y+zisa 3-ary group, 4g = H and A4, = {1}, then | is a weak neutral element
of K, since for every x € H, f(1,1,x) = Ap1,1,0) = Ao and so, x € f(1,1,x) and
SL1,1) = Ay = A = {1}

Lemma 2.7. The n-ary hypergroup (K, f) has a neutral element if and only if for
every s € G — {e}, A is singleton and the n-ary hypergroup (H, f) has a neutral
element.

Proof. Let e € K be a neutral element. Then we show that |H| =1oree 4, = H.
Also, we have ¢ € 4, and g # e. Then, for every s € G and x € 4, we have

i =7"" =4 .,

h("g ,s)-

Now we have x € 4; which implies that
As=4 w"5"0) = {x}

and so for every s € G, A; is singleton. In particular, 4, = H is singleton and
x € H is a neutral element of (H, f). Hence, if |H| > 1, then e € H and ¢ is a
neutral element of (H, f). If ¢ € H, then for every s € G — {e} and x € 4, we get

(n—1)
{(x}=r(C¢"x)= Ah wn = As
(e
Hence, A; is singleton for every s # e.
Conversely, let ¢ € H be a neutral element and A4, be singleton for every g # e
in G. For every x € K — H there exists g # e such that 4, = {x}, so we have

= (i=1)  (n—i)
fle ,x, ¢)= Ah iy wa, = Ag={x}.
(eg, e’)

Therefore, ¢ is a neutral element of (K, f). O

Corollary 2.8. If |H| > 1, then every neutral element of an n-ary (H,G)-
hypergroup is a neutral element of H.

Remark 1. An n-ary (H, G)-hypergroup is called an n-ary (1, G)-hypergroup if H
is singleton.

Remark 2. Let H = {0} and (G,h) = (Z,,h) such that for every x,y,z € Zs,
h(x,y,z) =x+ y+z(mod2). Let 4p = {0} and A4; = {1}. It is not difficult to
see that (K, f) = (G,h). Now, (K, f) has two neutral elements and 1 ¢ H. This
example shows that every neutral element of an n-ary (1, G)-hypergroup is not
belong to H.



Construction of n-ary (H, G)-hypergroups 267

Theorem 2.9. Let (G,h) have a unique neutral element. Then (K, f) is an n-ary
polygroup if and only if for every s € G — {e}, Ay is singleton and (H, f) is an
n-ary polygroup and (G, h) is an n-ary group with polygroup properties.

Proof. (=) Let (K, f) be an n-ary polygroup and ¢ € K be a neutral element. If
|H| > 1, then by Lemma 2.7 and Corollary 2.8, e € H and A, is singleton for
every g € G — {e}. So (H, f) is an n-ary subpolygroup of (K, f). Since f|, = f,
hence (H, f) is an n-ary polygroup. Now let g,gi € G, g = h(g}) and x € 4,
where x; € Ay,. Thenx € Ay = Ay = f(x7). Since (K, f) is an n-ary polygroup,
we have

-1 1
xtef( Xi 17"'7x1 3 Xy Xy ey 1+1) Ah(, DR Y P it O
But, x; € Ay, and so

A/ -1

— -1
(g, 07 0,0, 05Y)

and g; = h(g;7Y,...,97". 9.9,",....95}). Therefore, (G,h) is an n-ary group with
polygroup properties. If |[H| =1, then (K, f) = (G,h) and the implication is
immediate.

(<) Let x,x" € K and x € f(x]). If x,x!' € H, then x € f(x]) = f(x!") and
so

~1 -1 -1 y . -1 1 1
x;i € f(x;_ 1,...,)(1 VXX, s X)) = (XXX, X ).

Let xe A, and x; € 4;,. Then x ef(xl) Ay n) and xeAg implies that
Ay = Apgry and g = h(gy). Hence, g; € hig .. .vart 9,9, ,...,gi;l]) and thus

_ 71 -1 -1 1
Xi EAQI _Ah( g 979000 e ) _f(x[—l""vxl R 1+1)

Moreover, Lemma 2.7, implies that the neutral element of H is a neutral element
of K and (K, f) is an n-ary polygroup. O

Corollary 2.10. Let (G,h) have a unique neutral element. Then (K, f) is a canon-
ical n-ary hypergroup if and only if for every s € G — {e}, Ay is singleton and (H, f)
is a canonical n-ary hypergroup and (G, h) is a canonical n-ary group.

Proof. By Theorem 2.9 and Lemma 2.5, the implication is immediate. O

Example 9. Let H = {¢,a} with a commutative 3-ary hyperoperation f as
follows:

f(87878):87 f(8787a):a7 f(EJaﬂa):f(a7a7a):H'
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Let (G, h) = (Z2,h) such that for every x, y,z € Z5, h(x, y,z) = x+ y +z (mod 2)
and set Ag = H and 4; = {1}. Then (K, f) is a 3-ary polygroup, but (G, /) is not.
Indeed, (G, h) has two neutral elements and it is not a 3-ary polygroup.

Theorem 2.11. The n-ary (H, G)-hypergroup (K, f) is a join n-space if and only if
H and G are join n-spaces.

Proof. (=) Let x,x}"!, y,pi~' € H and (x/x7~1),; n (p/yi~ 1)y #0. By defini-
tion of f, we have (x/x~1) n (y/y1~")x # 0 which implies that f(x, y7~") N
FOrxt ) # 0and so £(x, 0 ) o £l 1) #0.

(<) Let x,x/ !y, yi Ve K and (x/x!" D (y/yi g #0. Ifx,x 1 e H,
yed; and y; € A, where i =1,...,n— 1, then x/x"! = 4, and so y/y!"'n
A, # 0. So there exists u € 4, such that x € f(u,x"!) and y € f(u,py~"'). Then
Ar= Ay, 1) If yi-l e H_, then y € H and implication is immediate._ Suppose
that (y{~') ¢ H""'. Then f(x,y{"") = Ay ). If y € H = A, then [(y,x]) =
A, = Ajand if y € 4), 1 #0, then f(p,x]) = Ah(l = Aj. Since [ = h(e,II7"),
we have f(y,x7)n f(x,y") #0. One comes to the same conclusion when
y, 17" e H and x € 4, and x; € A,,. In the same way the remaining cases are
discussed. O

(n—1)
e

Given the n-ary semihypergroups (H, /) and (K,g). We say that (K,g) is an
enlargement of (H, f) if

(1) H<EK;
(2) f(x7) = g(xt) for all x! € H".

Example 10. Let (K,g) be an n-ary hypergroup and (H,g) be a sub n-ary
hypergroup. Then (K, g) is an enlargement (H,g). In particular, every n-ary
(H, G)-hypergroup (K, f) is an enlargement of (H, f).

Suppose that # = (H, f,e,”!), and 4 = (G,g,e,”") are n-ary polygroups,
whose elements have been renamed so that H n G = {e}, where e is the neutral
element of both # and 4. A new system #[9] = (M, k,e,”"), called the
extension of # by % (or extension of n-ary polygroups of # and %), is formed
in the following way. Set M = HU G and let e™! = ¢ and for all x e M, we

i—1 -1
set k(( e >,x, <ne )) = x. Infact, e is a neutral element of k. Now, for all x| € M,
set

e, 1if x;e A,
Yi= .
x;, 1f x; € B,
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and define

S (x7), x{ e H,
k(x?) =< g(»), if {x{} ¢ H ande¢g(y]),
g(yt) W H, if {x{} & H and e € g(y7).

Theorem 2.12. #[%] = (M, k,e,”!) is an n-ary polygroup.

Proof. The properties of .7 and # as n-ary polygroups, with tedious and rarely
long computations guarantee that the extension .o/[%] = (M,h,0,—) has the
n-ary polygroup properties. O

The above theorem is an extension of Comer’s theorem in [4].

Theorem 2.13. Let # = (H, f,e,”") be an n-ary polygroup and 4 = (G, g,e,”")
be an n-ary group with polygroup properties whose elements have been renamed
so that H G = {e}, where e is the neutral element of both # and 4. Set
Ay = {g} for every ge G—{e}. Then H|9] = (M, k) is an enlargement n-ary
(H, G)-hypergroup (K, f).

Proof. We have K = quGAg =HuG= M. Also, suppose that x{' € K. Then,
for x{ € H, we have f(xf)_: f(x!") = k(x!"). By definition of f and k we have

k(xy) = f(x]) or k(x{) = f(x]) u H. Therefore, for every x| € M = K we have

S () € k(x7). O

Example 11. Suppose that 4 = {0,a} and B={0,1,2}. Let o7 = (4, f,0,-)
and 4 = (B,¢,0,—) be two commutative 3-ary polygroups such that for all
xe AuB, —x=x, f(0,a,a) = f(a,a,a) = {0,a} and g be a 3-ary hyperopera-
tion as follows:
9(0,1,2) =¢(1,1,1) = ¢(2,2,2) = {1,2},  ¢(0,1,1) = {0,2},
9(1,1,2) =¢(0,2,2) ={0,1} and  ¢(1,2,2) ={0,1,2}.
Then we have M = A u B ={0,a,1,2} and a 3-ary polygroup .o/ (%] = (M, h,0, —)
such that h(xj) = f(x}) for every x; € 4 and
h(0,1,1) = h(a,1,1) ={0,a,2},  h(1,1,2) =h(0,2,2) = h(a,2,2) ={0,a,1},
h(1,2,2) ={0,a,1,2},  h(0,1,2) = h(a,1,2) = h(1,1,1) = h(2,2,2) = {1,2},
h(0,a,x) =x, Yx e B, h(a,a,x) ={0,a}, Vx € B.

Also, B[] = (M, k,0,—) is a 3-ary polygroup with the 3-ary hyperoperation k
as follows:
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k(x}) =g(xi) forall xj € B,
k(x,y,a)=a forall x,ye B,
k(x,a,a) ={0,a,1,2} forall xe M.

Definition 2.14. If (H, f) is an n-ary hypergroup, then the relation y is defined

y=U

k>1

where y, is the diagonal relation, and for every integer k > 1, y, is the relation
defined as follows:
If m = k(n — 1) + 1, then there exist a{" € H and ¢ € S, such that

xXpy <= x € fulal") and y € fip(ag)).

In fact, if e = f(a]") and uf = fi (agg';)), then

xew, and yewu! if and onlyif xy,y.

Remark 3. The relation y, in Definition 2.14 is called f, relation if ¢ = Id
(identity map). In the other words, xf, y if and only if there exist a{" € H and an
integer k > 1, such that x, y € fy(aj").

Theorem 2.15. If (K,f) is an n-ary (H,G)-hypergroup, with support K =
Uygeg Ay then K/Bx = G

Proof. Define ¢ : K/f — G by fg(a,) — g, where a, € A,. It is clear that ¢ is

an n-ary group epimorphism. Now let ¢(Bx(ay)) = ¢(ﬂK(ag )). Then g =g’
and so fix(ay) = Pg(a,). Therefore, ¢ is an isomorphism. ]

Theorem 2.16. If (K,f) is an n-ary (H,G)-hypergroup, with support
K =, e Ay then K [yx = G/yg.

Proof. Define ¢ : K/yx — G/yg by yg(ay) — yg(g), where a, € A;. Then ¢ is a
group epimorphism. Since ker ¢ = {yx(ao)}, hence ¢ is one to one and therefore
¢ 1s an isomorphism. O

For 1 <i <n, we denote S;, the set of i-scalars of the n-ary (H, G)-hypergroup
with respect to the n-ary hyperoperation f as follows:

S,-:{xeK|card(f(xf*1,x X! ))zlforalle "leK}

Vil ’ IJr
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Theorem 2.17. Let (K, f) be an n-ary (H, G)-hypergroup. Then:

(1) If there existsi € {1,...,n} such that S; ~ (K — H) # 0, then (K, f) is an n-ary
group.

(2) If there exists i€ {l,...,n} such that S; #0 and S;in (K — H) =10, then
card A, = 1 for every g € G — {e}.

Proof. (1) Let ue S;n (K — H). So there exists g; € G such that u e 4, # H.
Let a € G, so there exist gi~!,g" | € G such that a = h(g{™", gi, g7".,). If u € A,
k # i, then
.f_(u{{717 u, M;:+1) = Ah(gf’l,gi,g;jrl) = Aﬂ'

But u € S; and therefore A4, is singleton.

(2) By hypothesis, we have S; = H. Moreover, if u e S;, then for all
ae G- {0}, there e)iist 917", g, € G such that a:h(g.f‘l.,g,-,glﬂ]) and so if
up € Ag,, k # i, then f(uf =" u,ull, ) = Apgit g7 ) = Aq is singleton. Therefore,

i+1

for every g # 0 we have card 4, = 1. O

Let (H,o) be a hypergroup. Define f(x]) = xjo0---0x, for every x| € H.
Hence, der,(H) = (H, f) is an n-ary hypergroup. Now we have the following
theorem:

Theorem 2.18. Let (H, o) be a hypergroup, (G,-) be a group and (K,<) be the
(H, G)-hypergroup. Then the n-ary (der,(H),der,(G))-hypergroup (K, f) coin-
cides with the n-ary hypergroup der,(K) = (K, h), such that h(x}) = x; ¢ --- o X,
for every xi € K.

Proof. By definition we have

xoy7 x7y€H7
rory= Ai<j7 (X,y) GAZ' XA/' #Hz,

[, forall (xf) e B,
TOD = gy, forall () € g, 5o x Ay, # H”.

It is not difficult to see that (x}) = f(x}) for every x{ € K. O

Let A be a subset of an m-ary hypergroupoid (H,f). Then, for every
m=1I[(n—1)+ 1 where / € N, the m-ary hyperoperation given by

L In=1)+1 o VT l(n—=1)+1
f(l)(xl( " ) = f(f(- = ’f(f(xl)vxzﬂl)v-~-)’x</(—1)()n+—1)+2)»
is denoted by f().
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A is called a complete part if the following implication is valid:

f</>(x1("71)+1)m/17é@ - ]p(l)(x{(nfl)Jrl)gA.

Let A be a non-empty subset of H. The intersection of the subsets of H which are
complete parts and contain A is called the closure of A in H and it is denoted by
C(4) (or Cpy(4)).

Lemma 2.19. The relation xKy < x € C({y}) is an equivalence relation.
Proof. This is straightforward. O

Let (G, g) be an n-ary group, ¢ be a neutral element of G and ¢ be a homomor-
phism of n-ary hypergroup (H,f) in (G,g). Set kerp ={x e H|k(x) =¢}. If
¢y : H— H/K is the canonical projection, then we denote the ker ¢, by wy.

Definition 2.20. Let (H,f) be an n-ary hypergroup. We define for every
at e H", k(ay,...,a,) = Cy(f(ar,...,a,)). Then (H, k) is an n-ary hypergroup
which is called the completion of (H, f) and denoted by A(H).

3. Enlargement of an n-ary hypergroup
Definition 3.1. Let (H, /) be an n-ary hypergroupoid and {A(x)}, ., be a family

of non-empty sets such that for every (x, y) € H?, x # y implies A(x) N A(y) = 0.
Set Ky = | ), A(x) and define

gla)=x < ae A(x) forallae Ky.
Now we define the following n-ary hyperoperation in Ky

h(a) = U (A(z)) forallaj € Ky.

Remark 4. For every x € H, if x € A(x), then (Kp,h) is an enlargement of

(H, ).

Theorem 3.2. (1) (H,f) is an n-ary semihypergroup if and only if (Ky,h) is an
n-ary semihypergroup.
(2) (H, f) is an n-ary hypergroup if and only if (Ky,h) is an n-ary hypergroup.
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Proof. (1) Let (H, f) be an n-ary semihypergroup. Then, for every a?"~! € Ky
such that g(a;) = x;, we have

' h(a ™)) = U (4(2).

Therefore, (K, h) is an n-ary semihypergroup.

Conversely, let (Ky,h) be an m-ary  semihypergroup  and
ue f(x! f( pHeh) x21). Then there exists ve f(x'7!') such that
ue f( 2n l) SO

’ i’l+l

Av)ye | (A(w)) and  A(u) = U (A(2)).
we f(xT) zef(x{vxh)

Now let a; € A(x;), b € A(v) and ¢ € A(u). Then

ha =1 (4(w))

and

h(al™' b,a27") = U (A(2)).

Therefore, ¢ € h(aj™", h(a]""), a7 1) =h(a]" h(a"77"),a2 1), Hence, there

’ n+t 7 Y n+j
exists d € h(a!™/~ 1) such that ¢ € h(a] ™', d, ay;'). But
gV = U (4(),
tef( n+/ 1)

so there exists r € f(x; 7+7-1) such that d € A(r). Then

hal i) = U (40),
sef(x1 r‘c;?j’r/l)

from which ¢ € f(x] =y, x,ff’wl) exists such that ¢ € A(q). But c € A(u) " A(q)
implies that u = ¢. For this reason u e f(x]"', f(x/"/7"), x2=0).

g s Xt s Analogously
one proves

FAC G B i A C RV C i e ]

(2) We first prove that the implication =-. Let a; € A(xy), where k = 1,.

Let 1 <i<n. Hence, there exists x € H such that x; e f(xi! x, xm) If
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a € A(x), then

therefore a; € h(aj ™', a, A}")).
Conversely, let x{ € H and a; € A(x;). Then, for every 1 <i<n, a e Ky,
exists such that a; € h(aj™',a, A,). Suppose that a € A(x). Then
h(aj,a,4,)) = (A(w)).
we f(xf!x,x )
From a; € h(al™",a, A?.,) it follows that y € f(x{~!, x,x/" ) exists such that ¢; €
A(y). Therefore, a; € A(x;) nA(y) implies that x; = y and x; € f(x]"', x,x7 ).

OJ

We set K(P) := ()
and if a € Ky, then

h(a?) = K(f(g(al)7"'ag(an))) = g_l(f(g(al)v"'ag(an))) = g_lg(h(a?))

since /' (g(ay),...,g(an)) = g(h(a})). Hence g is an epimorphism.

Let (H, f) be an n-ary hypergroup, we say that H is regular if it has at least
one neutral element. The element @’ is inverse of a if f(a,d’, "e Y=e. If (H,f)
is regular, we denoted by Eyy = E(H) the set of the identities, and for every a € H,
by i(a) the set of the inverses of a.

opA(x), where 0 # P = H. Tt is clear that K(P) = g~ (P)

Theorem 3.3. Let (H, ) be an n-ary hypergroup. Then
(1) E(Kn) = K(Ep);
(2) i(a) = K(i(g(a))) = g ' (i(g(a))) for every a € Ky.
Proof. (1) It is obvious.

(2) Indeed, for af € Ky, one has

ceh(al) < ce gilg(h(a{’)) = g(c) e g(h(a})) = h(g(ar),...,g(ar)). O

Theorem 3.4. Let (H, f) be an n-ary hypergroup. If P is a complete part of H,
then K(P) is a complete part of (Ky, h).

Proof. Let x{ € Ky, where 1t =1(n—1)+1 and u € hy)(x{) " K(P) # 0. Then
there exist z{ € H such that x; € A(z;). Hence,

ue U A(Z,‘),

ziefin(z))
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s0 z, € fi(z]) exists such that u € A(z,). Since u € K(P), there exists zx € P such
that u € A(zy), for this reason z, = z; € fj(z{) n P. This follows for the complete-
ness of P, f;(z]) = P.

Now suppose that

NS h<1)(x]’) = U Ay.

Then there exists w € fi)(z{) such that v e A(w). Since f(;(z{) < P, we have
A(w) < K(P). Therefore, v e K(P). O

Theorem 3.5. Let P be a non-empty subset of an n-ary semihypergroup H. Then P
is a sub n-ary hypergroup of H if and only if K(P) is a sub n-ary hypergroup of K.

Proof. Let (P, f) be a sub n-ary hypergroup of H. It is immediate that K(P)
is a sub n-ary semihypergroup. Let b e h(affl,x,-,a;’ﬂ) and there exist
e, it cl;,yeP such that be A(c), aje A(c) (j=1,...,i—1,i+1,...,n)
and x; € A(y;). The hypothesis implies the equation ¢ € f(ci™!, y;, ¢ |) has a
solution z € H. 1If ¢ € A(z), we have

el gl = ) AW,

Therefore, A(c) < h(aj™', g, al'.,) and for this reason b € A(c) < h(ai ™', q,al'.,).

Conversely, let K(P) be a sub n-ary hypergroup of Ky. If x,x] € P, then
A(x) = K(P) (1<i<n). Letue f(xI",x,xI",), am € A(xp) (i=1,...,i—1,
i+1,...,n)and a € A(x). Then

h(ai ' a,al,)) = U A(r) < K(P).

s Yl
ref(x™'xx0)

Since A(u) = K(P), there exists p € P such that A(u) = A(p). Therefore, u = p
and P is a sub n—ary hypergroup of H.

Let be f(xi!,x,x!";). Since A(x),A(x;) = K(P), for every a; € A(x;),
yeA(x) and ae A(b), there exists ze K(P) such that the equation
a€h(al™, y,al,) has a solution z e K(P). Hence, ¢ € P exists such that

z € A(c). For this reason

hai ' zaly) = U Al)

sef(x[he X))

and so there exists 1 € f(x{"',¢,x/",) and a € A(r). This implies that b=t €

f(x{_lvqx;l-‘rl)' D
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Theorem 3.6. Let (x,y) € H* and (u,v) € A(x) x A(y). If uBg,v, then XByy.

Proof. Letufg v. Thenaf € Ky, with t = /(n — 1) + 1 exist such that a; € 4(xy).
Then, we have

{fuv} = | A().

w ef(I)(xl’)

So {wi, w2} < f(;(x]) exists such that u € A(wy), v € A(w2). Clearly, wif,w, and
so w; = x, wy = y. Therefore, xfy . O

Theorem 3.7. Let (x,y) e H? and (u,v) € A(x) x A(y). If uPg, v, then
A(x)p, A(y)-

Proof. The hypothesis implies that m € N and a] € H exists such that {x, y} =
Ji(x]). Forevery (by,...,b;) € A(ay) X --- x A(ay,), we have

hb)) = ) Av).

ve fi(a))

So, A(x) U A(y) < hg)(b{) and thus A(x)[)’:KnA( »). The inverse implication fol-
lows from Theorem 2.15. ]

Theorem 3.8. For every a € A(x), we have Ck,, (a) = U%CH(X) A(w).

Proof. Let u € Ck,(a). Then ufiya. Now let ue€ A(y), since u € A(x) and
a € A(x) by Theorem 3.7, y € Cy(x) and

Ay s U 4w,

we Ch(x)
SO

CKH (a) < U A(W)'

we Cy(x)
Conversely, suppose that

ue [J Aw).

we Cp(x)

Then v e Cy(x) exists such that u € 4(v). By Theorem 3.7, this follows that
A()p* 1 A(x). Thus, uf;a. 0
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Theorem 3.9. We have A(Ky) = Kam).-

Proof. Let k and h be two n-ary hyperoperations in A(Ky) and Ky, respec-
tively. Then, for every af € Ky with a; € A(x;), we have

K(af) = Cr, (hlaf)) = Cr, (¢ y ”>A<w>)

and

Let u € k(aj). Then there exists

ve |J Aw)
we f(x])

such that u € Ck,(v), and there exists z € f(x]) such that v € A(z). By Theorem
3.8, we obtain

CKH(U) = U A(W).

we Cy(z)

So there exists w € Cp(z) such that u e A(w), since Cp(z) = Cp(f(x})), hence
u € h(aj).

Conversely, let u € h(af). Then there exists we Cy(f(x})) such that
u € A(w). So there exists z € f(x]') with w € Cy(z). Now let v € A(z). By Theo-
rem 3.7, A(w) = Ckg,(v) and therefore u € Ck,, (v). On the other hand,

Ci, (1) € Ck, (A(2)) < CKH( &%A(z)) — k(al).

Thus, u € k(af). O

Theorem 3.10. Let (H, f) be an n-ary hypergroup. Then:

(1) ok, = Oak,) = Ok

(2) ok, = K(on).

Proof. (1) This follows from Definition 2.20 and Theorem 3.9.
(2) Let x € wyy and @ € A(x). Then

K(COH) = K(CH(X)) = EJ( )A(l).
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By Theorem 3.8, we have

Ck,(a) = CU( )A(l) = K(wpg).

By Theorems 3.4 and 3.5, we have K(wy) is a complete part sub n-ary hyper-
group of Ky and so wg, < K(wpy). Therefore, wg, = Ck, (a) which implies that
K(w]_]) = C](H(a) = WKy - D

Definition 3.11. Let (G, f) be an n-ary hypergroup. We say K is a closed sub
n-ary hypergroup if for every y, x{‘l,xﬁLl eK and ye f(x"1,x, x7. ;) follows
x e K.

If (G, f) is an n-ary hypergroup and 4 = G, we set

Ay=U fula),

ared

where m = I(n — 1) 4+ 1 and fg)(a1) = {a1}. Let A be a subset of an n-ary hyper-
group (G, f). Then 4 is said to be free or independent if either 4 = () or for every
x€ A, x¢ {4 —{x})>. A non-free subset is also called dependent. A subset 4 of
G generates H if (4) = H. In such a case, A is called a set of generators of H. A
free set of generator is called a base. We shall denote Vi the set (0.

An n-ary hypergroup (G, f) is called cambist if for every x,y e G and
A € p(G), the following implication is satisfied x e (Au{y}), x¢<4) =
yeldu{x}).

Theorem 3.12. Let (G, f) be an n-ary group, H be an n-ary hypergroup without
closed proper sub n-ary hypergroups and K be the n-ary (H, G)-hypergroup. Then:

(1) Vk =H,

(2) for every A € p(K), a subset B of G exists such that (A) = K({B)). Moreover,
if (A #K, then for all z e K — {A), there exists j€ G — {(B) such that

LAy uiz}) = KKBu{jP)
(3) K is a cambist n-ary hypergroup if and only if G is a cambist n-ary group.

Proof. (1) Since H has not closed proper sub n-ary hypergroup, by Theorem 2.15,
H is closed in K and we have Vg = H.

(2) By Theorems 2.15 and 3.5, a sub n-ary hypergroup G’ of G exists such
that (4> = K(G’). Let {(4)+# K and ze K—<{A4). Let B the subset of
G={ieG|A;nA4+#0}. Now we show that if i € B, then 4; " {(A) # 0. But
{A) = K(G') is a complete part by Theorem 3.4, and 4; = f(xi~!, y,x" ) for
any x{‘l,xi”+1 € H and y € A;. Then 4; < {A) from which i € G’ and hence
B = G'. Therefore, (B) = G’, whence K({B)) = K(G') and consequently, since
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K({B)) is closed, so {A) = K({B)). Since z ¢ {A), it follows that j € G exists
such that z € 4; and i ¢ {B) (if j € (B), thus z € K({(B)) = {4)). On the other
hand, it is clear that {4 n {z}) = K({BuU {j}>) and (2) is proved.

(3) Let G be cambist and x,y € K such that x e (A u{y}), x¢<{4)>. By
(2), subset B of G exists such that <4) = K({B)). Since x ¢ {(A4), we have
yéAy. Let ye A;,s0 j¢<Byand (Au{y}>=K(KBu{j}>). Ttisclear that
s e (Bu{j}) exists such that x € 4;, where s ¢ (B) (since x ¢ (A)). Since G
is cambist, j € (Bu {s}). Finally, y € 4; = K({(Bu{s})) = {4 U {x}) and con-
sequently K is cambist. O
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