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Abstract. In this paper it is shown that the normal parts of quasisimilar wAðs; tÞ operators
with sþ t ¼ 1 are unitarily equivalent. Also, we establish the orthogonality of the range
and the kernel of a nonnormal derivation with respect to the unitarily invariant norms
associated with norm ideals of operators. Moreover, we obtain that the range of the gen-
eralized derivation induced by an pair satisfies Fuglede–Putnam property is orthogonal to
its kernel.
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1. Introduction

Let H be an infinite dimensional complex Hilbert and LðHÞ denote the algebra

of all bounded linear operators acting on H. Every operator T can be decom-

posed into T ¼ U jT j with a partial isometry U , where jT j is the square root of

T �T . If U is determined uniquely by the kernel condition kerðUÞ ¼ kerðjT jÞ,
then this decomposition is called the polar decomposition, which is one of the

most important results in operator theory ([15], [19], [24] and [27]). In this

paper, T ¼ U jT j denotes the polar decomposition satisfying the kernel condition

kerðUÞ ¼ kerðjT jÞ.
Given two operators T ;S a LðHÞ, define dT ;S : LðHÞ ! LðHÞ by dT ;SðXÞ

¼ TX � XS for all X a LðHÞ. The classical Fuglede–Putnam Theorem says if T

and S � are normal operators, then kerðdT ;SÞ ¼ kerðdT �;S � Þ.
A number of generalizations of the Putnam–Fuglede Theorem can be found

in the extant literature, amongst them generalizations where the normal operators

T and S are replaced by larger classes than the normal operators. The particular

classes which have received a lot of attention are those consisting of either sub-

normal or hyponormal or M-hyponormal or dominant or k-quasi-hyponormal

operators as well as p-hyponormal operators.



It is well known that kerðdT ;SÞJ kerðdT �;S � Þ for T and S � belonging to many a

pair of these classes ([7], [12], [13], [14], [28], [32], [31], [30], [35] and some of the

references therein) except for when both T and S � are dominant (see [12], [13],

[14]).

Recall that an operator T a LðHÞ is positive, T b 0, if 3Tx; x4b 0 for

all x a H. An operator T a LðHÞ is said to be hyponormal if T �TbTT �.
Hyponormal operators have been studied by many authors and it is known

that hyponormal operators have many interesting properties similar to those of

normal operators ([2], [9], [11], [17], [18] and [22]). An operator T is said to be

p-hyponormal if ðT �TÞpb ðTT �Þp for p a ð0; 1� and an operator T is said to be

log-hyponormal if T is invertible and logjT jb logjT �j. p-hyponormal and log-

hyponormal operators are defined as extension of hyponormal operator. An

operator T a LðHÞ is said to be paranormal if it satisfies the norm inequality

kT 2k kxkb kTxk2 for all x a H. Ando [5] proved that every log-hyponormal

operators is paranormal. According to [25], an operator T a LðHÞ is said to be

ðp; kÞ-quasihyponormal operator if T�kðjT j2p � jT �j2pÞT k b 0, where k a N and

p a ð0; 1�.

2. Complementary results

In this section, we shall show some properties on class wAðs; tÞ operators.

Definition 2.1. Let s > 0 and t > 0 and T ¼ U jT j be the polar decomposition of

T .

(i) T belongs to class Aðs; tÞ , ðjT �j tjT j2sjT �j tÞ t=ðtþsÞ
b jT �j2t [16].

(ii) T belongs to class wAðs; tÞ

() ðjT �j tjT j2sjT �j tÞ t=ðtþsÞ
b jT �j2t and jT j2sb ðjT jsjT �j2tjT jsÞs=ðsþtÞ:

() j ~TTs; tj2t=ðsþtÞ
b jT j2t and jT j2sb j ~TT �

s; tj
2s=ðsþtÞ;

where ~TTs; t ¼ jT jsU jT j t generalized Aluthge transformation [20].

(iii) T belongs to class A , jT 2jb jT j2, that is, T a class Að1; 1Þ [18].
(iv) T is w-hyponormal , j ~TT jb jT jb j ~TT �j, that is, T belongs to class wA

�
1
2 ;

1
2

�
,

where ~TT ¼ jT j1=2U jT j1=2 [3].

We remark that Aluthge transformation has many interesting properties, and

many authors study this transformation, for instance [1], [18], [20], [33]. These

classes are included in normaloid (i.e., kTk ¼ rðTÞ, the spectral radius of T). It

has been known that for each s > 0 and t > 0, class Aðs; tÞ includes class wAðs; tÞ
by parts (i) and (ii) of Definition 2.1.
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Lemma 2.2 ([20]). Let T a LðHÞ. For each 0 < p1a p2 and 0 < q1a q2. If T

belongs to class wAðp1; q1Þ, then T belongs to class wAðp2; q2Þ.

Here in general, we can obtain that class Aðs; tÞ coincides with class wAðs; tÞ
by Lemma 2.2 as follows:

Theorem 2.3. For each s > 0 and t > 0. The class Aðs; tÞ coincides with class

wAðs; tÞ.

Theorem 2.4. Let T a LðHÞ. If T belongs to class wAðs; tÞ operators for

s > 0 and t > 0 and polar decomposition T ¼ U jT j. Then T belongs to class

wAðp; pÞ, where p ¼ maxfs; tg. Moreover, the Aluthge transformation ~TT ¼
jT jpU jT jp is semi-hyponormal operator and ~~TT~TT ¼ j ~TT jq ~UU j ~TT jq is hyponormal opera-

tor with 0 < qa 1
2 .

Proof. Let p ¼ maxfs; tg. Then it follows from Lemma 2.2 that T belongs to

class wAðp; pÞ. Now,

j ~TT j ¼ ðjT jpU �jT j2pU jT jpÞ1=2

¼ ðU �U jT jpU �jT j2pU jT jpU �UÞ1=2

¼ U �ðU jT jpU �jT j2pU jT jpU �Þ1=2U

¼ U �ðjT �jpjT j2pjT �jpÞ1=2U

bU �jT �j2pU ðsince T a wAðp; pÞÞ

¼ jT j2p:

Also

j ~TT �j ¼ ðjT jpU jT j2pU �jT jpÞ1=2 ¼ ðjT jpjT �j2pjT jpÞ1=2a jT j2p:

Therefore, we have j ~TT jb jT j2pb j ~TT �j. That is, ~TT is semi-hyponormal.

Since ~TT is semi-hyponormal then ~TT is q-hyponormal such that 0 < qa 1
2 .

Hence we have

~UU �j ~TT j2q ~UU b j ~TT j2qb ~UU j ~TT j2q ~UU �:

Now

~~TT~TT � ~~TT~TT � ~~TT~TT ~~TT~TT � ¼ j ~TT jqð ~UU �j ~TT j2q ~UU � ~UU j ~TT j2q ~UU �Þj ~TT jqb 0;

and hence ~~TT~TT is hyponormal. r
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A pair ðT ;SÞ is said to have the Fuglede–Putnam property if T �X ¼ XS �

whenever TX ¼ XS for every X a LðK;HÞ.

Lemma 2.5 ([36]). Let T a LðHÞ and S a LðKÞ. Then the following assertions

equivalent:

(a) The pair ðT ;SÞ satisfies Fuglede–Putnam theorem.

(b) If TX ¼ XS for some X a LðK;HÞ, then ReðXÞ reduces T, kerðXÞ? reduces

S and T j
ReðXÞ and SjkerðXÞ? are normal operators.

Lemma 2.6 ([23]). Let T a LðHÞ and S � a LðKÞ be either log-hyponormal or

p-hyponormal operators. Then the pair ðT ;SÞ has the Fuglede–Putnam property.

Since class wAðs; tÞ operators coincide with class Aðs; tÞ for each s > 0 and

t > 0 by [20], the following three results follow immediately from [29], Corollary

2.2, [29], Lemma 4.3 and [29], Lemma 4.7, respectively.

Lemma 2.7. Let T a LðHÞ be a class wAðs; tÞ operator with s > 0 and t > 0. If
~TTðs; tÞ ¼ jT jsU jT j t is normal, then T is also normal.

Lemma 2.8. Let T a LðHÞ be class a wAðs; tÞ operator for some s; t a ð0; 1� and
M be an invariant subspace of T, then the restriction T jM of T onto M is also a

class wAðs; tÞ operator.

Lemma 2.9. Let T ¼ U jT j a LðHÞ be a class wAðs; tÞ operator with sþ t ¼ 1

and kerðTÞH kerðT �Þ. Let ~TTðs; tÞ ¼ jT jsU jT j t. Suppose ~TTðs; tÞ be of the form

NaT 0 on H ¼ MaM?, where N is a normal on M. Then T ¼ NaT1 and

U ¼ U11aU22, where T1 is a class wAðs; tÞ operator with kerðT1ÞH kerðT �
1 Þ and

N ¼ U11jNj is the polar decomposition of N.

Theorem 2.10. Let T a LðHÞ be a class wAðs; tÞ for some t > 0 and s > 0. If

meas
�
sðTÞ

�
¼ 0, then T is normal.

Proof. Let T ¼ U jT j be the polar decomposition of T . It is known from Lemma

2.2 that if T belongs to class wAðs; tÞ, then ~TTðs; tÞ is p-hyponormal where

p ¼ minfs; tg
sþt

and sð ~TTÞ ¼ frsþteiy : reiy a sðTÞg by [37]. Hence meas
�
sð ~TTÞ

�
¼ 0.

So it follows from Putnam inequality of p-hyponormal operators [8] that ~TTðs; tÞ
is normal. Therefore, T is normal by Lemma 2.7. r

Theorem 2.11. Let p1 > 0, p2 > 0, q1 > 0 and q2 > 0. If T belongs to class

wAðp1; q1Þ and T � belongs to class wAðp2; q2Þ, then T is normal.

To prove this Theorem, we need the following lemma from [40].
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Lemma 2.12. Let Ab 0 and Bb 0. If B1=2AB1=2bB2 and A1=2BA1=2bA2.

Then A ¼ B.

Proof of Theorem 2.11. Let t ¼ maxfp1; q1; p2; q2g. If T belongs to class

wAðp1; q1Þ, then T belongs to class wAðt; tÞ by Theorem 2.4. Hence we have

ðjT �j tjT j2tjT �j tÞ1=2b jT �j2t and jT j2tb ðjT j tjT �j2tjT j tÞ1=2: ð1Þ

Also, if T � belongs to class wAðp2; q2Þ, then by Theorem 2.4 T � belongs to class

wAðt; tÞ. Hence we have

ðjT j tjT �j2tjT j tÞ1=2b jT j2t and jT �j2tb ðjT �j tjT j2tjT �j tÞ1=2: ð2Þ

Therefore

jT j tjT �j2tjT j t ¼ jT j4t and jT �j4t ¼ jT �j tjT j2tjT �j t

holds by (1) and (2), and hence it follows from Lemma 2.12 that jT j ¼ jT �j. r

3. Class wA(s, t) operators and quasi-similarity

An operator X a LðHÞ is called quasia‰nity if X is both injective and has a dense

range. Two operators T and S are said to quasi-similar if there exist quasia‰n-

ities X and Y such that X a kerðdT ;SÞ and Y a kerðdS;T Þ.
The operator T a LðHÞ is said to be pure if there exists no non-trivial reduc-

ing subspace M of H such that the restriction of T to M is normal and is com-

pletely hyponormal if it is pure.

Recall that every operator T a LðHÞ has a direct sum decomposition T ¼
T1aT2, where T1 and T2 are normal and pure parts, respectively. Of course in

the sum decomposition, either T1 or T2 may be absent.

The following Lemma is due to Williams [39], Lemma 1.1.

Lemma 3.1. Let T and S be normal operators. If there exist injective operators

such that X a kerðdT ;SÞ and Y a kerðdS;T Þ, then T and S are unitarily equivalent.

Lemma 3.2. Let T be a class wAðs; tÞ operator with sþ t ¼ 1 such that kerT H
kerT � and S be normal operator. If there exist an operator X with dense range

such that TX ¼ XS, then T is normal.

Proof. Decompose T into normal and pure parts by T ¼ T1aT2 with respect to

the decomposition H ¼ H1aH2. Letting T2 have the polar decomposition T2 ¼
U2jT2j, we consider its generalized Aluthge transform ~TT2ðs; tÞ ¼ jT2jsU2jT2j t. Let
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~TT2ðs; tÞ ¼ V2j ~TT2ðs; tÞj, and define T̂T2ðs; tÞ ¼ j ~TT2ðs; tÞjsV2j ~TT2ðs; tÞj t. Letting W ¼
j ~TT2ðs; tÞjsjT2js, by the kernel condition we see that W is a quasia‰nity such that

T̂T2ðs; tÞW ¼ WT2. Now let T̂Tðs; tÞ ¼ T1a T̂T2ðs; tÞ and Y ¼ IH1
aW . Then

T̂Tðs; tÞ is p-hyponormal, where p ¼ maxfs; tg and Y is a quasia‰nity such that

T̂Tðs; tÞY ¼ YT . So we have that T̂Tðs; tÞðYX Þ ¼ ðYX ÞS and YX has dense range.

Thus by Lemma 3 of [21] T̂Tðs; tÞ is normal and so by Lemma 2.7, T is normal.

r

Theorem 3.3. Let T and S � be class wAðs; tÞ operators with sþ t ¼ 1. If there ex-

ist a quasia‰nity X such that X a kerðdT ;SÞ, then T and S are unitarily equivalent

normal operators.

Proof. First decompose T and S � into their normal and pure parts by T ¼
T1aT2 on H ¼ H1aH2 and S � ¼ S �

1 aS �
2 on K ¼ K1aK2, where T1, S1

are normal and T2, S
�
2 are pure. Let X ¼ ½Xi; j �2i; j¼1. Then TX ¼ XS implies

that T2X21 ¼ X21S2 and T2X22 ¼ X22S2. Let T2 ¼ U2jT2j, S �
2 ¼ V �

2 jS �
2 j be the

polar decompositions of T2 and S �
2 , respectively and

~TT2ðs; tÞ ¼ jT2jsU2jT2j t; ~SS �
2 ðs; tÞ ¼ jS �

2 j
s
V �

2 jS �
2 j

t; W ¼ jT2jsX22jS �
2 j

s:

Then

~TT2ðs; tÞW ¼ jT2jsT2X22jS �
2 j

s ¼ jT2jsX22S2jS �
2 j

s ¼ W
�
~SS �
2 ðs; tÞ

��
:

Since ~TT2ðs; tÞ, ~SS �
2 ðs; tÞ are class wAðs; tÞ operators, then ~TT2ðs; tÞ, ~SS �

2 ðs; tÞ are

minfs; tg-hyponormal and W is quasia‰nity. Now by Lemma 2.6, we have
~TT �
2 ðs; tÞW ¼ W ~SS �

2 ðs; tÞ and ReðW Þ reduces ~TT2ðs; tÞ and kerðWÞ? reduces ~SS �
2 ðs; tÞ

and ~TT2ðs; tÞjReðW Þ and ~SS �
2 ðs; tÞjkerðWÞ? are unitarily equivalent normal operators.

Since W is quasia‰nity, we have ReðW Þ ¼ H and kerðW Þ? ¼ H and ~TT2ðs; tÞ
and ~SS2ðs; tÞ are unitarily equivalent normal operators. In particular, ~TT2ðs; tÞ and
~SS2ðs; tÞ are normal operators and so the result follows now by Theorem 2.7 and

Lemma 3.1. r

From Theorem 3.3, it is easy to deduce that a pure class wAðs; tÞ operator is
normal.

Corollary 3.4. A pure class wAðs; tÞ operator with sþ t ¼ 1 such that kerT H
kerT � is normal.

Conway [10] proved that the normal parts of quasisimilar subnormal operators

are unitarily equivalent and gave an example showing that the pure parts of

quasisimilar subnormal operators need not be quasisimilar. This result was gener-
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alized to classes of p-hyponormal operators in [21] and log-hyponormal operators

in [23], respectively. We prove that these results hold for class wAðs; tÞ operators
with sþ t ¼ 1.

Theorem 3.5. Let T a LðHÞ and S a LðKÞ be class wAðs; tÞ operators with

sþ t ¼ 1 such that kerT H kerT � and kerSH kerS � and let T ¼ N1aR1 on

H ¼ H1aH2 and S ¼ N2aR2 on K ¼ K1aK2, where Ni, Ri ði ¼ 1; 2Þ are

the normal and the pure parts of T and S, respectively. If T and S are quasisi-

milar, then N1 and N2 are unitarily equivalent and there exist X� a LðK2;H2Þ,
Y� a LðH2;K2Þ having dense ranges such that R1X� ¼ X�R2 and Y�R1 ¼ R2Y�.

Proof. By hypotheses there exist quasia‰nities X a LðK;HÞ and Y a LðH;KÞ
such that TX ¼ XS and YT ¼ SY . Let

X ¼ X1 X2

X3 X4

� �
and Y ¼ Y1 Y2

Y3 Y4

� �

with respect to K ¼ K1aK2 and H ¼ H1aH2, respectively. A simple matrix

calculation shows that

R1X3 ¼ X3N2 and R2Y3 ¼ Y3N1:

We claim that X3 ¼ Y3 ¼ 0. To prove this, let M ¼ ReðX3Þ and assume that

X3A 0. Then M is an non-trivial invariant subspace of R1. If R 0
1 is the restriction

of R1 to M, then R 0
1 is class wAðs; tÞ by Lemma 2.8. If we define an operator

X 0
3 : K1 ! M by X 0

3x ¼ X3x for each x a K1, then we can see that X 0
3 has

dense range and satisfies that R 0
1X

0
3 ¼ X 0

3N2. By Lemma 3.2, R 0
1 is normal. But

which contradicts the hypothesis R1 is pure. This forces X3 ¼ 0. Similarly,

Y3 ¼ 0. Thus it follows that X1 and Y1 are injective. Since N1X1 ¼ X1N2 and

Y1N1 ¼ N2Y1, by Lemma 3.1 we have that N1 and N2 are unitarily equivalent.

Also, we can notice X4 and Y4 have dense ranges and

R1X4 ¼ X4R2 and Y4R1 ¼ R2Y4:

Hence the proof is complete. r

From Theorem 3.5 we easily obtain the following corollaries, and so we omit

their proofs.

Corollary 3.6. Let T and S be quasisimilar class wAðs; tÞ with sþ t ¼ 1 such that

kerT H kerT � and kerSH kerS �. If T is pure, then S is also pure.
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Corollary 3.7. Let T a LðHÞ be a class wAðs; tÞ with sþ t ¼ 1 such that kerT H
kerT � and let S a LðKÞ be normal. If T and S are quasisimilar, then T and S are

unitarily equivalent normal operators.

The numerical range of an operator T , denoted by W ðTÞ, is the set defined

by

WðTÞ ¼ f3Tx; x4 : kxk ¼ 1g:

In general, the condition S�1TS ¼ T � and 0 B W ðSÞ do not imply that T is

normal. If T ¼ SB, where S is positive and invertible, B is self-adjoint, and S

and B do not commute, then S�1TS ¼ T � and 0 B WðSÞ, but T is not normal.

Therefore the following question arises naturally.

Question. Which operator T satisfying the condition S�1TS ¼ T � and 0 B WðSÞ
is normal?

In 1966, Sheth [34] showed that if T is a hyponormal operator and S�1TS ¼ T �

for any operator S, where 0 B W ðSÞ, then T is self-adjoint. We extend the result

of Sheth to the class wAðs; tÞ, s; t > 0 operators as follows.

Theorem 3.8. Let T a LðKÞ. If T or T � belongs to class wAðs; tÞ for some s > 0

and t > 0 and S is an operator for which 0 B W ðSÞ and ST ¼ T �S, then T is self-

adjoint.

To prove Theorem 3.8 we need the following Lemma from [38].

Lemma 3.9. If T a LðHÞ is any operator such that S�1TS ¼ T �, where

0 B W ðSÞ, then sðTÞJR.

Proof of Theorem 3.8. Suppose first that T is a class wAðs; tÞ operator. Since

sðTÞJW ðSÞ, S is invertible and hence ST ¼ T �S becomes S�1T �S ¼ T ¼
ðT �Þ�. Apply Lemma 3.9 to T to get sðTÞJR. Thus meas

�
sðTÞ

�
¼ 0 for the

planer Lebesgue measure measð � Þ. It follows from Theorem 2.10 that T is

normal. Since sðTÞJR. Therefore, T is self-adjoint.

Now assume that T � is a class wAðs; tÞ operator. Since sðTÞJWðSÞ, S is in-

vertible and hence ST ¼ T �S becomes S�1T �S ¼ T ¼ ðT �Þ�. Apply Lemma 3.9

to T � to get sðT �ÞJR. Then sðTÞ ¼ sðT �Þ ¼ sðT �ÞJR. Thus meas
�
sðTÞ

�
¼

meas
�
sðT �Þ

�
¼ 0 for the planer Lebesgue measure measð � Þ. It follows from

Theorem 2.10 that T � is normal. Since sðTÞ ¼ sðT �ÞJR. Therefore, T is self-

adjoint. r
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Theorem 3.10. Let T ;S a LðHÞ be such that T is an injective ðp; kÞ-
quasihyponormal and S � is an injective class wAðs; tÞ operator with sþ t ¼ 1. If

X a kerðdT ;SÞ for some X a LðHÞ, then X a kerðdT �;S � Þ.

Proof. Since ReðXÞ is invariant under T and kerðXÞ? is invariant under S �, we
can consider the following decompositions H ¼ ReðXÞaReðXÞ? ¼ kerðXÞ?a

kerðXÞ and we have

T ¼ T1 T2

0 T3

� �
; S ¼ S1 0

S2 S3

� �
;

X ¼ X1 0

0 0

� �
: kerðXÞ?akerðXÞ ! ReðXÞaReðXÞ?:

From TX ¼ XS, we obtain

T1X1 ¼ X1S1: ð3Þ

Let S �
1 ¼ U �jS �

1 j be the polar decomposition of S �
1 . Let ~SS �

1 ¼ jS �
1 j

s
U �jS �

1 j
t be the

generalized Aluthge transform of S1. From Equation (3), we have

T1X1 ¼ X1jS �
1 jU ð4Þ

Let W ¼ X1jS �
1 j

s. Then

T1W ¼ T1ðX1jS �
1 j

sÞ ¼ X1jS �
1 jU jS �

1 j
s

¼ ðX1jS �
1 j

sÞjS �
1 j

t
U jS �

1 j
s

¼ W
�
~SS �
1 ðs; tÞ

��
:

Since ~SS �
1 ðs; tÞ is minfs; tg-hyponormal by [20]. Thus it follows from Theorem 11

of [25] that the pair
�
T1; ~SS

�
1 ðs; tÞ

�
satisfies the Fuglede–Putnam theorem. There-

fore, T1jReðWÞ and
~SS �
1 ðs; tÞjkerðWÞ? are normal operators. Since X1 is injective with

dense range and jS �
1 j

s is an injective, we have

ReðW Þ ¼ ReðX1Þ ¼ ReðXÞ

and

kerðWÞ ¼ kerðX1Þ ¼ kerðXÞ:

It follows that T1 and ~SS �
1 ðs; tÞ are normal, and hence it follows from Lemma 2.7

that S1 is also normal. Since T is an injective ðp; kÞ-quasi-hyponormal and its
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restriction T1 is normal, then ReðXÞ reduces T by [25, Lemma 10]. Thus T2 ¼ 0.

Similarly, S � is class wAðs; tÞ and S �
1 ¼ S �jkerðXÞ? is normal, therefore kerðXÞ?

reduces S � by Lemma 4.4 of [29]. Hence, S2 ¼ 0. Since the pair ðT1;S1Þ satisfies
the Fuglede–Putnam theorem, X a dT �

1
;S �

1
. Consequently, X a kerðdT �;S � Þ. r

4. Nonnormal derivation

Recall that each unitarily invariant norm k:kI is defined on a natural subclass

Jk:kI of LðHÞ called the norm ideal associated with the norm k:kI and satisfies

the invariance property kUTVkI ¼ kTk for all Jk:kI and for all unitary operators

U ;V a LðHÞ.
Let T a LðHÞ be compact, and let s1ðTÞb s2ðTÞb � � �b 0 denote the singu-

lar values of T , i.e., the eigenvalues of jT j ¼ ðT �TÞ1=2 arranged in their decreasing

order. The operator T is said to belong to the Schatten p-class Cp if

kTkp ¼
�Xl

j¼1

�
sjðTÞ

�p�1=p ¼ ðtrjT jpÞ
1=p

< l; 1a p < l;

where trð � Þ denote the trace functional. Hence C1ðHÞ is the trace class, C2ðHÞ is
the Hilbert-Schmidt class, and Cl is the class of compact operator with kTkl ¼
s1ðTÞ denoting the usual norm.

Theorem 4.1. Let T ;S;X a LðHÞ such that the pairs ðT ;SÞ satisfies the Fuglede–
Putnam property, that is, X a kerðdT �;S �Þ whenever X a kerðdT ;SÞ. If R a LðHÞ
such that dT ;SðRÞ þ X a Jk:kI , then X a Jk:kI and

kdT ;SðRÞ þ XkI b kXkI :

To prove this theorem, we need the following lemma from [26].

Lemma 4.2. Let N;M;X a LðHÞ such that N and M are normal and X a
kerðdN;MÞ. If R a LðHÞ such that dN:MðRÞ þ X a Jk:kI , then X a Jk:kI and

kdN;MðRÞ þ XkI b kXkI :

Proof of Theorem 4.1. Since the pairs ðT ;SÞ satisfies the Fuglede–Putnam prop-

erty, it follows from Lemma 2.5 that ReðXÞ reduces T , kerðXÞ? reduces S, and

T j
ReðXÞ and SjkerðXÞ? are unitarily equivalent normal operators. Then with respect

314 M. H. M. Rashid



to the orthogonal decomposition H ¼ ReðXÞaReðXÞ? and H ¼ kerðXÞ?a

kerðXÞ, T and S can be respectively represented as

T ¼ T1 0

0 T2

� �
and S ¼ S1 0

0 S2

� �
:

Now assume that the operators X ;R : kerðXÞ?akerðXÞ ! ReðXÞaReðXÞ?
have the matrix representations

X ¼ X1 0

0 0

� �
and R ¼ R1 R2

R3 R4

� �
:

Then T1 and S1 are normal, and T1X1 ¼ X1S1. Applying Lemma 4.2 to the oper-

ators T1, S1, X1, and R1 we see that X1 a Jk:kI . Hence X a Jk:kI and

kdT ;SðRÞ þ XkI ¼
dT1;S1

ðR1Þ þ X1 �
� �

� �����
����
I

b kdT1;S1
ðR1Þ þ X1kI b kX1kI ¼ kXkI ;

so the proof of the theorem is achieved. r

Definition 4.3. Given subspaces M and N of a Banach space V with norm k:k.
M is said to be orthogonal to N if kmþ nkb knk for all m a M and n a N.

J. H. Anderson and C. Foias [4] proved that if T and S are normal, R is an

operator such that TR ¼ RS, then

kdT ;SðRÞ þ Xkb kXk

Where k:k is the usual operator norm. Hence the range of dT ;S is orthogonal to

the null space of dT ;S. The orthogonality here is understood to be in the sense of

Definition 4.3.

Theorem 4.4. Let T ;S a LðHÞ and ðT ;SÞ satisfy the Fuglede–Putnam

property. Then the range of dT ;S is orthogonal to the kernel of dT ;S, that is,

kdT ;SðRÞ þ Xkb kXk for all R a LðHÞ and X a kerðdT ;SÞ.

Proof. Since the pairs ðT ;SÞ satisfies the Fuglede–Putnam property, it follows

from Lemma 2.5 that ReðXÞ reduces T , kerðXÞ? reduces S, and T j
ReðXÞ and

SjkerðXÞ? are unitarily equivalent normal operators. Then with respect to the

orthogonal decomposition H ¼ ReðXÞaReðXÞ? and H ¼ kerðXÞakerðXÞ?,
T and S can be respectively represented as

T ¼ T1 0

0 T2

� �
and S ¼ S1 0

0 S2

� �
:
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Now assume that the operators X ;R : kerðXÞ?akerðXÞ ! ReðXÞaReðXÞ?
have the matrix representations

X ¼ X1 0

0 0

� �
and R ¼ R1 R2

R3 R4

� �
:

Then T1 and S1 are normal, and T1X1 ¼ X1S1. Hence

dT ;SðRÞ þ X ¼ dT1;S1
ðR1Þ þ X1 �
� �

� �
:

Since X1 a kerðdT1;S1
Þ and T1, S1 are normal, it follows by [4] that

kdT ;SðRÞ þ Xk ¼ dT1;S1
ðR1Þ þ X1 �
� �

� �����
����

b kdT1;S1
ðR1Þ þ X1kb kX1k ¼ kXk:

That is, the range of dT ;S is orthogonal to the kernel of dT ;S. r

For each pairs of operators A and B in LðHÞ, an operator t in L
�
C2ðHÞ

�
is defined by

tX ¼ AXB:

Evidently ktka kAk kBk. And the adjoint of t is given by the formula t�X ¼
A�XB�. In particular, if A and B are both positive, then t is positive and

t1=2X ¼ A1=2XB1=2, as one sees from the calculation

3tX ;X4 ¼ trðAXBX �Þ ¼ trðA1=2XBX �A1=2Þ

¼ tr
�
ðA1=2XB1=2ÞðA1=2XB1=2Þ�

�
b 0:

Since jtj2X ¼ jAj2X jB�j2 and jt�j2X ¼ jA�j2X jBj2, we have

jtj1=2
n

¼ jAj1=2
n

X jB�j1=2
n

and

jt�j1=2
n

¼ jA�j1=2
n

X jBj1=2
n

for each integer nb 1.

Now we need the following lemma.
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Lemma 4.5. Let s > 0 and t > 0. Let T and S be operators in LðHÞ. If T and S �

are class wAðs; tÞ operators. Then the operator t : C2ðHÞ ! C2ðHÞ defined by

tX ¼ TXS is class wAðs; tÞ operator.

Proof. For X a LðHÞ, we have
�
ðjt�j tjtj2sjt�j tÞ t=ðtþsÞ � jt�j2t

�
X

¼
�
ðjT �j tjT j2sjT j tÞ t=ðtþsÞ � jT �j2t

�
XðjSj tjS �j2sjSj tÞ t=ðtþsÞ

þ jT �j2tX
�
ðjSj tjS �j2sjSj tÞ t=ðtþsÞ � jSj2t

�
;

and

�
jtj2s � ðjtjsjt�j2tjtjsÞs=ðtþsÞÞX

¼
�
jT j2s � ðjT jsjT �j2tjT j sÞs=ðtþsÞ�

X jS �j2s

þ ðjT jsjT �j2tjT jsÞs=ðtþsÞ
X
�
jS �j2s � ðjS �jsjSj2tjS �jsÞs=ðtþsÞ�:

Since T and S � are class wAðs; tÞ, we have
�
ðjt�j tjtj2sjt�j tÞ t=ðtþsÞ � jt�j2t

�
b 0

and

�
jtj2s � ðjtjsjt�j2tjtjsÞs=ðtþsÞ�

b 0:

Therefore, tX ¼ AXB is class wAðs; tÞ operator. r

Theorem 4.6. Let 0 < s; ta 1. Let T be class wAðs; tÞ operator and S � be

an invertible class wAðs; tÞ operator. If X a kerðdT ;SÞ for X a C2ðHÞ, then

X a kerðdT �;S � Þ.

Proof. Let t be defined on C2ðHÞ by tX ¼ TXS�1. Since S � is an invertible class

wAðs; tÞ operator, then it follows from [16] that S � is also a class wAðs; tÞ operator
for each s > 0 and t [37]. Since T is class wAðs; tÞ operator and ðS�1Þ� ¼ ðS �Þ�1 is

class wAðs; tÞ operator, we have that t is class wAðs; tÞ operator on C2ðHÞ by

Lemma 4.5. Moreover, we have tX ¼ TXS�1 ¼ X because of X a kerðdT ;SÞ.
Hence X is an eigenvector of t. By [37], we have t�X ¼ T �XðS�1Þ� ¼ X , that

is, X a kerðdT �;S �Þ. So the proof is achieved. r

Theorem 4.7. Let T ;S a LðHÞ. Then

kdT ;SðRÞ þ Sk22 ¼ kdT ;SðRÞk22 þ kXk22 ð5Þ

317Class wAðs; tÞ operators and quasisimilarity



and

kdT �;S �ðRÞ þ Sk22 ¼ kdT �;S �ðRÞk22 þ kXk22 ð6Þ

for all R a C2ðHÞ and X a kerðdT ;SÞBC2ðHÞ if and only if the pair ðT ;SÞ satis-
fies Fuglede–Putnam property.

Proof. Since the Hilbert-Schmidt class C2ðHÞ is a Hilbert space under the inner

product 3Y ;Z4 ¼ trðZ�YÞ ¼ trðYZ �Þ. Then we have

kdT ;SðRÞ þ Xk22 ¼ kdT ;SðRÞk22 þ kXk22 þ 2Re3dT ;SðRÞ;X4

¼ kdT ;SðRÞk22 þ kXk22 þ 2Re3R; dT �;S �ðXÞ4

and

kdT �;S � ðRÞ þ Xk22 ¼ kdT �;S �ðRÞk22 þ kXk22 þ 2Re3R; dT ;SðXÞ4

Hence, Equations (5) and (6) hold if and only if the pair ðT ;SÞ satisfies Fuglede–
Putnam property. r
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