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Abstract. This paper is concerned with the existence of solutions to the class of nonlocal
boundary value problems of the type

�M
�ð

W

j‘uj2
�
Du ¼ f ðx; uÞ; in W; u ¼ 0; on qW;

where W is a smooth bounded domain of RN and M is a positive continuous function. By
assuming that f ðx; uÞ is a Carathéodory function which growths at most jujN=ðN�2Þ, Nb 3,
and under a suitable growth condition on M, one proves an existence result by applying the
Leray–Schauder fixed point theorem.
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1. Introduction

The purpose of this article is to investigate the existence of solutions to the class of

nonlocal boundary value problems of the Kirchho¤ type

�
h
M
�ð

W

j‘uj2
�i

Du ¼ f ðx; uÞ in W

u ¼ 0 on qW;

ð1Þ

where, through this work, WHRN , is a bounded smooth domain, M : R ! R is

a continuous function and f : W� R ! R is a Carathéodory function with sub-

critical growth that satisfy some conditions which will be stated later on.

Problem (1) is called nonlocal because of the presence of the term Mð
Ð
W j‘uj2Þ

which implies that the equation (1), at each point, depends on the behavior of u on

the whole W. This phenomenon provokes some mathematical di‰culties which



makes the study of such a class of problem particularly interesting. Besides of this,

we have its physical motivation. Indeed, the operator Mð
Ð
W j‘uj2ÞDu appears in

the Kirchho¤ equation (see, Lions [20], p. 307), which arises in nonlinear vibra-

tions, namely

utt �
h
M
�ð

W

j‘uj2
�i

Du ¼ f ðxÞ in W� ð0;LÞ

u ¼ 0 on qW� ð0;LÞ
uðx; 0Þ ¼ u0ðxÞ
utðx; 0Þ ¼ u1ðxÞ:

ð2Þ

Such a hyperbolic equation is a general version of the Kirchho¤ equation

r
q2u

qt2
�
�P0

h
þ E

2~LL

ð ~LL

0

qu

qx

����
����
2

dx
� q2u
qx2

¼ 0 ð3Þ

presented by Kirchho¤ [18] (see also, Carrier [7]). This equation extends the clas-

sical d’Alembert’s wave equation by considering the e¤ects of the changes in the

length of the string during the transverse vibrations, i.e., when it is supposed only

vertical component for the tension on the string of length ~LL. The parameters in

equation (3) have the following meaning: ~LL, a constant, is the total length of the

string, h is the area of cross-section, E is the Young modulus of the material, r is

the mass density, P0 is the initial tension and uðx; tÞ the vertical displacement of

the point x of the string, at time t. It is worth mentioning that Eq. (2) received

much attention after the work of Lions [20], where a functional analysis frame-

work was proposed to the problem. To find solutions of (2), Lions [20] considers

that M a C1 (MðlÞ and d
dl
MðlÞ are continuous on lb 0, see, Lions [20], Remark

1.4 and Theorem 3.1). It is an interesting open problem in mathematics (see,

Lions [20], Remark 3.7), what happens when M is only assumed

l ! MðlÞ is continuous on lb 0 and satisfies MðlÞbm0 > 0; ð4Þ

with m0 a constant?.

Some other interesting results can be found, for example, in [6], [15] and [16].

We have to point out that nonlocal problems also appear in other fields as,

for example, biological systems where u describes a process which depends on the

average of itself (for example, population density). See, for example, [2] and its

references.

Now, a key work on nonlocal elliptic problems is the paper by Chipot and

Rodrigues [10]. However, one of the first works on the Eq. (1), at least in a func-

tional analysis setting, was given by Vasconcellos [24]. He considered the equa-
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tion N
�
x; aðx; uÞ

�
Lu ¼ f in an unbounded domain of RN , by using a consequence

of Browder fix point theorem, Galerkin approximations and weighted Sobolev

Spaces. Motivated by this result, it was studied in Andrade and Ma [5] an opera-

tor equation of the type MðkAsuk2HÞAu ¼ Nu, where 0a s < 1 and H is a Hilbert

space. It corresponds to (1) when A ¼ �D, s ¼ 1
2 and H ¼ L2ðWÞ, and was also

considered in Cousin at all [15] with Nu ¼ f . More recently Chen, Kuo and Wu

[8], investigated the multiplicity of solutions to a class of Dirichlet boundary value

problems of the type (1), when MðsÞ ¼ asþ b and a; b > 0 constants, by using

Nehari manifold. It was studied in Martinez, Castelani, Silva and Shirabayashi

[23], an equation of the type, �Mðku 0k22Þu 00 ¼ qðtÞ f ðt; u; u 0Þ, by using classical

fixed point theorems, that is, they are compiling two theorems in order to establish

strong conditions of existence for the equation described, namely Krasnoselskii’s

theorem and an alternative of Leray–Schauder’s type. Other papers, [1], [2], [9],

[11], [12], [13], [21], [22], studied nonlocal boundary value problems and unilateral

problems with several applications.

As seen previously, the use of fixed point theorems, in nonlocal problems is

not new, e.g., [24], [23], [13]. In Corrêa, Menezes and Ferreira [13] was proved a

result on existence of positive solution for a nonlocal elliptic problem by using a

result on Fixed Point Index Theory and the authors improved the results in [10],

[9].

We will always work in the space RN , if Nb 3, because in the another dimen-

sions N ¼ 1 and 2 everything follows by making standard modifications. Note

that, in the case that we will consider we have 2� ¼ 2N
N�2 , which is the well known

critical Sobolev exponent.

The main tool in this work is the Leray–Schauder’s fixed point theorem, this

fixed point theorem is not usual in the literature to solve nonlocal elliptical type

problems. In general, variational methods are more usual because, under appro-

piate assumptions on M and f , solutions of (1) can be obtained as critical points

of the functional 1
2
~MMðk‘uk22Þ �

Ð
W F ðx; uÞ dx, where ~MMðtÞ ¼

Ð t
0 MðsÞ ds, F ðx; tÞ ¼Ð t

0 f ðx; sÞ ds (see [1] for more details).

2. The main result

The hypotheses on the functions M and f in (1) are the following.

(H1) f ðx; tÞ is a Carathéodory function such that

j f ðx; tÞja bljtjq þ cl:

where bl, cl are positive constants, 1 < qa N
N�2 if Nb 3 and 1 < q < l if

N ¼ 1; 2.
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(H2) M : R ! R is a continuous monotonous nondecreasing function such that,

there exists a0 > 0 satisfying MðtÞb a0, for all tb 0 and

lim
t!þl

MðtÞ
tN=ðN�2Þ ¼ d;

where d a �0;þl�.

Remark 2.1. We note that the hypotheses (H1)–(H2) does not include the case

MðtÞ ¼ atþ b, with a; b > 0 constants. Really, if Nb 3, we have that N
N�2 > 1

and lim
t!þl

atþb
tN=ðN�2Þ ¼ 0:

Remark 2.2. When Nb 5, the hypothesis to the limit in (H2) can be substituted

by

lim
t!þl

MðtÞ
t

¼ d;

where d a �0;þl�, and we can consider the most common of M’s, which is behind

the physical motivation of the problem: MðsÞ ¼ asþ b with a; b > 0.

Recall that u a H 1
0 ðWÞ is a weak solution of (1) if

Mðkuk21;2Þ
ð
W

‘u‘v dx ¼
ð
W

f ðx; uÞv dx; Ev a H 1
0 ðWÞ;

where k � k1;2 is the usual norm

kuk21;2 ¼
ð
W

j‘uj2 dx

in the Sobolev space H 1
0 ðWÞ.

The main result of this paper is:

Theorem 2.3. Assume that conditions (H1)–(H2) hold. Then, there exists a weak

solution in H 1
0 ðWÞBW 2;2 �=qðWÞ for (1).

In [21], Theorem 1, using the Galerkin’s method, the author proved the exis-

tence of weak solution, in H 1
0 ðWÞ, to problem (1) assuming that f : W� R ! R

is a Carathéodory function satisfying

j f ðx; sÞjaCð1þ jsjqÞ Ex a W; Es a R;
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where C > 0, 1 < q < ðN þ 2Þ=ðN � 2Þ if Nb 3 and 1 < q < l if N ¼ 1; 2 and

exists m0 > 0 such that MðsÞbm0 Esb 0. But an additional hypothesis f is con-

sidered, this is, there are constants a; b > 0 such that

f ðx; sÞsa ajsj2 þ bjsj Ex a W; Es a R ð5Þ
with

a < m0l1;

where l1 is the principal eigenvalue of �D in H 1
0 ðWÞ.

In [2], Theorem 3, using variational methods, the authors proved the existence

of positive weak solution, in H 1
0 ðWÞ, to problem (1) assuming that f a CðW� RÞ

is a locally Lipschitz function satisfying

j f ðx; sÞjaCð1þ jsjqÞ Ex a W; Es a R;

where C > 0, 1 < q < ðN þ 2Þ=ðN � 2Þ if Nb 3 and 1 < q < l if N ¼ 1; 2,

f ðx; tÞ ¼ oðtÞ ðas t ! 0Þ

and, for some m > 2 and R > 0,

0 < mFðx; tÞa f ðx; tÞt; Ejtj > R;

where F ðx; tÞ ¼
Ð t
0 f ðx; sÞ ds.

Example 2.4. Assuming N ¼ 3 and functions f ðx; sÞ ¼ 1þ jsj3 and MðtÞ ¼
aþ btr, with a; b > 0 constants, tb 0 and rb 3. We have that f and M satisfy

the assumptions (H1)–(H2) because, lim
t!þl

MðtÞ
t3

¼ d; where d ¼ b if r ¼ 3 or

d ¼ þl if r > 3.

Still, f does not satisfy (5) for t > 0 large enough. So, f does not satisfy the

hypotheses on [21], Theorem 1. Also, f does not satisfy the assumptions of [2],

Theorem 3 since, we don’t have that f ðx; tÞ ¼ oðtÞ.

In this work using the Leray–Schauder’s fixed point theorem and imposing

some additional assumptions on M, we will prove an existence result for (1) and

this result is di¤erent and complements early works.

3. Preliminary results

In order to make this presentation as self-contained as possible we introduce

the result about the Leray–Schauder’s fixed point. For more details see Friedman

[17], pp. 189, Theorem 3.

15Nonlocal elliptic equation



Theorem 3.1 (Leray–Schauder). Consider a mapping T goes from X � ½a; b� to X,

where a; b a R and X is a Banach space. Assume that:

(a) For any fixed k, Tðx; kÞ is a compact transformation, i.e., it is continuous and

maps bounded sets into relatively compacts sets.

(b) For x in bounded sets of X, Tðx; kÞ is uniformly continuous in k, i.e., for any

bounded set X0HX and for any e > 0 there exists a d > 0 such that if x a X0,

jk1 � k2j < d, aa k1; k2a b, then kTðx; k1Þ � Tðx; k2Þk < e.

(c) There exists a ( finite) constant R such that every possible solution x of

x� Tðx; kÞ ¼ 0 (x a X ; k a ½a; b�) satisfies: kxkaR.

(d) The equation x� Tðx; aÞ ¼ 0 has a unique solution in X.

Then there exists a solution of the equation x� Tðx; bÞ ¼ 0.

Lemma 3.2. Assume that condition (H1) hold. Then, if f a H 1
0 ðWÞ, then

f ðx;fÞ
Mðkfk21; 2Þ

a L2�=qðWÞ.

Proof. Suppose f a H 1
0 ðWÞ, it follows from (H1) thatð

W

j f ðx; fÞj2
�=q

½Mðkfk21;2Þ�
2 �=q

dxa
Cb

2�=q
l

a
2�=q
0

kfk2
�

L2 � ðWÞ þ
Cc

2 �=q
l

a
2 �=q
0

< l:

Therefore,
f ðx;fÞ

Mðkfk21; 2Þ
a L2�=qðWÞ.

For f a H 1
0 ðWÞ and 0a la 1, we consider the following problem

�
h
M
�ð

W

j‘fj2
�i

Du ¼ lf ðx; fÞ in W

u ¼ 0 on qW:

ð6Þ

Note that finding a weak solution of the problem (6) in H 1
0 ðWÞ is equivalent to

finding a weak solution of the following modified problem

�Du ¼ l
f ðx; fÞ

Mðkfk21;2Þ
in W

u ¼ 0 on qW:

ð7Þ

From Lemma 3.2, for each f a H 1
0 ðWÞ and l a ½0; 1�, l f ðx;fÞ

Mðkfk21; 2Þ
a L2�=qðWÞ. As

by (H1), 2�

q
b 2, it follows from elliptic regularity that for every f a H 1

0 ðWÞ and

l a ½0; 1�, the problem (6) has a unique solution

u a H 1
0 ðWÞBW 2;2�=qðWÞ; ð8Þ

see, A. Ambrosetti and G. Prodi [4], Theorem 05.
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The application T : H 1
0 ðWÞ � ½0; 1� ! H 1

0 ðWÞ defined by,

Lðf; lÞ ¼ u ð9Þ

is well defined just because, for each f and l, u is in H 1
0 ðWÞ and unique.

Lemma 3.3. The mapping T : H 1
0 ðWÞ � ½0; 1� ! H 1

0 ðWÞ has the following prop-

erties:

(i) Tð�; lÞ : H 1
0 ðWÞ ! H 1

0 ðWÞ is compact for every l a ½0; 1�, i.e., it is continuous

and maps bounded sets into relatively compacts sets.

(ii) For every e > 0 and every bounded set AHH 1
0 ðWÞ there exists d > 0 such that

kTðf; l1Þ � Tðf; l2ÞkH 1
0
ðWÞ < e;

whenever f a A and jl1 � l2j < d.

Proof of (i). Take ðfnÞnb1 a H 1
0 ðWÞ, such that fn ! f in H 1

0 ðWÞ and consider

Tðfn; lÞ ¼ un and Tðf; lÞ ¼ u, then, un � u satisfies

�Dðun � uÞ ¼ l
f ðx; fnÞ

Mðkfnk
2
1;2Þ

� f ðx; fÞ
Mðkfk21;2Þ

 !
in W

ðun � uÞ ¼ 0 on qW:

ð10Þ

By Lemma 3.2, elliptic regularity and continuity of immersion W
1;2 �=q
0 ðWÞB

W 2;2�=qðWÞ ,! H 1
0 ðWÞ, we conclude that

kTðfn; lÞ � Tðf; lÞk1;2 ¼ kun � uk1;2aC
f ðx; fnÞ

Mðkfnk
2
1;2Þ

� f ðx; fÞ
Mðkfk21;2Þ

�����
�����
2�=q

aC
1

Mðkfnk
2
1;2Þ

k f ðx; fnÞ � f ðx; fÞk2�=q

þ C
f ðx; fÞ

�
Mðkfnk

2
1;2Þ �Mðkfk21;2Þ

�
Mðkfnk

2
1;2ÞMðkfk21;2Þ

�����
�����
2�=q

aC
1

a0
k f ðx; fnÞ � f ðx; fÞk2�=q

þ C

a20
jMðkfnk

2
1;2Þ �Mðkfk21;2Þj k f ðx; fÞk2 �=q:

It follows from (H2) (the continuity of M) that jMðkfnk
2
1;2Þ �Mðkfk21;2Þj ! 0.

As j f ðx; sÞja bljsjq þ cl, it follows from (H1) and Ambrosetti and Prodi [4],
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Theorem 2.2 that the Nemytskii operator f is a continuous map from L2� ðWÞ to
L2 �=qðWÞ and we have that k f ðx; fnÞ � f ðx; fÞk2 �=q ! 0 consequently. By the last

inequality we conclude that Tð�; lÞ is continuous, for each l a ½0; 1�.
To prove the compactness of Tð�; lÞ, we note that Tð�; lÞ can be written as the

composition of operator solution H 1
0 ðWÞ ! W

1;2�=q
0 ðWÞBW 2;2�=qðWÞ with the

inclusion operator W
1;2�=q
0 ðWÞBW 2;2�=qðWÞ ,! H 1

0 ðWÞ, that is compact, indeed,

by A. Ambrosetti and G. Prodi [4], Theorem 0.4, W 2;2�=qðWÞ ,! H 1ðWÞ is com-

pact and by continuity of the trace operator H 1ðWÞ 7! H 1=2ðqWÞ it follows the

assertion. This proves the item (i).

Proof of (ii). We note that for each f a A, there exists R > 0 such that

kfkL2 � ðWÞ aR (from [4], Theorem 0.4 the immersion H 1ðWÞ ,! L2� ðWÞ is

continuous). We consider f a A, Tðf; l1Þ ¼ u1, Tðf; l2Þ ¼ u2, then, u ¼ u1 � u2
satisfies

�Du ¼ ðl1 � l2Þ
f ðx; fÞ

Mðkfk21;2Þ
in W

u ¼ 0 on qW:

ð11Þ

By Lemma 3.2, elliptic regularity and continuity of immersion W
1;2 �=q
0 ðWÞB

W 2;2�=qðWÞ ,! H 1
0 ðWÞ, we get

kTðf; l1Þ � Tðf; l2Þk1;2 ¼ ku1 � u2k1;2aC1jl1 � l2j
f ðx; fÞ

Mðkfk21;2Þ

�����
�����
L2 �=qðWÞ

aC1jl1 � l2j C2
b
2�=q
l

a
2�=q
0

kfk2
�

L2� ðWÞ þ
C2c

2 �=q
l

a
2 �=q
0

 !q=2�

aC3jl1 � l2j
ðb2

�=q
l R2� þ c

2�=q
l Þ

a0

q=2�

aC3jl1 � l2j
ðblRq þ clÞ

a0
:

Choosing d ¼ e C3
ðblRqþclÞ

a0

h i�1

, we have that jl1 � l2j < d implies

kTðf; l1Þ � Tðf; l2ÞkH 1
0
ðWÞ < e;

for each f a A.

Lemma 3.4. Suppose that assumptions (H1)–(H2) are satisfied. Then, there exists

a number r > 0, such that any fixed point u a H 1
0 ðWÞ of Tð�; lÞ for any l a ½0; 1�,
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i.e., Tðu; lÞ ¼ u for some l a ½0; 1�, satisfies

kuk1;2 < r: ð12Þ

Proof. Testing the equation

�
h
M
�ð

W

j‘uj2
�i

Du ¼ lf ðx; uÞ in W

u ¼ 0 on qW

ð13Þ

by u and using integration by parts, Young’s inequality and (H1), we conclude

that

Mðkuk21;2Þ
ð
W

j‘uj2 dx ¼ l

ð
W

f ðx; uÞu dx

a
q

2�

ð
W

ðbljujq þ clÞ2
�=q

dxþ 2� � q

2�

ð
W

juj2
�=ð2��qÞ

dx

aC1ðb2
�=q

l ; q; 2�Þ
ð
W

juj2
�
dxþ C2ðc2

�=q
l ; jWj; q; 2�Þ

If kukL2� ðWÞa 1, we have that

ð
W

j‘uj2 dxa C1ðb2
�=q

l ; q; 2�Þ
a0

þ C2ðc2
�=q

l ; jWj; q; 2�Þ
a0

:

Suppose that kukL2� ðWÞ > 1. As the immersion H 1ðWÞ ,! L2� ðWÞ is contin-

uous, in other words, there is a constant C0 > 0 such that kuk2L2 � ðWÞaC0kuk21;2.
Therefore, it follows from (H2) that

MðC�1
0 kuk2L2� ðWÞÞ

ð
W

j‘uj2 dxaC1ðb2
�=q

l ; q; 2�Þ
ð
W

juj2
�
dxþ C2ðc2

�=q
l ; jWj; q; 2�Þ:

Again by (H2) we conclude that

ð
W

j‘uj2 dxaC1ðb2
�=q

l ; q; 2�Þ
½kuk2L2� ðWÞ�

N=ðN�2Þ

MðC�1
0 kuk2L2� ðWÞÞ

þ C2ðc2
�=q

l ; jWj; q; 2�Þ
a0

¼ C1ðb2
�=q

l ; q; 2�Þ
C

�N=ðN�2Þ
0

1

MðC�1
0

kuk2
L2� ðWÞÞ

½C�1
0

kuk2
L2� ðWÞ�

N=ðN�2Þ

þ C2ðc2
�=q

l ; jWj; q; 2�Þ
a0

aC4 < l:

Choosing, r > max
C1ðb2

�=q
l ;q;2 �Þ
a0

þ C2ðc2
�=q

l ; jWj;q;2 �Þ
a0

;C4

� �	 
1=2
follows the lemma.
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Remark 3.5. When Nb 5, as 0 < N
N�2 � 1 ¼ 2

N�2 a
2
3 < 1. It follows from Re-

mark 2.2 and rewriting the last inequality we obtain thatð
W

j‘uj2 dxa C5

C�1
0

1

MðC�1
0

kuk2
L2� ðWÞÞ

C�1
0

kuk2
L2� ðWÞ

½kuk2L2� ðWÞ�
2=ðN�2Þ þ C6

a
C5

C�1
0

1

MðC�1
0

kuk2
L2� ðWÞÞ

C�1
0

kuk2
L2� ðWÞ

�
C0

ð
W

j‘uj2 dx
�2=ðN�2Þ

þ C6

aC7

�ð
W

j‘uj2 dx
�2=ðN�2Þ

þ C6:

Thus, there is a constant C8, independent of u, such that

ð
W

j‘uj2 dxaC8:

Choosing, r > max
C1ðb2

�=q
l ;q;2�Þ
a0

þ C2ðc2
�=q

l ; jWj;q;2 �Þ
a0

;C8

� �	 
1=2
it follows again

the conclusion of Lemma 3.4.

4. Proof of Theorem 2.3

From Lemma 3.4, we know the existence of a number r > 0 which satisfies the

property stated in (12) and we have that the equation, u� Tðu; 0Þ ¼ 0, admits a

unique solution, i.e., the unique solution of

�
h
M
�ð

W

j‘uj2
�i

Du ¼ 0 in W

u ¼ 0 on qW;

is u ¼ 0. Indeed, it is enough to multiply the equation by u and integrate by parts

to get (as Mb a0 > 0)
Ð
W j‘uj2 dx ¼ 0, and u ¼ 0 subsequently.

It follows from Leray–Schauder’s fixed point theorem, Theorem 3.1 with

X ¼ H 1
0 ðWÞ and ½a; b� ¼ ½0; 1�, that the problem

u� Tðu; 1Þ ¼ 0;

has a solution u.

It follows from (9) that u is a solution of the problem (1), and by (8) follows the

theorem.
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[22] T. F. Ma and J. E. Muñoz Rivera, Positive solutions for a nonlinear nonlocal elliptic
transmission problem. Appl. Math. Lett. 16 (2003), 243–248. Zbl 1135.35330
MR 1962322

[23] A. L. M. Martinez, E. V. Castelani, J. da Silva, and W. V. I. Shirabayashi, A note
about positive solutions for an equation of Kirchho¤ type. Appl. Math. Comput. 218

(2011), 2082–2090. Zbl 1235.34080 MR 2831484

[24] C. F. Vasconcellos, On a nonlinear stationary problem in unbounded domains. Rev.
Mat. Univ. Complut. Madrid 5 (1992), 309–318. Zbl 0780.35035 MR 1195085

Received September 10, 2012

A. L. A. de Araujo, Departamento de Matemática, Universidade Federal de Viçosa, Av.
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