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Another approach on an elliptic equation of Kirchhoff type
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Abstract. This paper is concerned with the existence of solutions to the class of nonlocal
boundary value problems of the type

(| 1V = s, in =0, on o0

where Q is a smooth bounded domain of RY and M is a positive continuous function. By
assuming that f(x,u) is a Carathéodory function which growths at most |u|N/ V=2 N > 3,
and under a suitable growth condition on M, one proves an existence result by applying the
Leray—Schauder fixed point theorem.
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1. Introduction

The purpose of this article is to investigate the existence of solutions to the class of
nonlocal boundary value problems of the Kirchhoff type

- [M(JQ |Vu\2)}Au — fxu) inQ
u=0 on 0Q,

()

where, through this work, Q = R", is a bounded smooth domain, M : R — R is
a continuous function and f : Q x R — R is a Carathéodory function with sub-
critical growth that satisfy some conditions which will be stated later on.

Problem (1) is called nonlocal because of the presence of the term M( |, IVu|?)
which implies that the equation (1), at each point, depends on the behavior of u on
the whole Q. This phenomenon provokes some mathematical difficulties which
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makes the study of such a class of problem particularly interesting. Besides of this,
we have its physical motivation. Indeed, the operator M( [, |Vu|*)Au appears in
the Kirchhoff equation (see, Lions [20], p. 307), which arises in nonlinear vibra-
tions, namely

u=0 onodQx(0,L) (2)
u(x,0) = up(x)
u;(x,0) = u (x)

Such a hyperbolic equation is a general version of the Kirchhoff equation
0*u Py, E L 2 o%u
— ——+= d. 0 3
Par <h+2LJ0 x) (3)

ox2

presented by Kirchhoff [18] (see also, Carrier [7]). This equation extends the clas-
sical d’Alembert’s wave equation by considering the effects of the changes in the
length of the string during the transverse vibrations, i.e., when it is supposed only
vertical component for the tension on the string of length L. The parameters in
equation (3) have the following meaning: L, a constant, is the total length of the
string, /1 is the area of cross-section, E is the Young modulus of the material, p is
the mass density, Py is the initial tension and u(x, ¢) the vertical displacement of
the point x of the string, at time ¢. It is worth mentioning that Eq. (2) received
much attention after the work of Lions [20], where a functional analysis frame-
work was proposed to the problem. To find solutions of (2), Lions [20] considers
that M e C' (M (%) and - M(2) are continuous on 4 > 0, see, Lions [20], Remark
1.4 and Theorem 3.1). It is an interesting open problem in mathematics (see,
Lions [20], Remark 3.7), what happens when M is only assumed

@
ox

A — M (A) is continuous on A > 0 and satisfies M (1) > my > 0, 4)

with myg a constant?.

Some other interesting results can be found, for example, in [6], [15] and [16].

We have to point out that nonlocal problems also appear in other fields as,
for example, biological systems where u describes a process which depends on the
average of itself (for example, population density). See, for example, [2] and its
references.

Now, a key work on nonlocal elliptic problems is the paper by Chipot and
Rodrigues [10]. However, one of the first works on the Eq. (1), at least in a func-
tional analysis setting, was given by Vasconcellos [24]. He considered the equa-
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tion N (x, a(x, u))Lu = f in an unbounded domain of R", by using a consequence
of Browder fix point theorem, Galerkin approximations and weighted Sobolev
Spaces. Motivated by this result, it was studied in Andrade and Ma [5] an opera-
tor equation of the type M(||A“'u||i,)Au = Nu, where 0 < s < 1 and H is a Hilbert
space. It corresponds to (1) when 4 = —A, s =} and H = L*(Q), and was also
considered in Cousin at all [15] with Nu = f. More recently Chen, Kuo and Wu
[8], investigated the multiplicity of solutions to a class of Dirichlet boundary value
problems of the type (1), when M (s) = as+ b and a,b > 0 constants, by using
Nehari manifold. It was studied in Martinez, Castelani, Silva and Shirabayashi
[23], an equation of the type, —M(||u’||§)u” = q(2)f(t,u,u’), by using classical
fixed point theorems, that is, they are compiling two theorems in order to establish
strong conditions of existence for the equation described, namely Krasnoselskii’s
theorem and an alternative of Leray—Schauder’s type. Other papers, [1], [2], [9],
[11], [12], [13], [21], [22], studied nonlocal boundary value problems and unilateral
problems with several applications.

As seen previously, the use of fixed point theorems, in nonlocal problems is
not new, e.g., [24], [23], [13]. In Corréa, Menezes and Ferreira [13] was proved a
result on existence of positive solution for a nonlocal elliptic problem by using a
result on Fixed Point Index Theory and the authors improved the results in [10],
[9].

We will always work in the space R", if N > 3, because in the another dimen-
sions N =1 and 2 everything follows by making standard modifications. Note
that, in the case that we will consider we have 2* = , which is the well known
critical Sobolev exponent.

The main tool in this work is the Leray—Schauder’s fixed point theorem, this
fixed point theorem is not usual in the literature to solve nonlocal elliptical type
problems. In general, variational methods are more usual because, under appro-
piate assumptions on M and f, solutions of (1) can be obtained as critical points
of the functional 1 M ([|Vul|3) — [ F(x,u)dx, where M(t) = [y M(s)ds, F(x,1) =
fo x,s)ds (see [1 ] for more details).

N

2. The main result

The hypotheses on the functions M and f in (1) are the following.
(H1) f(x,1) is a Carathéodory function such that

Lf(x,0)] < boolt]? + cop.

where b.,, ¢, are positive constants, | < ¢ < {25if N >3and 1 < ¢ < oo if
N =12
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(H2) M : R — R is a continuous monotonous nondecreasing function such that,
there exists ay > 0 satisfying M(¢) > ay, for all ¢ > 0 and

M(1)
Jim vy =4

where d € ]0, +o0].

Remark 2.1. We note that the hypotheses (H1)—(H2) does not include the case
M(1) = at + b, with a,b > 0 constants. Really, if N >3, we have that 5 > 1

; at+b
and IEE-HOC g = 0.

Remark 2.2. When N > 5, the hypothesis to the limit in (H2) can be substituted
by

lim M—(Z):d,

t—+oo f

where d € |0, +0o0], and we can consider the most common of M’s, which is behind
the physical motivation of the problem: M(s) = as+ b with a,b > 0.

Recall that u € H} (Q) is a weak solution of (1) if
M (J[ullf ,) JQ VuVodx = JQf(x, wodx, Vve HN(Q),
where || - ||112 is the usual norm
Jull}s = | v ax
Q

in the Sobolev space H{ (Q).
The main result of this paper is:

Theorem 2.3. Assume that conditions (H1)—(H2) hold. Then, there exists a weak
solution in H} (Q) n W2/1(Q) for (1).

In [21], Theorem 1, using the Galerkin’s method, the author proved the exis-
tence of weak solution, in H|(Q), to problem (1) assuming that /: Q x R — R
is a Carathéodory function satisfying

If(x,8)] < C(1+1s]7) VxeQ, VseR,
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where C >0, l <g< (N+2)/(N-2)if N>3and 1 <g< o0 if N=1,2 and
exists mg > 0 such that M(s) > my Vs > 0. But an additional hypothesis f is con-
sidered, this is, there are constants a,» > 0 such that

flx,s)s <als|* +bls|] VYxeQ VseR (5)
with
a < mo/h,
where 7, is the principal eigenvalue of —A in H{ (Q).
In [2], Theorem 3, using variational methods, the authors proved the existence

of positive weak solution, in H{ (), to problem (1) assuming that f € C(Q x R)
is a locally Lipschitz function satisfying

If(x,9)] < C(1+1s]") VxeQ, VseR,
where C >0, 1 <g< (N+2)/(N-2)if N>3and 1 <g< 0 if N=1,2,
f(x,t)=o0(t) (ast—0)
and, for some g« > 2 and R > 0,
0 < uF(x,t) < f(x,0)t, V|t| >R,
where F(x,t) = [, f(x,5) ds.

Example 2.4. Assuming N =3 and functions f(x,s) =1+ |s]* and M(7) =
a+ bt", with a,b > 0 constants, t > 0 and r > 3. We have that /' and M satisfy
the assumptions (H1)-(H2) because, lim Afg” =d, where d=5b if r=3 or
d=+owifr>3. o

Still, f does not satisfy (5) for ¢ > 0 large enough. So, f does not satisfy the
hypotheses on [21], Theorem 1. Also, f* does not satisfy the assumptions of [2],
Theorem 3 since, we don’t have that f(x, ) = o(z).

In this work using the Leray—Schauder’s fixed point theorem and imposing
some additional assumptions on M, we will prove an existence result for (1) and
this result is different and complements early works.

3. Preliminary results

In order to make this presentation as self-contained as possible we introduce
the result about the Leray—Schauder’s fixed point. For more details see Friedman
[17], pp. 189, Theorem 3.
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Theorem 3.1 (Leray—Schauder). Consider a mapping T goes from X x [a,b] to X,
where a,b € R and X is a Banach space. Assume that:

(@) For any fixed k, T (x,k) is a compact transformation, i.e., it is continuous and
maps bounded sets into relatively compacts sets.

(b) For x in bounded sets of X, T(x, k) is uniformly continuous in k, i.e., for any
bounded set Xy = X and for any ¢ > 0 there exists a 0 > 0 such that if x € X,
’kl — k2| <0,a<ky, k) <b, then ||T(X,k1) — T(X, k2)|| <&

(c) There exists a (finite) constant R such that every possible solution x of
x—T(x,k) =0 (x e X, k € [a,b]) satisfies: ||x|| <R.

(d) The equation x — T(x,a) = 0 has a unique solution in X.
Then there exists a solution of the equation x — T'(x,b) =

Lemma 3.2. Assume that condition (H1) hold.  Then, if ¢ e H}(Q), then

_f(x4) 2%/q
M4l ») € L7H(Q).

Proof. Suppose ¢ € H}(Q), it follows from (H1) that

Sep_ Ch L cel
M @l
1,2 4

Therefore, L9 e 1.2'/4(Q).
(H(b\h 2)

For ¢ € H}(Q) and 0 < A < 1, we consider the following problem

< 0.

- [M(JQ |v¢|2)]Au —if(x.¢) nQ
u=0 on oQ.

(6)

Note that finding a weak solution of the problem (6) in H}(Q) is equivalent to
finding a weak solution of the following modified problem

I AC:T) R
M([I417 ) (7)

u=0 ondQ.

From Lemma32 for each ¢ € H!(Q) and 4 € [0, 1], A-L=0 eLz*/‘/(Q). As

gl
by (H1), 2 o = 2, it follows from elliptic regularity that for (gv‘érzy ¢ e H} (Q) and
/. € [0, 1], the problem (6) has a unique solution
ue HH(Q) n w*2/4(Q), (8)

see, A. Ambrosetti and G. Prodi [4], Theorem 05.
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The application 7 : Hi(Q) x [0, 1] — H}(Q) defined by,

L($,)) =u )
is well defined just because, for each ¢ and A, u is in HO1 (Q) and unique.

Lemma 3.3. The mapping T : H} (Q) x [0,1] — HJ(Q) has the following prop-
erties:

(i) T(-,2): HH(Q) — HL(Q) is compact for every A € [0,1], i.e., it is continuous
and maps bounded sets into relatively compacts sets.

(i) For every ¢ > 0 and every bounded set A = HJ(Q) there exists 6 > 0 such that

17(p ) = T 22) Ly < o
whenever ¢ € A and |1 — Ay| < 0.

Proof of (i). Take (¢,),-, € Hj(Q), such that ¢, — ¢ in H;(Q) and consider
T(¢,, ) = u, and T(¢,A) = u, then, u, — u satisfies

S(x,¢,) S (x,9)
—Au, —u) =21 —
( : (M(||¢n||12,z) M(||¢||12,z)>

(uy —u) =0  on 0Q.

(10)

By Lemma 3.2, elliptic regularity and continuity of immersion WO1 2 Q) n
Ww22'/4(Q) — H}(Q), we conclude that

n) S (x,¢)

T(¢,,2)—T(¢,2 = ||uy —u <
=0 e = e = HMH%IIIZ) TS

2%/q
(||¢ 7 ———— I/ (%, ) = F (% D)2 g
+C X ) (M| 4ull7 2) = MI41I7 )
M|l I17 ) M (II¢IIf,z) 2/

1
< Ca_0||f(x7 ¢n) _f(x7 ¢)||2*/q
+a_(/;|M(||¢n”1272) = MIBIT DS )y
0

It follows from (H2) (the continuity of M) that |M(||¢n||122) - M(||¢||122)| — 0.
As |f(x,5)] <bo|s|?! + ¢y, it follows from (H1) and Ambrosetti and Prodi [4],
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Theorem 2.2 that the Nemytskii operator f is a continuous map from L> (Q) to
L*'/7(Q) and we have that || f'(x, ¢,) — f(x, #)l»-/, — 0 consequently. By the last
inequality we conclude that T'(-, A) is continuous, for each 4 € [0, 1].

To prove the compactness of 7(-, 1), we note that T(-, 1) can be written as the
composition of operator solution H_(Q) — W, /4(Q) A W22'/1(Q) with the
inclusion operator W, "> /4(Q) A W22'/4(Q) — H}(Q), that is compact, indeed,
by A. Ambrosetti and G. Prodi [4], Theorem 0.4, W?>2'/4(Q) — H'(Q) is com-
pact and by continuity of the trace operator H'(Q) — H'/2(0Q) it follows the
assertion. This proves the item (i).

Proof of (ii). We note that for each ¢ € A, there exists R >0 such that
4]l 2+ ) < R (from [4], Theorem 0.4 the immersion H'(Q)<— L*(Q) is
continuous). We consider ¢ € 4, T(¢, A1) = u1, T(P, 2o) = up, then, u = u; — up
satisfies

A= (3 — Jp) L 9)

——— in Q
M(|l¢ll5 ») (11)
u=0 on Q.

By Lemma 3.2, elliptic regularity and continuity of immersion WOl 2/ Q) n
w22'/4(Q) — H} (Q), we get

" 1 . X7
1T 0) = T 222 = s sl 5 = ol — o] | L 0L
MBI ] L2100
* N
bgo/q * Czcgo/q !
< CIMI — },2| (CZTM ||¢||1242*(Q) + 2% /q
a, ay
2 g p2e | 27 /q\ 42
o0 R ©
< G- (b +e/%)
dap
by R1 4+ o
< C3|}~1 7}v2|w.

dop

qd4c -1 . .
Choosing 0 = ¢ [C3 M} , we have that |1} — 4| < J implies

do
IT(4,21) = T(¢, 22)ll gy ) <&
for each ¢ € 4.

Lemma 3.4. Suppose that assumptions (H1)—(H2) are satisfied. Then, there exists
a number p > 0, such that any fixed point u € H}(Q) of T(-,2) for any 4 € [0, 1],
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ie, T(u,X) = u for some J € [0, 1], satisfies
ully,> < p- (12)

Proof. Testing the equation

- [M(L Vil )| Au=if () in

u=0 ondQ

(13)

by u and using integration by parts, Young’s inequality and (H1), we conclude
that

M(Jlul2,) jg Vul? dx = Ajgﬂx, w)udx

IA

%J< Iul"+coo)”"dx+2z JI\” Py

I/\

Cl(b2/,q,2 >j W dx+ Co(cX 19,19, 4,27

If ||ul[ 2+ () < 1, we have that

Ci (b2, q,2" ), Go(e, 1], 4,27)
ag ao .

J |Vu|* dx <
Q

Suppose that [|u|;»q) > 1. As the immersion H'(Q) — Lz*(Q) is contin-
uous, in other words, there is a constant Cy > 0 such that [|ul|7 @) < Co|\u||127 5
Therefore, it follows from (H2) that

M(C 2 >j V> dx < CL (6277, g, 2 >j W dx + C(319,19,4,2°).

Again by (H2) we conclude that

el 72 @)™ (277,192, ¢,27)

|, Wl ax < coe2,0.27)
Q

_ 2
M(Cyullz2 @) do
e P21 g 2% 1 G (2 1Q], g, 2
1( o 4, ) Z(COC 7| ‘,q’ )<C4<OO
C VD MG e ) a0 = '

_ 2 N/(N-2
(G5l e )7

. . 1/2
27 e 2% .
Choosing, p > (max{c1 by ".q.2°) + Gl %100,9.2 >,C4}> follows the lemma.

ao do
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Remark 3.5. When N >5, as 0 < %5 — 1 =+%4; < 3 < 1. It follows from Re-
mark 2.2 and rewriting the last inequality we obtain that

Cs 1 2 2/(N-2)
Vul? dx < \ +C
L' U Gt MG Nl ) ez ] °
C(;IHMHIZ}*(Q)
C 1 2/(N-2)
S p— (COJ \Vu|2dx) + C
Cy ! MGl o) N0 g

— 2
Gy Tl g

2/(N—2)
) + Ce.

< (J |Vu|* dx
Q
Thus, there is a constant Cg, independent of u, such that

J \Vu|* dx < Cs.
Q

Ao do

. . 1/2
2%/ ¥ 2%/ *
Choosing, p > (max Gilbz 10,2 ) 4 Gl - 190,9,2 ),Cg}> it follows again

the conclusion of Lemma 3.4.

4. Proof of Theorem 2.3

From Lemma 3.4, we know the existence of a number p > 0 which satisfies the
property stated in (12) and we have that the equation, u — T'(u,0) = 0, admits a
unique solution, i.e., the unique solution of

- [M(JQ |Vu|2)}Au —0 inQ

u=0 ondQ,

is u = 0. Indeed, it is enough to multiply the equation by u and integrate by parts
to get (as M > ag > 0) [, |Vu|* dx = 0, and u = 0 subsequently.

It follows from Leray—Schauder’s fixed point theorem, Theorem 3.1 with
X = H}(Q) and [a,b] = [0, 1], that the problem

u—T(u,1)=0,

has a solution u.
It follows from (9) that u is a solution of the problem (1), and by (8) follows the
theorem.
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