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Abstract. In this paper we explicitly characterize the outer-embeddings without vertex ac-
cumulation points in the open cylinder and in the Möbius strip. In the first case, the list of
forbidden minors consists of 11 graphs. In the second, we provide the list of 92 forbidden
minors as well as the list of 182 forbidden subgraphs.
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1. Introduction

A number of research lines have been recently developed in the field of Topo-

logical Graph Theory. Some of them consider di¤erent properties over infinite

graphs. In this sense, the characterization of graphs admitting embeddings with

no vertex accumulation point in tubular surfaces of finite genus was given in [16],

and graphs admitting embeddings in the plane without any vertex accumulation

point and with all their vertices in a same face can be found in [3].

Here we face two characterizations of embeddings (in the open cylinder and

the Möbius band), both of infinite, locally-finite graphs and on tubular surfaces,

without accumulation and with all their vertices in one face.

Before that, we recall some necessary definitions and results. All graphs in this

paper will be considered undirected and without loops or multiple edges. We will

use the standard graph-theoretical terminology, as it is presented in [11], with the

exception of vertex which will be employed instead of point and edge instead of

line. When dealing with infinite graphs in this paper, we will use the terminology

of [12], [15], [17], and we will refer to locally finite graphs with a countable vertex

set, i.e., countable graphs such that the degree of any vertex is finite. The formal
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definition of an embedding for this kind of graphs in tubular surfaces can be found

in [13], [14].

With regard to such tubular surfaces, we must consider that they are built from

a compact surface S, of a finite genus, where n open discs are replaced by n open

cylinders (i.e., a punctured compact surface, which is homeomorphic to the sur-

face with n di¤erent points removed). So, SðnÞ represents a non-compact surface

of finite genus with n Freudenthal ends. For example, if S2 is the sphere and P2 is

the projective plane, then S2ð1Þ is homeomorphic to the plane, S2ð2Þ to the open

cylinder, and P2ð1Þ to the Möbius band.

Going back to infinite graphs, it is worth mentioning that an infinite ray in

a graph G is homeomorphic to the positive half-line Rþ (see [9] to define a ho-

meomorphism between an infinite graph and a metric space). An end of a graph

defined by a ray is said to be stable (resp. strongly stable) if there exist a finite sub-

graph K such that every component of G � K defined by the ray is a tree (resp. an

infinite ray). Otherwise, the end is said to be unstable.

Later we will use a decompactification process, which consists of removing

some points to make the graph non-compact (i.e., replacing an open disc from S

by an open cylinder and replacing at least an edge from the graph by some infinite

rays, as in Figure 1). If G is a countable graph with all its n ends strongly stable

and addmiting an embedding without accumulation points in the tubular surface

SðnÞ, then it is possible to obtain some graph G� from which G is the decompacti-

fication of G� by n points. In general, such a graph G� is not unique, since it de-

pends on the embedding chosen for G (moreover, it depends on the ‘‘remaining’’

vertices of degree two after contracting each end). Such a ‘‘compactification’’ is

said to be the main n-compactification when the rays are replaced by n vertices

and only one vertex of each ray remains; note that the main-n-compactification is

unique for each embedding of G in SðnÞ, because all the graph ends going to the

same end of the surface have to be replaced by only one vertex.

Graphs admitting an embedding in SðnÞ with no vertex accumulation point

are usually called VAP-free-SðnÞ. Clearly, if G is a minor of G 0 and G 0 is VAP-

free-SðnÞ, then G is VAP-free-SðnÞ. In this way, the characterization of the

Figure 1. Decompactification of K3; 3 in a vertex (left) and in an inner point of an edge
(right); note that the number of vertices represented in each ray is irrelevant.
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VAP-free-SðnÞ graphs can be given in terms of forbidden minors, and we denote

by KVAP

�
SðnÞ

�
the set of forbidden VAP-free-SðnÞ minors. A graph G is in

KVAP

�
SðnÞ

�
if it is not VAP-free-SðnÞ and it verifies that if H is a minor of G

and G is not a minor of H then H is VAP-free-SðnÞ.
The decompactification process provides a way to characterize VAP-free-SðnÞ

graphs. In 1966 Halin [10] already characterized VAP-free-S2ð1Þ graphs in terms

of forbidden subgraphs, and the list of forbidden minors for VAP-free-P2ð1Þ-
embeddability was independently obtained by Revuelta [16] and Archdeacon,

Bonnington, Debowsky, and Prestidge [1].

Moreover, a generalization of these characterizations can be found in [16].

For any compact surface S, the following three results hold. First, every graph

in KVAP

�
Sð1Þ

�
is strongly stable. Second, if W is a non-empty set of vertices of

G, then G admits an embedding in S such that all the vertices of W are in the same

face if and only if GW is VAP-free-Sð1Þ, where GW is the strongly stable graph

built from G with one infinite ray starting from each vertex of W . Finally,

KVAP

�
Sð1Þ

�
is composed by all the GW such that G is a minimal element (in the

minor ordering) regarding the W -S-embedddability (see [16] for more details).

The last results can be generalized in several ways for the general tubular sur-

face SðnÞ; some of these generalizations are easy to prove and will be applied

further ahead, when dealing with p-outer-SðnÞ embeddings (i.e., of a locally finite

graph which admits an embedding in SðnÞ without vertex accumulation points and

with all its vertices in only one face). Hence, every graph which does not admit

a non-p-outer-SðnÞ embedding is the decompactification of a non-outer-S graph

by n points (see [5] if more details are needed). If n ¼ 1, we are provided with a

method to obtain lists of forbidden minors (and even lists of forbidden subgraphs).

In fact, forbidden p-outer-Sð1Þ minors can be immediately generated when for-

bidden outer-S subgraphs are known. The di¤erence with respect to the process of

obtaining forbidden VAP-free graphs from the obstruction lists for finite graphs is

that there may appear redundant graphs, which have to be removed from the final

list (see [8] if more details are needed).

Let us call Kp

�
SðnÞ

�
the set of forbidden p-outer-SðnÞ minors. So, Kp

�
S2ð1Þ

�

(forbidden p-outerplanar minors) was obtained (as well as the list of forbidden

subgraphs) in [3], by applying the decompactification process to the classic list

of forbidden outerplanar graphs given in [7]. This set is represented in Figure 2.

Next we will deal with two particular cases: the open cylinder (S ¼ S2 and n ¼ 2)

and the Möbius band (S ¼ P2 and n ¼ 1).

2. Outer-embeddings in the open cylinder

The next generalization of the Kuratowski graph planarity criterion is the main

result of this paper. Theorem 2.6 states that a countable graph with vertices of

3Outerplanarity in the Cylinder and the Möbius Band



finite degrees can be embedded into the open annulus so that the set of vertices

does not contain a convergent sequence and all the vertices are in one face if and

only if the graph does not have any of 11 minors listed in its statement (Theorem

2.6 and Figures 2 and 4). In order to prove this characterization, some previous

properties are required.

According to the previous comments, all ends in a forbidden p-outer-S2ð2Þ
minor are strongly stable. Moreover, each p-outer-S2ð2Þ graph admits an S2ð2Þ-
embedding without accumulation points of either vertices or edges and with all

its vertices in the same face. However, the decompactification process presents

some di¤erences with respect to the case of only one tubular end. Hence, the

following results are needed to characterize the p-outer-embeddings in S2ð2Þ (i.e.,
p-outercylindrical), and they may have other topological applications.

Lemma 2.1. If less than three rays are added to an outerplanar ( finite) graph, then

a p-outercylindrical graph is obtained.

Proof. We start from an outerspherical embedding of an outerplanar graph G,

and we choose two di¤erent points within the inner of a face where all the vertices

lie. Thus, it is possible to add two rays, each of them with accumulation in exactly

one of the two chosen points. The decompactification by these two points con-

cludes the proof. r

The proofs for the following lemmas are similar to the aforementioned.

Lemma 2.2. If less than five rays are added to a ( finite) tree, then a

p-outercylindrical graph is obtained. r

Lemma 2.3. If less than three rays are added to a same vertex in a p-outerplanar

graph, then a p-outercylindrical graph is obtained. r

Lemma 2.4. If the graph G1 of Figure 3 is added to a p-outerplanar graph G, by

identifying a vertex of the cycle with a vertex of G, then a p-outercylindrical graph

is obtained. r

Figure 2. Forbidden p-outerplanar minors.
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According to the previous definitions and results, it can be immediately in-

ferred that a p-outer-SðnÞ embedding implies an outerplanar embedding of its

main n-compactification and conversely. So, the following result is verified:

Lemma 2.5. A graph is p-outer-SðnÞ if and only if its main n-compactification is

outerplanar. r

By taking into consideration these previous results as well as the graphs from

Figures 2 and 4, we can prove the characterization theorem for p-outercylindrical

graphs, whose formulation can be also found in [4]. Notice that t stands for the

disjoint union.

Theorem 2.6 ([8]). Kp

�
S2ð2Þ

�
¼ fK4;K2;3;A

1
1 t A1

1 ;A
1
1 t B1

1 ;B
1
1 t B1

1 ;Mi : i ¼
1; . . . ; 6g.

Proof. Su‰ciency. None of the eleven graphs above mentioned are p-outer-

cylindrical, since their main 2-compactifications are not outerplanar. Besides, the

set is minimal: none of the eleven graphs is a minor of any other.

Necessity. Let G be a non-p-outercylindrical graph. G has a non-p-outer-

cylindrical minor having all its ends strongly stable. Thereby we can suppose

that G has all its ends strongly stable. Moreover, if G has less than three ends, G

Figure 3. Two auxiliary graphs.

Figure 4. Some forbidden p-outer-cylindrical minors.
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cannot be outerplanar not even when its rays were removed (according to Lemma

2.1). So, G has either K4 or K2;3 as a minor.

Let G be a non-p-outercyilindrical graph with at least three strongly stable

ends. Then not all the connected components of G can be p-outerplanar. In

fact, it can be supposed that G has not got any p-outerplanar connected compo-

nent; therefore, if G is non-connected, then either it is not outerplanar (it has got a

minor between K4 or K2;3) or it has got a minor among the disjoint union of two

forbidden p-outerplanar minors (A1
1 t A1

1 , A
1
1 t B1

1 , or B
1
1 t B1

1). From now on, G

is supposed to be connected.

If G has more than four ends, as G is connected, M1 is a minor of G. Then, let

G be a p-outerplanar graph which is not p-outercylindrical and has got three or

four ends. It can be also supposed that any two cycles of G do not share more

than one vertex: if they share one edge, this one can be contracted, obtaining a

minor of G which can be named H; H is non-p-outercylindrical and has got less

cycles sharing some elements (they can share no more elements because, in this

case, it would exist a finite non-outerplanar subgraph of G).

From Lemma 2.2, there exists at least one cycle in G having between one and

four cut points. We call these points support vertices: they are vertices of the cycle

whose removing separates an infinite connected component from another in which

the rest of vertices belonging to cycles remain. Here, cycles without support ver-

tices do not a¤ect the p-outer-S2ð2Þ-embeddability (i.e., a non-p-outer-S2ð2Þ
minor of G can be found with some support vertex in each cycle). Consequently,

it can be supposed that every cycle of G has support vertices.

According to Lemma 2.3, if there are less support vertices than rays, then the

resulting graph when removing two rays from the same support vertex cannot be

p-outerplanar. So A1
1 is a minor of this graph (B1

1 is not because G would have

five rays). Therefore, a minor of G is either M2 (if the rays are added without

other support vertices) or the graph G2 from Figure 3. But G2 is p-outercylindrical

and it will be so although finite trees or cycles passing for some support vertices

were added, and although some vertices were split, except in the case of the vertex

of degree four, which produces the non-p-outercylindrical minor M3. So, M3 is

a minor of G since there are less support vertices than rays and M2 is not a minor

of G.

Finally, let G be a connected and outerplanar non-p-outercylindrical graph

with three or four rays corresponding to di¤erent support vertices. Indeed, it can

be supposed that there are not finite rays in G and that each ray is incident with a

support vertex. Note that two support vertices of a same cycle are not adjacent: if

so, when the edge between them was contracted, the resulting minor would remain

non-p-outercylindrical (due to the fact that the number of faces in which all ver-

tices can be represented does not decrease), although it would have less support

vertices than rays, having a minor between M2 or M3. According to this, if there
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are three support vertices in a same cycle (as in the case when G has a unique

cycle), M4 is a minor of G.

If there are not three support vertices in a same cycle, then there will exist two

cycles and two support vertices in these cycles such that each of these support ver-

tices only belongs to one of the two cycles and each of these cycles only shares a

vertex with other cycles. If there are two support vertices in each of both cycles,

then M5 (if there are only three support vertices) or M3 is a minor of G. In the

other case, there is a cycle which only shares a vertex with other cycles having

a unique support vertex. It could be that the support vertex is not adjacent with

the shared vertex (if they are adjacent, the edge between them could be removed

Figure 5. Infinite forbidden p-outer-P2ð1Þ minors.
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Figure 6. Remaining forbidden p-outer-P2ð1Þ subgraphs.
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and the number of cycles would be reduced, but the graph does not become p-

outercylindrical), therefore (according to Lemma 2.4) a cycle (except for a vertex)

and a ray can be removed in such a way that the resulting graph is not p-

outerplanar. So, a minor of G is the union of A1
1 or B1

1 with G1 (from Figure 3)

by a vertex, and a minor of G is M2, M5, or M6.

As all possible non-p-outercylindrical graphs have already been considered, the

proof concludes. r

3. Outer-embeddings in the Möbius band

As there is only one end in P2ð1Þ, this case is easier than the previous one. Al-

though the starting lists are lengthier, the characterization of outer-projective

planar subgraphs (which can be found in [2], [6], [16]) provides us with the oppor-

tunity of applying a straightforward procedure. After decompactificating the

forbidden outer-projective planar subgraphs (from [2]) and deleting redundant

minors, the 92 forbidden p-outer-P2ð1Þ minors are obtained: the list Kp

�
P2ð1Þ

�
is

composed of the forbidden outer-projective minors plus the graphs from Figure 5.

Similarly to the process followed in [6], the forbidden p-outer-P2ð1Þ subgraphs are
obtained from those 92 minors; this list of forbidden subgraphs is composed of

182 forbidden p-outer-P2ð1Þ graphs (the forbidden outer-P2 subgraphs and all

the graphs from Figures 5 and 6).
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