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1. Introduction

Relative compactness in the space of probability measures is a key tool in the
study of weak convergence. A family # of probability measures on the general
metric space S is said to be tight if for each positive ¢, there is a compact set K
such that P(K) > 1 —¢ for all P in . According to Prohorov’s theorem, tight-
ness is always a sufficient condition for relative compactness and is also necessary
if S is separable and complete.

The space %[0, 1] of continuous functions is a classical framework for many
regularities and limit theorems in the theory of stochastic processes. The %[0, 1]-
weak convergence of a sequence of stochastic processes X, gives useful results
about the convergence in distribution of continuous functionals of the paths. In
many situations the processes X, are known to have almost surely paths with at
least some Holder regularity and the same happens for the limiting process X.

The recent developments in the theory of wavelets and their applications in
probability and statistics show the interest in using more sophisticated function
spaces like the Holder space %[0, 1], 0 < o < 1, and Besov spaces.

*The authors wish to express their sincere thanks to Prof. M. Ait Ouahra for his suggestions to submit
this work to Portugaliae Mathematica.
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Our aim in this paper is to prove that some additive functionals of local times
of symmetric stable processes of index 1 < o < 2 satisfy certain Holder conditions
in L,-norms which are more precise than the classical Holder conditions in the
uniform norm. We generalize also some limit theorems obtained, in the space of
continuous functions, by Rosen [15] for symmetric stable process of index
1 <o <2and Yor [19] for Brownian mtion, « = 2. These will be done by recall-
ing notions of anisotropic Besov spaces, we use a result of Kamont [13] who has
proved the characterization of these spaces in terms of the coefficients of the
expansion of a continuous function with respect to a basis which consists of tensor
products of Schauder functions. For the one-parameter Besov spaces, Ciesielski
et al. [12] have shown by using the techniques of constructive approximation of
functions that Besov spaces are isomorphic to spaces of real sequences. These
characterizations make the Besov topology easy to handle, and many applications
have been given in stochastic calculus, such as the regularities of some additive
functionals of local times of symmetric stable process of index 1 < o < 2 (see for
example Ait Ouahra et al. [2] and [4]).

Most of the estimates in this paper contain unspecified positive finite constants.
We use the same symbol C, for these constants, even when they vary from one line
to the next.

Throughout this paper, X = {X;|t > 0} denotes the real-valued symmetric
stable process of index 1 < o <2, which is known to have a jointly continuous
local time {L(¢,x) |t > 0,x € R} (see Barlow [5] and Boylan [11]).

We have the well known regularity property of the local time and we refer to
Marcus and Rosen [14] for a proof.

Lemma 1.1. For any integer p > 1, there exists a constant 0 < C, < oo such that
forall0 <t,s<1landall x,y € R,

IL(t,x) = L(s5,X)|l,, < Cplt — 5|1/, (1)
o— o a—1)/2
IL(t,x) = L(t, p)|l,, < Gt D/2*|x — y| 7D/, 2)
where || - ||, = (E| - [7)"/?.

The following lemma gives a regularity property of the local time as a random
function of two variables, its proof can be found in Ait Ouahra and Eddahbi [3].

Lemma 1.2. For any integer p > 1, there exists a constant 0 < C, < oo such that
forall0 <t s<1landall x,y € R,

IL(1,5) = Ls,%) = L(t, ) + L(s, p) 15 < Gplt = | @ VP x = y| 7020 (3)
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Remark 1.3. (1) Using (3) and the fact that a.s. L(0,x) = 0, we get the spatial
Hoélder regularity of local time:

IL(t,x) = L(t, y)]l5, < Cplx — |V, (4)

(2) Notice that for « =2, X is a Brownian motion. Trotter [17] has proved
the existence of an a.s. continuous version of the Brownian local time /(z, x) as a
random function of two variables. Moreover, by Boufoussi and Roynette [10], for
each 7 > 0 fixed, the random function /(¢, -) satisfies the Holder condition (4) with
exponent 1, and by Boufoussi [7], the function (7, x) — I(t, x) satisfies the mixed
Holder condition (3) with exponent % in time and exponent § in space.

In Sections 2 and 3, we study the Holder properties of some additive function-
als of the local time L(z,x). We first recall the definition of slowly varying func-
tions and some properties. For more details about slowly varying functions, we
refer the reader to Bingham et al. [6].

Definition 1.4. We say that a measurable function / : Rt — R™ is slowly varying
at infinity if for all ¢ positive, we have

lim @ =1.
X— 00 l(x)

We are interested in the behavior of / at +o0, then we can assume for example
that / is bounded on each interval of the form [0, a], where a > 0.

The following theorem called Potter’s Theorem has played a central role in the
proof of our main results of regularities.

Theorem 1.5. (1) If [ is slowly varying function, then for any chosen constants
A>1and & >0, there exists X = X (A, &) such that

=l () ()} wmroan

(2) If moreover | is bounded away from 0 and oo on every compact subset of
[0, +c0], then for every & > 0, there exists A’ = A’ (&) > 1 such that

% < A’max{ @)é (%)é} (x>0,y>0).

We now introduce certain generalized fractional derivative transforms which
play a central role in the sequel.
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For any y € ]0, 8] and g € ¢* n L'(R), we define

Kiyg(x) = —1 JJrOO I(y) —g(x iyyl)ﬂ_ 9(x) dy.

C(=7) Jo

Note that /(x) = o(x#) as x — +oo for any f > 0 (see Bingham et al. [6], Prop.
1.3.6), so when >0, [ [(1}2, < 4o0. Consequently, if g e %’ LY (R) for
some y € ]0, ], then KJ_lr" "g(x) defined bounded continuous functions.

But for y = 0, since % is not integrable at +o0, K i’o is defined by

Kg(x) == 1(y) dy,

0 Y

_ J+OO g(x £ ) = L, i(»)g(x)

for any g € 6 ~n L'(R) and § > 0.
We put

K' = Kl K7,
for the symmetric generalized fractional derivatives.

Remark 1.6. If we take / = 1, we recover the definitions of fractional derivative
and Hilbert transform denoted by D’ and DY (see Yamada [18], Samko et al. [16]
and the references therein). -

Following the same arguments used in the proof of Lemma 1 in Ait Ouahra
and Eddahbi [3] in the case of fractional derivatives of local time of symmetric
stable process, we get the following time regularities.

Lemma 1.7. (1) Let 0 <y < % and K € {Ki’y,Kl’y}. Then, for any integer
p =1, there exists a constant 0 < C, < oo such that for all 0 <t,s <1 and all
X, y € R)

[KL(2,-)(x) — KL(s,)(x)[l5, < Cplt — S|(“*1)/afy/oc'

+ool

(2) In case y = 0 and under the assumption fl %dy < o0, we get

IKL(1,)(x) = KL(s,")(x)|l, < Gplt = s]°,
where 0 < & < %1

Proof. We treat only the case K = Ki}’, the other cases are similar. Here we
distinguish two cases.
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(1) Case 7 > 0. Let b = |t — s|'/*. By the definition of K7, we have

1K L8, -) (x) = KETL(s, ) ()l

- 1 Jb ) [[L(t, x + u) — L(s,x+u)”— L(t,x) + L(s,x)|l,, "
IT(=7)1Jo ults
N 1 J+OO |L(t,x +u) — L(s, x + u) — L(¢,x) +L(s,x)||2pdu
IT(=)1Js ul*
=1L+ 5.

We estimate /; and I, separately.

Estimate of I:

Since / is bounded on every compact subset of [0, +oo], it follows from (3)
that

I < Golt— |2t < Gl — o 07D

Now we return to estimate />:
Potter’s Theorem with 0 < & < y implies the existence of 4(&) > 1 such that

u S
1w < 410 ;)
Combining this fact with (1), we obtain
(1) o=/

L<C)lt—s

The proof of this case is done.
(2) Case y = 0. By the definition of K Jlr’o, we have

IKLOL(t, ) (x) = KLOL(s, ) ()] <01+ 2,

where

1 L(t,x+ y) — L(t,x) — L(s,x + y) + L(s,
"“L“”H (b3 +y) = L(t,x) y (5,34 3) + Ly

and

||2p dy

I — L*"” i) IL(t,x+ y) —yL(s,x+ 7)
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Now let b= |t — |2g/ *1) Using (1), (4) and the fact that / is bounded on every
compact subset of [0, +o0[, we get

b\L(t,x+ y) — L(t,x)|,, + ||L(s,x + y) — L(s, x
JlstJ II1L( y) = L(t,x) 1, + [IL( y) — L( )Ilzpdy
0 Y
YL(t,x+ y) — L(s,x + + || L(2,x) — L(s, x
+CpJ [ L( y)—L( y)yllzp 1L(z, x) — L( )||zpdy
b

b
1
(a—1)/2-1 _ e/ }
< Cp”o v dy+ |t —s|¢ log| — e |

Then
28 a—1)/a—¢ (a—1)/a—¢&
J]SCZ—Sf 14— |I—S|( qug|l—S e
< Cﬁ|t_s|§7

where we have used in the last estimation the elementary inequality: for any

x €10, 1], we have |xlog(x)| < e™! i

We now deal with J,. Thanks to (1) and the assumption |, dy < oo, we
obtain
Jy < Cylt — |71/
which gives the desired estimate for y = 0. O

In the same way we obtain the following space regularities.

Lemma 1.8. (1) Let 0 < y < 5land K € {K” K'7}. Then for any integer p > 1,
there exist a constant 0 < C, < oo such that for any 0 <t < 1,all x,y € [-M, M],

IKL(1,)(x) = KL(1,) (9)l5, < Gt~ V/2xc — p| 7D/,
2) In the case y = 0 and under the assumption [ "2 dy < 00, we get
y p 1 Ty @
IKL(1,)(x) = KL(1,) (9)l5, < Cpt*~ D/ — y|* D72
M is a finite positive constant.

Proof. We treat only the case K = K"7, the other cases are similar. Here we dis-
tinguish two cases.
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(1) Case y > 0. Let b = |x — y|. By the definition of K", we have

IKE7L(2,) (x) = K7Lt ) ()]l

1 b
< — | 1w
|r<y>|L (
VLGt x+ w) — L(t,x — )13y + [ L(t,y + 1) — L{t,y — )],
X - du
ulry
1 —+0o0
S LW
T, "
ML+ ) — Kty — )l + Ly + 0 — Lty — )l

ul+r
=K + K>.

We estimate K; and K, separately.
Estimate of K;:
Since / is bounded on every compact subset of [0, + oo/, it follows from (2) that,

du

b (a—1)/2
(x=1)/22 | M
K, < CP[ ! ! JO ulty
< Cpt(“*l)/2°‘|x_ y|(“*1)/2*1’.

Now we return to estimate Kj:
Potter’s Theorem with 0 < & < y implies the existence of 4(&) > 1 such that

w\©
l(u) < A(E)I(D) (5) .
Combining this fact with (2), we obtain
KZ < Cpt(“*1>/2“|x _ y|(“*1)/2*7.

The proof of this case is done.
(2) Case y = 0. Let us give the proof for K io. The other case can be derived
similarly and by linearity. By the definition of Kio, we have

IKE Lt ) (%) = KE°L(t, ) (D)l <: Lo + Lo,

where

Jl W | L(t,x +u) — L(t,x) — L(t,y + u) + L(t, )

0 u

||2p du,



328 A. Sghir and H. Ouahhabi

and

+o0 L(t,x +u) — L(t,y +
P P S e AT
1

Let us deal with L;. We have

HZp du

L < Jb ||L(t7x+ u) - L(t7 x)||2p + ||L(t’y+ u) - L(t’ y)
=, y

HZp du.

N Jl L@t x + ) = L(6,X) |5, + [I1L(6,y +u) — L(1, p)
b u

We consider the two cases |x — y| >1and [x — y| < 1.
(a) Case |x — y| > 1. Using (2) and choosing 1 < b < |x — y|, we have
Ly < G 1/2)x — /2,
(b) Case |x — y| < 1. By choosing 0 < b < [x — y|, (2) yields
Li < Cpt@ 02|y — |12,
Therefore, we deduce that

Ly < Gyt~ 0/ — p| D2,
Now we deal with L,. Thanks to (2) and the assumption fﬁ ” @dy < oo, we
obtain

L, < Cpt(ocfl)/Zoc'x_ y|(oc71)/2'
which gives the desired estimate for y = 0. O

As a consequence of Lemma 1.8 and the Markov property of symmetric stable
processes, we get the following mixed regularities in time and space. (For more
detail about proof, we refer to Ait Ouahra and Eddahbi [3], Theorem 1, for local
time, and Ait Ouahra [1], p. 13, for fractional derivative of local time of symmetric
stable process of index 1 < o < 2.)

Lemma 1.9. (1) Ler 0 <y <% and K € {K}7,K"7}. For any integer p > 1,
there exists a constant 0 < C, < co such that, for all 0 <t,5s <1 and all x,y e
[_MvM])
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IKL(t,-)(x) = KL(2,)() = KL(s,-)(x) + KL(s,-)(») I,
< Clt — 5|V =y D2

(2) In the case y = 0 and under the assumption JT ” @dy < oo, we get

[KL(t,-)(x) = KL(1,-)(y) = KL(s,)(x) + KL(s,-)() I,
< C|Z - S| (o:—l)/20:|x N y‘(o:—l)/oc'

2. Besov spaces

We will firstly present a brief survey of Besov spaces. For more details, we refer
the reader to Boufoussi [7] and Ciesielski et al. [12].

Let I =[0,1]. We denote by L”(I), 1 < p < 40, the space of Lebesgue inte-
grable real-valued functions defined on 7 with exponent p. The modulus of con-
tinuity of a Borel function f : I — R in L”(I) norm is defined for all # € R by

wp(f’ 1) = sup ||A/7f||p7
0<h<t
where

Anf(t) = 1 1p(Of (¢ +h) — f(2)].

Definition 2.1. The Besov space denoted by B!, 1 < p < +oo, is a non-
separable Banach space of real-valued continuous functions f on 7, endowed
with the norm

wp(f,1)

0<r< l Wy, 1(t>

a)‘u,v(t) = tﬂ<l + 10g<%>> s

forany 0 < g < 1andv > 0.

)

1F 11 = A1, + s

where

Ciesielski et al. [12] showed by using the techniques of constructive approxima-
tion of functions that Besov spaces are isomorphic to spaces of real sequences.
These characterizations allows us to prove in the sequel some results of regularities
of some additive functionals of local times of symmetric stable processes of index
l <a<2.
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The Schauder basis on [/ is defined by

@o(1) =1p,11(1),  o1(1) = 11, 1]((%

n=2+k,  j=0k=1,...,2/
9, (1) = 0,(t) = 2"7P0 (271 — k),

where d)(u) = ul[()ﬂl/z] (u) + (1 — u)1]1/271](u).
In this basis, the decomposition and the coefficients of continuous functions f
on [ are respectively given by

£ =3 Gl
n=0
and

G(f)=1(0), G(f)=,(1) - f(0),
n=2+k j=0k=1,,..2),

G =22 () — 13D - S (3))

We consider the separable Banach subspace of B,”., 1 < p < +o0, defined by

By = {f e By | op(f,1) = o(,(1) (11 0)}.

The following characterization theorem is due to Ciesielski et al. [12], Theorem
I11.2.

Theorem 2.2. The subspace B, 'gg:‘o, 1 < p < 400, corresponds to the sequences
(Cu(f)), such that

9=i(1/2=u+1/p) ¢ 27! 1/p

lim = ————[ > G| " =o.

e (14 )" L 4,

For the proof of our results, we need the following tightness criterion in the
subspace By’ 2 < p < 400 (see Ait Ouahra et al. [2], Lemma 4.3).

Theorem 2.3. Let {X'|te[0,1]},., be a sequence of stochastic processes
satisfying.

(1) Xy =0foralln=>1.

(2) Forall 2 < p < 40, there exists a constant 0 < C, < +o0 such that

ElX] — X" < Cplt —s|™  forall t,s €(0,1],
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where 0 < u < 1. Then the sequence {X]"|t € [0,1]} is tight in B;,‘j‘;j’o for all
v>0and p >max(u~',v71).

Following the same arguments used in the proof of Lemma 9 in Ait Ouahra
et al. [4], we have

Lemma 24. (1) Let 0< y< 1 and K e {K],K’}. The trajectory t—
KL(t,-)(x) belongs a.s. to B, 1/“ 700 | < p< oo, for any v> < and all
|x| < M.

(2) In the case y =0 and under the assumptzon f dy < oo, the trajec-
tory t — KL(t,-)(x) belongs a.s. to B,%", 1 < p < +c0, for any v>— and all
|x| < M, whereO<f<°‘ L.

(3) Let 0<y<s= and K € {K,K"}. The mapping x — KL(t,-)(x) belongs
as. to B, ”2“0 1<p<—|—oo foranyv> andalltel

(4) In the case y =0 and under the assumptlon f d < o0, the mapping
x — KL(t,-)(x) belongs a.s. to B, vee? < p < oo, for any v >+ and all
t € I, where M is a positive finite constant.

+oo I(y

Proof. We are going to prove (1) since the other cases follow in the same manner.
By Theorem 2.3, it suffices to show that a.s.

2=i(1/2=((a=1) Ja=p/0)+1/p) ¢ 277, 1
lim [ > IakL @]
I (I+7)" n=2i+1

where

Ca(KL(2,)(x)
=2//? <2KL <2]2‘/+1 : ) (x) — KL (212‘/“2 ) (x) — KL <;ﬁ ) (x)) :

For any 4 > 0, we set

5 =i(1/2=((a=1) Ja—y/2)+1/p) , 27" 1/p )
I =P( su C,(KL(t > 1.
(o (3, loec )

By Tchebychev’s inequality, we have

1 < 2-p(1/2=((a=1)fa=p/a)+1/p) 2"

< — = E|C,(KL(t,-)(x)|”.
D A )
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In view of the definition of C,(KL(z,-)(x) and Lemma 1.7, we deduce that

C 1 1
1< — ——— <o forallv>-—.
AP,ZZ%(H])P "

The result is a simple application of the Borel-Cantelli lemma. ]

In the following we generalize, in Besov spaces, the results obtained in the
space of continuous functions by Rosen [15] in the case of symmetric stable pro-
cesses of index 1 < o <2 and by Yor [19] in the case of Brownian motion. The
fractional Brownian motion is obtained as a limit in law of linear local times of
symmetric stable processes. To state this result, let {B”(x)|7> 0, x € R} denote
a fractional Brownian sheet with index H € ]0,1[. Tt the continuous centered
Gaussian process with covariance function

E(B/(x), B () = (s A )5 (|x]"" + " — x = »I").

N —

Let p;(x, y) be the transition probability density for the symmetric stable processes
and write p,(0,x — y) = p/(x — y) = pi(|]x — y|). The a-potential density is de-
fined by

u’(x) = L e "p,(x)dt.

Theorem 2.5. Let { an independent exponential random variable of mean 1. Then
as ¢ — 0 the sequence of processes

{ﬁ (L(L,ex) = L(L,0)) | x € R},

converges in law to the process

{2\/cuu1(O)Bg*1(x) | x € R}

0, 2 < p<+oo,forallv> % B*~!is independent of {,

o 1 ds
[ ()2

. Ol 1)2 s
in the Besov space B, 5,

where
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and

1 dp
1 _
u (0>_2nJI+|p|“

is the 1-potential at 0.

Proof. By Theorem 1.3 in Rosen [15], we have the convergence of the finite-
dimensional distributions. It remains to show tightness.
By virtue of (4), for any 1 < p < 400, we obtain

+o0

E[L(, ex) — L(C, ey)]2p = Jo e E[L(s,ex) — L(s, ey)]zp ds

< Cp(8|x _ yl)zﬁ((%l)/Z).

This together with Theorem 2.3 completes the proof of Theorem 2.5. O

3. Anisotropic Besov spaces

Now we denote by L”(I?) the space of Lebesgue integrable functions with expo-
nent p (1 < p < ). For any function f:1?> — R, any & € R, the progressive
difference in direction x; (resp. x7), is defined by

Ap 1 f(x1,x2) = f(x1 4+ h,x2) — f(x1,x2),
Ao f(x1,x2) = f(x1,x20 +h) — f(x1,x2).

For any (hy,h,) € R?, we set

A/’ll!hzf = Ahl.l oAh2,2f7
A}zl,if:Ah,iOAh_jf, i=1,2.

For any Borel function f : /> — R such that f € LP(I?), one can measure its
smoothness by its modulus of continuity computed in L”(1?) norm.
To this end let us define, for any 7 € I and (1, 1,) € I?,

w(l,O)p(fa tl) = Ssup ||A/11.,1f||p7

<t

0, 1).p(f512) = sup [|An 2],

|ha| <t

w(l,l)p(f.v t1712) = sup ||Ahl7h2f'Hp'

|| <ti,|h| <t



334 A. Sghir and H. Ouahhabi

Definition 3.1. Let 0 < aj,00 < 1 and v € R. The anisotropic Besov space, de-
noted by Lip,(a1,%,v), 1 < p < +00, is a non-separable Banach space of real-
valued continuous functions f on 7%, endowed with the norm

w1 1,0).,(f, 1)
! + su ——
||f||[f ||f|| <tlp] a)z(],otz(tl’ 1)
+ sup (f,fz)+ u .ot 1)
0<n <1 w\fl7xz(1atz) 0<t), <1 yl 02(1 IZ) 7

where

v
1
gIM([l’IZ) tflt?(l log<l1l‘2)>

We consider the separable Banach subspace of Lip, (a1, 0,v), 1 < p < +oo,
defined by

Lip, (o1, 00,v) := {f € Lip, (o1, %2, ) | 01,0).p(f, 1) = o(@]"* (11, 1)) as 1 — 0,
@0,1).p(f 1) = 0(603”’“2(1’ fz)) as 1, — 0,
o, (f>11,02) = o(@)* (11, 1)) as hh Aty — 0},

where 1 A £, ;== min(t, 1).
Now, for any continuous functions f on /%, we have the decomposition

tlvt2 Z Z Cﬂyﬂ’(f)(pn®¢n’(tlvt2>7

m=0 max(n,n’)
where C, /(f) = C! o C2(f) with

{Cr%(f)(t) = Cn(f('vt))a
Cr()(1) ))-

I
Q)
—
~
—
\’N
S~—
SN—

In order to state our main results, we need the following characterization theorem.
(See Kamont [13], Theorem A.2, who described anisotropic Besov spaces in terms
of the coefficients of the expansion of a continuous function with respect to a basis
which consists of tensor products of Schauder functions.)
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Theorem 3.2. The subspace Lip,(a1,02,v), 1 < p < +c0, corresponds to the se-
quences (Cy i (f)) such that

2-5(1/2=a+1/p) - 2
‘limi[z |Cp i (f } 1’_0, I'=0,1,
J—+o
n=27+1
9=i(1/2=w+1/p) - 277, /p
lim = [ > [Clf } =0, =01,
J—+o
n=27+1
2= mt p)y (12—t p) o 2 2T SRV
fim ER [ S cwnr] T =
JoJ' oo (I+j+j)

n=2/+1p'=2/"4+1
The first result of this section is the following.

Theorem 3.3. ( ) The trajectory (t,x) — L(t,x) belongs a.s. to anisotropic Besov
space Lip, (%5}, %51, v), 1 < p < 40, for any v > L
(2) Let 0 <y <%, and K € {K],K"}. The trajectory ( x) — KL(t,-)(x)
belongs a.s. to Lip, (%51, %51 — p,v), 1 < p < +o0, for any v(>),
y

‘t:

dy < oo, the trajec-

(3) In the case y =0 and under the assumption f
3 < p <+, for any

tory (t,x) — KL(t,-)(x) belongs a.s. to Llpp(2,¢ 5w,
1

V>
P

p—

Proof. We are going to prove (1) since the other cases follow in the same manner.
Notice that a.s., for all x € R, L(0,x) = 0, thus Cp ,(L) = 0. Therefore by Theo-
rem 3.2, it suffices to show that

2 —/(1/2—(2=1)/2+1/p) 9+l y
hm 7 Z ‘Cl,n(L)|p:| P —0.
J—+ (1 +]) Myt

. 2*./(1/2*(%71)/25(+1/p) 2J+1 U
lim S| X 1G] =0,
j ] 2.

- 2—(1/2=(a=1)/2a+1/p) 0t ) U

n=2/+1
—i(1/2=(5=1) /2041 /p) 3 —j"(1)2—(5—1) /241 2L '
L 2y )/+/n)[ S ¥ awr v,
j,j"FFUJ (1 +]+],)V n,n .

n=274+1p'=2J"+1

where
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ol 2k — 1 2k =2 2k’
— /2 e e
-2 (1 250 £ (120-2) 1 (129
,0

Cuo(L) =272 2L(2k ,0>—L(2k__2,0> L ﬂ
1

2k

2J 2J 2
‘ 2k — 2k -2 2k

_ i/
Cpi(L) =2 _2L( 5 1) ( 5 > L(zl ﬂ

The first three inequalities follow immediately by the same arguments used in
proof of Lemma 2.4. We will now prove the last inequality. We write

2=((+j)/2) Cpw (L)

2k —2 2k' -2
2 2
= AI/Z/'],I (¢] AI/Z»/‘H,VZL <W’W>

2k—1 2k'—1 2k —1 2k' =2 2k 2k'—1

—4L( 2 W) 2L<W’W> —2L<W’W>
2k—1 2k’ 2k —2 2k'—1 2k 2k'—2
‘ZL(?F>‘2L(z—lﬁ>+L(Fﬁ>

2% 2k 2% —2 2k 2k —2 2K —2
L\ s ) Tl 5o ) T\
= 2En,n’(L) + 2E1,n’(L) + Gn,ll'(L)7

where

2k —1 2k"—1 2k —1 2k" =2
E"’"’(L):L< 241 T L( 241 o )

_L(& 2]‘/7_1>+L(ﬁ 21«/7—2)
2/+17 2j'+l1 ST )
Fn,n/(L)=L<22kj—:11a2]2€;,—:ll —L(ZZ_:ll;j_li’l)

2k -2 2K 2k —2 2k —2
L\ ) TR e e )

It suffices then to show that
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L ()24 Py (=12 p) o 2 2 11/
lim ey [ X Ewwr] " =0,
Joj' =400 (1+j+7") AWy ]
L )20 ) g~ (=) 2+ ) o 2 2] 11/
Jim T (X X IEawr] T =0,
I e (I+j+J) Ny S Wy |
9 =i(=((a=1)/20)+1/p) 9 =" (=((a=1)/2)+1/p) 2/ 24+ 11/,
Iim - — [ Z Z |Gn.n,(L)|p p:O,
Jy s (L+Jj+J") ' :

n=2J41p'=27"41

Let us for example give the proof of the first equality.
For any 4 > 0, we set

sup sup

s [D( 2 (= ((e=1)/20)+1/p) 2 =j' (= ((e=1)/2)+1/p)
— \Us0/50 (I+j+ /1"

2j+1 2+l

[ XY B LN ,1).

n=2/+1 }1’:2//+1

By Tchebychev’s inequality, we have

OIS

j=0,">0

(2=1)/20)+1/p) 9 ' (—((a=1)/2)+1/p) 2" 2/

(1+j+) Z Z BV (L

=27+1 p/=2"+1

L

In view of the definition of E, ,/(L) and (3), we deduce that

1
< s < oo forallv>—.
)J’;/Z:()H]Jr] ? p

The result is a simple application of the Borel-Cantelli lemma. This completes the
proof of Theorem 3.3. O

For the proof of the next theorem, we need the following tightness criterion
in the subspace Lip;(ocl,ocz,v), 2 < p<+owo (see Boufoussi and Lakhel [9],
Lemma 2.5).

Theorem 3.4. Let {X[,|(s,1) € [0, 1]2},,21 be a sequence of random fields
satisfying.:

(1) X7 = X' = x for some € R.

(2) For all 2 < p < 40, there exists a constant 0 < C, < +oco such that

EX], — X0, — X+ X )P < Cols = '[P\t = £|F forall 1,5 € [0,1],
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where 0 < ay,00 < 1. Then the sequence {X"}, ., is tight in Lip, (a1, 02,v) for
all v > 2,

Now we are ready to state and prove our second result.

Theorem 3.5. The sequence of processes

! 2
{e(al)/z (L(1,ex) = L(£,0)) | (£,x) € [0,1] }
converges in law as ¢ — 0 to the process

{2VeB} il (%) | (1, %) € 0,117}
in Lip, (%} ,%5,v),2 < p < +o0, forallv>—

Proof. By Theorem 1.2 of Rosen [15], we have the convergence of the finite-
dimensional distributions. The tightness follows from (1) and Theorem 3.4. [

Remark 3.6. In Section 3, the local time L(z,x) is analyzed in both its variables
through the anisotropic Besov Space, in contrast to Section 2 where one is inter-
ested in the regularity in ¢.
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