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Abstract. We prove strong convergence of a semi-discrete finite di¤erence method for the
KdV and modified KdV equations. We extend existing results to non-smooth data
(namely, in L2), without size restrictions. Our approach uses a fourth order (in space) sta-
bilization term and a special conservative discretization of the nonlinear term. Conver-
gence follows from a smoothing e¤ect and energy estimates. We illustrate our results with
numerical experiments, including a numerical investigation of an open problem related to
uniqueness posed by Y. Tsutsumi.
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1. Introduction

This paper is concerned with the study of a numerical approximation of the

equation

qtuþ q3xuþ bqxu
kþ1 ¼ 0; bA 0; k ¼ 1; 2; ð1:1Þ

with u ¼ uðx; tÞ, x a R, tb 0. When k ¼ 1, the equation (1.1) is referred to as

the Korteweg–de Vries (KdV) equation, and when k ¼ 2 as the modified KdV

(mKdV) equation.

As is well-known, the KdV equation describes the unidirectional propagation

of small-but-finite amplitude waves in a nonlinear dispersive medium. It appears

in several physical contexts, such as shallow water waves and ion-acoustic waves

in a cold plasma. Also, the modified KdV equation has been used to describe

acoustic waves and Alfén waves in plasmas without collisions. For a more com-

plete description of the physical contexts concerning the Korteweg–de Vries equa-

tion and its generalizations, see [24] and the references therein.



A large amount of work on the KdV equation was initially directed toward the

study of solitary waves, i.e., solutions of the form uðx; tÞ ¼ Uðx� ctÞ, especially
the so-called soliton solutions, a class of solitary waves which preserve the form

through nonlinear interaction (see [24], [18] for surveys on solitons). One of the

most relevant results in soliton theory was the development of the inverse scatter-

ing method, initially applied to the KdV equation by Gardner et al. [7] and, in a

general form, by Lax [15]. This technique was also used to obtain solutions of the

KdV equation with low regularity [4], [5], [6].

Here, we concentrate on the numerical approximation of the solution of the

Cauchy problem

qtuþ q3xuþ bqxu
kþ1 ¼ 0; bA 0; k ¼ 1; 2; ð1:2aÞ

uðx; 0Þ ¼ jðxÞ; j a L2: ð1:2bÞ

The mathematical problem of well-posedness for (1.2a),(1.2b) has been extensively

studied. We refer to the pioneering results in [1], [2], [22] and the improvements in

[12], [13]. In these works, local well-posedness is proved in the Sobolev spaces Hs,

s > 3=2; for generalized KdV (gKdV), in which the term qxu
kþ1 is replaced by

qxVðuÞ.
Existence and uniqueness was also obtained in [8], [9] with initial data in

weighed L2 and H 1 spaces. In our numerical approach, we follow the energy

method used in those papers.

More recently, following the introduction by Bourgain [3] of certain Fourier

spaces, the well-posedness result is strongly improved for data in negative Sobolev

spaces (see the monograph [17] and the references therein), and uniqueness of

solution in L2 is proved in [26].

Regarding the numerical solution of the KdV equation, convergence results

have been proven for a linearized equation [10] and for smooth solutions [20].

However (to our knowledge), the problem of proving rigorous convergence of nu-

merical schemes without smoothness assumptions has only attracted attention in

more recent years. Nixon [19] proves the convergence of approximate solutions

for a discretized version of gKdV, but for small L2 initial data, only. That work

is the numerical counterpart of [14]. We refer also to the recent work by Pazoto

et al. [21], dealing with the numerical treatment of the mKdV equation with criti-

cal exponent and a damping term, which shares some techniques with the present

work. Finally, we refer to the recent work by Holden et al. [11], of which we

learned as the present paper was already submitted for publication. There, the

authors prove some results of a similar nature to ours by employing a fully dis-

crete, implicit discretization.

Thus, to the best of our knowledge (apart from the mentioned results in [11]),

the problem of rigorous convergence of numerical schemes for the KdV and
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mKdV equations with general data in L2 has remained unsolved. The purpose of

this paper is to fill that gap.

Although the techniques we use to prove our convergence result are based on

the ones in [9] (namely, the use of a fourth order stabilization term), their applica-

tion to the numerical case is not trivial. Indeed, it is essential to use a special non-

conservative discretization of the nonlinear term in (1.1). This idea dates back at

least to [10], and is also used in [21]. Moreover, to obtain the necessary estimates

for the numerical approximation, additional technical di‰culties related to inter-

polators are encountered, with which we deal below.

An outline of the paper follows. After some notations and definitions in Sec-

tion 2, we prove our main convergence result in Section 3. In Section 4 we present

some numerical experiments to illustrate our convergence results and test the

accuracy of our scheme.

Finally, in Section 5, we investigate numerically an open question posed by

Y. Tsutsumi [25] relating to the uniqueness of solution to the Cauchy problem

for the KdV equation with measure initial data. This is done by means of the

Miura transformation (see [25]), which relates solutions of the KdV equation

with measure initial data to solutions of the mKdV equation with L2 initial data.

As explained in more detail in Section 5, the numerical evidence we provide sug-

gests that the Cauchy problem for the KdV equation with measure initial data is

ill-posed. Note that, importantly, these numerical simulations involve discontin-

uous initial data in L2 only, and, as such, are not covered by previous convergence

results.

2. Notations and definitions

Let h denote our discretization parameter. We denote by uh
j ¼ uh

j ðtÞ the (semi-

discrete) di¤erence approximation of uðxj; tÞ, xj ¼ jh, j a Z. For h > 0; we define

the Banach spaces

l
p
h ðZÞ ¼

n
ðzjÞ : zj a R; kzkp

p;hC
X
j AZ

hjzjjp < l
o
:

For p ¼ 2, we denote the usual scalar product by

ðz;wÞh ¼
X
j AZ

hzjwj ;

z ¼ ðzjÞ, w ¼ ðwjÞ. Let us also introduce the following standard notations for

finite di¤erence operators. For u ¼ ðujÞ,
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Dþuj ¼
1

h
ðujþ1 � ujÞ; D�uj ¼

1

h
ðuj � uj�1Þ;

D0uj ¼
1

2h
ðujþ1 � uj�1Þ ¼

1

2
ðDþ þD�Þuj;

Dhuj ¼ DþD�uj ¼ D�Dþuj ¼
1

h2
ðujþ1 � 2uj þ uj�1Þ;

Also, denote the translation operators by

ðuþÞj ¼ ujþ1; ðu�Þj ¼ uj�1:

We obtain the following formulas for the discrete di¤erentiation of a product,

DþðvuÞ ¼ vDþuþ uþDþv ð2:1aÞ
D�ðvuÞ ¼ vD�uþ u�D�v ð2:1bÞ

D0ðvuÞ ¼ vD0uþ
1

2
ðuþDþvþ u�D�vÞ ð2:1cÞ

DhðvuÞ ¼ vDhuþ uDhvþDþvDþuþD�vD�u: ð2:1dÞ

Also, the di¤erence operators verify in l2h

ðDþu; vÞh ¼ �ðu;D�vÞh; ðD0u; vÞh ¼ �ðu;D0vÞh;

and so

ðDhu; vÞh ¼ ðu;DhvÞh:

We will also need to denote for a sequence ðujÞ and for a function w

kukp
p;R;h ¼

X
j jhjaR

hjuj jp; R > 0;

kwkp;R ¼ kwkLpð�R;RÞ; 0 < Raþl:

Finally, we introduce the continuous piecewise linear interpolator

Ph
1uðxÞ ¼ uj þ ðx� xjÞ

ujþ1 � uj

xjþ1 � xj
; x a ðxj; xjþ1Þ; ð2:2Þ

and the piecewise constant interpolator ðPh
0uÞðxÞ ¼ uj, x a ðxj; xjþ1Þ:
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3. Convergence results

In this section, we prove our main result, Theorem 3.3, which establishes the con-

vergence of a numerical approximation of problem (1.2).

Let us consider the semi-discrete finite di¤erence scheme

d

dt
uh þD3uh þ b

k þ 1

k þ 2
½ðuhÞkD0u

h þD0ðuhÞkþ1� þ hD2
hu

h ¼ 0; ð3:1aÞ

uhð0Þ ¼ jh; ð3:1bÞ

where D3uj ¼ DþD0D�uj and D2
h ¼ DþD�DþD� denotes the di¤erence bi-

laplacian, and uh denotes the unknown grid function ðuh
j Þj AZ, uh

j ðtÞ being the

approximation of the solution of (1.2) at the point ðxj; tÞ.
The term hD2

hu
h is introduced in our scheme in order to obtain the uniform (in

h) stability estimates necessary for the convergence proof. This term corresponds

to the parabolic regularization used in [8] for the continuous problem. Also, the

formally consistent discretization

bqxu
kþ1P b

k þ 1

k þ 2
½ðuhÞkD0u

h þD0ðuhÞkþ1� ð3:2Þ

is based on a corresponding one in [10] and is also essential in our proof. See also

[21] for an application of the same idea in a di¤erent setting.

The following first result holds.

Proposition 3.1. Let h > 0. Then, for each initial data jh a l2h ðZÞ, there exists a

unique global solution uhðtÞ a C
�
R; l2h ðZÞ

�
of (3.1).

Proof. Let ShðtÞ ¼ e�D3t be the unitary group generated by the discrete operator

�D3 in the space l2h ðZÞ. The problem (3.1a),(3.1b) can be written in the usual

semigroup framework, as an integral equation in l2h ðZÞ:

uhðtÞ ¼ ShðtÞjh þ
ð t

0

Shðt� sÞJuhðsÞ ds :¼ FðuhÞ ð3:3Þ

where

JðuhÞ ¼ �b
k þ 1

k þ 2
½ðuhÞkD0u

h þD0ðuhÞkþ1� � hD2
hu

h:

Now, for R > kjhk2 and T > 0 we consider the space

BT
R ¼

�
w a C

�
½0;T �; l2h ðZÞ

�
: kwkLlð½0;T �;l2

h
ðZÞÞaR

�
:
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By (3.3) and since l2h ðZÞH llh ðZÞ it is now a simple matter to prove that for T > 0

small enough, the map uh a BT
R 7! FðuhÞ is a strict contraction on the complete

metric space BT
R . Thus, by the Banach fixed-point theorem, we obtain a unique

local solution uh of the problem (3.1a),(3.1b) in the space C
�
½0;T �; l2h ðZÞ

�
.

The global existence is an immediate consequence of the uniform bounds on

the l2h norm, established below in Lemma 3.5. r

Let Ph
1 denote the continuous piecewise linear interpolator and let j a L2ðRÞ

be the initial data for the problem (1.2). Also, we denote by CwðI ;XÞ the space

of weakly continuous functions from the interval I to the Banach space X .

It is now convenient to introduce the notion of weak solution to the Cauchy

problem (1.2a),(1.2b).

Definition 3.2. Let j a L2ðRÞ. A function uðx; tÞ, x a R, tb 0, is a solution to

the Cauchy problem (1.2a),(1.2b) if

1. u a Ll
loc

�
ð0;lÞ;L2ðRÞ

�
,

2. For each test function f a D
�
R� ð0;lÞ

�
one has

ð
R2

uðqtfþ q3xfÞ þ bukþ1qxf dx dt ¼ 0; ð3:4Þ

3. uðtÞ ! j in L2ðRÞ as t ! 0 a.e.

We now state the main result of this paper.

Theorem 3.3 (Convergence of approximate solutions). Let jh a l2h ðZÞ be the

initial data for the discretized problem (3.1), such that Ph
1j

h ! j in L2ðRÞ when

h ! 0. Then, for each T > 0, the sequence Ph
1u

h satisfies

Ph
1u

h * u in L2
�
½0;T �;H 1

locðRÞ
�

weak;

Ph
1u

h ! u in L2
�
½0;T �;L2

locðRÞ
�

with u a solution of (1.2). Moreover, u satisfies

u a ðLlBCwÞ
�
½0;T �;L2

locðRÞ
�
; ð3:5Þ

kuðtÞk2a kjk2 and kuðtÞ � jk2 ! 0 as h ! 0:

The proof will be postponed to the next section.

3.1. Main estimates. First, let us record some inequalities which will be of use

throughout. Let v ¼ ðvjÞ a l
q
h ðZÞ, q a ½1;l�. From (2.2) we derive
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kPh
1v� Ph

0vkq;RaChkD0vkq;R;h; 0 < Ral;

kPh
1v� Ph

0vkq;RaCkvkq;R;h; 0 < Ral; q a ½1;þl�;
ð3:6Þ

for some C independent of h. As a consequence, we obtain

kPh
1vkq;RaCkPh

0vkq;R ¼ Ckvkq;R;h; Ev a l
q
h ðZÞ; 0 < Raþl: ð3:7Þ

We will need the following inequalities,

Lemma 3.4. Let f a l2h ðZÞ. Then,

kfklaCkfk1=22;h kDefk1=22;h ð3:8Þ

kfkla
1

2
kDefk1;h ð3:9Þ

Proof. The inequality (3.8) is a consequence of the Gagliardo-Niremberg inequal-

ity and qxP
h
1 ¼ Ph

0Dþ:

kfkl ¼ kPh
1fklaCkPh

1fk
1=2
2 k‘Ph

1fk
1=2
2

aCkfk1=22;h kDefk1=22;h ;

while (3.9) is a consequence of the (continuous) inequality kfkla 1
2 kf

0k1. r

We are now ready to state our first stability estimate.

Lemma 3.5. Let uhðtÞ be a solution of (3.1). Then, for all t > 0, it holds

kuhðtÞk2;ha kjhk2;h: ð3:10Þ

In particular, uh is a global solution of (3.1).

Proof. In the next proofs, we will, for simplicity, omit h from the notation. Take

the l2-scalar product of the equation (3.1a) with uC uh to get

d

dt
u; u

� �
þ b

k þ 1

k þ 2
½ðukD0u; uÞ þ ðD0u

kþ1; uÞ� þ hðD2
hu; uÞ ¼ 0:

Now,

ðD2
hu; uÞ ¼ ðDhu;DhuÞ ¼ kDhuk22;

ðukD0u; uÞ ¼ ðukþ1;D0uÞ ¼ �ðD0u
kþ1; uÞ;
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and so

d

dt
kuðtÞk22 ¼ �hkDhuk22a 0; ð3:11Þ

from which the conclusion follows. Notice how the discretization (3.2) leads to

the non-increase of the l2 norm. r

The next lemma is a fundamental identity which, as we will see in Proposition

3.7 below, implies a smoothing e¤ect inherent to the equation: even though the

initial data is only in l2h ðZÞ, the solution of (3.1) is actually in a more regular space

(uniformly in h), namely, H 1
loc.

Let p : R ! R be a bounded, strictly increasing, smooth function, with all its

derivatives bounded. Write pj ¼ pðxjÞ; j a Z. For simplicity, we do not distin-

guish in our notation the continuous and the discrete p.

Lemma 3.6. Let uh ¼ uhðtÞ be the solution of the discrete problem (3.1). Then, uh

satisfies the identity

1

2

d

dt
kp1=2uhk22 þ ðD�u

h;DþpD�u
hÞ þ 1

2
ðDþu

h;D�pDþu
hÞ

þ hðDþD�u
h; pDþD�u

hÞ

¼ � h

2
ðDþD�u

h;DþpD�u
hÞ þ h

2
ðDþu

hD�p;DþD�u
hÞ

� ðD�u
h; uh

�D0D�pÞ � hðDþD�u
h;D�pD�u

hÞ

� hðDþD�u
h;DþpDþu

hÞ � hðDþD�u
h; uhDþD�pÞ

þ b

2

k þ 1

k þ 2

�
ðuhÞkþ1; uh

þDþpþ uh
�D�p

�
: ð3:12Þ

Proof. We take (3.1a), multiply by hpju
h
j , and sum over j a Z to obtain

1

2

d

dt
kp1=2uk22 þ ðD3u; puÞ þ b

k þ 1

k þ 2
½ðukD0u; puÞ þ ðD0u

kþ1; puÞ�

þ hðD2
hu; puÞ ¼ 0: ð3:13Þ

We find from (2.1)

ðD3u; puÞ ¼ ðDþD0D�u; puÞ ¼ �
�
D0D�u;D�ðpuÞ

�
¼ �ðD0D�u; pD�uÞ � ðD0D�u; u�D�pÞ ¼ Aþ B:
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Since

A ¼ ðD�u; pD0D�uÞ þ D�u;
1

2

�
DþpðD�uÞþ þD�pðD�uÞ�

�� �
;

we obtain

2A ¼ D�u;
1

2
DþpDþu

� �
þ D�u;

1

2
D�pðD�uÞ�

� �

and so

A ¼ 1

4
½ðD�u;DþpDþuÞ þ ðDþu;DþpD�uÞ�

¼ 1

2
ðDþu;DþpD�uÞ

¼ 1

2
½ðDþu�D�u;DþpD�uÞ þ ðD�u;DþpD�uÞ�

¼ h

2
ðDþD�u;DþpD�uÞ þ

1

2
ðD�u;DþpD�uÞ:

Similarly,

B ¼ ðD�u; u�D0D�pÞ þ D�u;
1

2
½Dþu�DþpþD�u�ðD�pÞ��

� �

¼ ðD�u; u�D0D�pÞ þ
1

2
ðD�u;DþpD�uÞ þ

1

2
ðDþu;D�uD�pÞ:

Since

ðDþu;D�pD�uÞ ¼ ðDþu;D�pDþuÞ � hðDþu;D�pDþD�uÞ;

we obtain

B ¼ ðD�u; u�D0D�pÞ þ
1

2
ðD�u;DþpD�uÞ

þ 1

2
ðDþu;D�pDþuÞ �

h

2
ðDþu;D�pDþD�uÞ:

For the term in (3.13) corresponding to the discrete bi-laplacian, we derive

ðD2
hu; puÞ ¼ �ðD�DþD�u; p�D�uþ uD�pÞ

¼ �ðD�DþD�u; p�D�uÞ � ðD�DþD�u; uD�pÞ
¼ ðDþD�u; pDþD�uÞ þ ðDþD�u;D�pD�uÞ

þ ðDþD�u;DþpDþuÞ þ ðDþD�u; uDþD�pÞ:
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As to the remaining term in (3.13), we find

ðukD0u; puÞ þ ðD0u
kþ1; puÞ ¼ ðD0u; pu

kþ1Þ �
�
ukþ1;D0ðpuÞ

�

¼ � ukþ1;
1

2
ðuþDþpþ u�D�pÞ

� �
:

All these results together give (3.12). This completes the proof of Lemma 3.6.

r

As a consequence of the two preceding lemmas, we now prove the following

result which states that, at the discrete level, uh is in H 1
loc.

Proposition 3.7. Let uh be solution of the discretized problem (3.1) with initial data

j ¼ jh a l2h ðZÞ. Then, for each T > 0 and for each R > 0, there exists a constant

C ¼ CðR;T ; kjk2;hÞ such that, for all h > 0,

ðT

0

X
j jhjaR

hjDeu
h
j j

2
dtaC: ð3:14Þ

Proof. We apply Lemma 3.6 with a bounded, strictly increasing, smooth function

p, with all its derivatives bounded, and such that, moreover, pðxÞb 1 for all x,

and p 0ðxÞ ¼ 1 for x a ½�R;R�. Let us rewrite the identity (3.12), with obvious

notation, as

1

2

d

dt
kp1=2uhk22 þ ðD�u

h;DþpD�u
hÞ þ 1

2
ðDþu

h;D�pDþu
hÞ

þ hðDþD�u
h; pDþD�u

hÞ ¼ A1 þ � � � þ A7: ð3:15Þ

Now observe that under our assumptions on p, the terms on the left-hand side

(except the first) are non-negative, so we must bound the terms Ai.

The terms A1 and A2 are similar and yield

h

2
jðDþD�u

h;DþpD�u
hÞja h

2
kðDþD�u

hÞp1=2k2kp�1=2DþpD�u
hk2

a h
h

2
kðDþD�u

hÞp1=2k22 þ
Ch

2h
kðDþpÞ1=2D�u

hk22;
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for all h > 0, where we have used the properties of p. Also, the terms A4 and A5

are similar and give

hðDþD�u
h;D�pD�u

hÞ ¼ hðDþD�u
h;D�pDþu

hÞ � h2ðDþD�u
h;D�pDþD�u

hÞ
¼ B1 þ B2:

The term B1 is similar to A1, while

jB2jaCh2ðDþD�u
h; pDþD�u

hÞ:

For the term A3, we remark that

ðD�u
h; uh

�D0D�pÞ ¼ ðD�u
h �D�u

h
�; u

h
�D0D�pÞ þ ðD�u

h
�; u

h
�D0D�pÞ

¼ hðD�D�u
h; uh

�D0D�pÞ � ðuh
�;D�u

hD0D�pÞ

� ðuh
�; u

hDþD0D�pÞ

and so

jðD�u
h; uh

�D0D�pÞjaChkp1=2DþD�u
hk2kuhk2 þ Ckuhk22

aC1h
2kp1=2DþD�u

hk22 þ C2kuhk22:

The term A6 ¼ hðDþD�u
h; uhDþD�pÞ is easily estimated using the Cauchy-

Schwarz inequality. Finally, for the last term

A7 ¼
b

2

k þ 1

k þ 2

�
ðuhÞkþ1; uh

þDþpþ uh
�D�p

�
;

let us consider only k ¼ 2, since the case k ¼ 1 is easier. Setting q ¼ ðDþpÞ1=2 and
u ¼ uh, we obtain

jðu3; uþDþpÞjaCkuk22kqu2kl

and from (3.9) it follows

kqu2kla kðD�qÞu2� þ qðuD�uþ u�D�uÞk1aCkuk22 þ kqD�uk2kuk2:

Hence,

jðu3; uþDþpÞjaCkuk42 þ Ckuk32kðDþpÞ1=2D�uk2

a ekðDþpÞ1=2D�uk22 þ
C

e
kuk62 þ Ckuk42;

for any e > 0.
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Choosing e, h small enough, and for some small enough h0 (which does not

depend on R, T or j), we find, after integrating (3.15) on ½0;T � and using the pre-

vious estimates,

ðT

0

X
j jhjaR

hjDeu
h
j j

2
dtaCðR;T ; kjk2Þ:

This completes the proof of Proposition 3.7. r

3.2. Proof of Theorem 3.3. The proof of Theorem 3.3 relies on Aubin’s com-

pactness result, which we state here, in a simplified form, for the reader’s conve-

nience.

Lemma 3.8 ([16], p. 58). Let 1 < p < l, T > 0, and consider reflexive Banach

spaces B0 HBHB1 such that B0 is compactly embedded in B. Then, the space

v : v a L2ð0;T ;B0Þ;
dv

dt
a Lpð0;T ;B1Þ

� �

is compactly embedded in L2ð0;T ;BÞ.

In order to apply Lemma 3.8, we will use the following estimates.

Lemma 3.9. Let uh be given by (3.1a),(3.1b) and let T ;R > 0. Then, there exists

p > 1 such that

ðT

0

kPh
1u

hk2H 1ð�R;RÞ dtaC; ð3:16Þ
ðT

0

d

dt
Ph
1u

h

				
				
p

H�5ð�R;RÞ
dtaC; ð3:17Þ

uniformly in h, with C ¼ CðR;T ; kjk2;hÞ.

Proof. First of all, note that since qxP
h
1 ¼ Ph

0Dþ, it follows from Lemma 3.5 and

Proposition 3.7 that the estimate (3.16) holds for each R > 0.

Let us now prove the estimate (3.17). Let uh be given by (3.1a),(3.1b). We

apply the piecewise linear continuous interpolator Ph
1 to the equation (3.1a) to

obtain

d

dt
Ph
1u

h þ Ph
1D

3uh þ b
k þ 1

k þ 2

�
Ph
1 ½ðuhÞkD0u

h� þ Ph
1D0ðuhÞkþ1�

þ hPh
1D

2
hu

h ¼ 0; ð3:18Þ
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with uh ¼ uhðtÞ. We begin by estimating the term Ph
1D

3uh, for which it is con-

venient to consider the decomposition Ph
1 ¼ ðPh

1 � Ph
0 Þ þ Ph

0 and analyze the two

resulting terms. For each test function f a Dð�R;RÞ we have

ðPh
0D

3uh; fÞ ¼
X

j jhjaR

ð xjþ1

xj

Ph
0D

3uhf dx

¼
X

j jhjaR

DþD0D�uj

ð xjþ1

xj

fðxÞ dx

¼
X

j jhjaR

D�uj

ð xjþ1

xj

1

h2

�
fðx� 2hÞ � fðx� hÞ � fðxÞ þ fðxþ hÞ

�
dx

and so (by Taylor expansion of f)

jðPh
0D

3uh; fÞjaC
X

j jhjaR

hjD�ujj kf 00kl

aC

 X
j jhjaR

hjD�uj j2
�1=2

kfkH 3ð�R;RÞ:

Hence, by Proposition 3.7, we have

ðT

0

kPh
0D

3uhkH�3ð�R;RÞ dtaC: ð3:19Þ

Next, if x a ðxj; xjþ1Þ and vj ¼ D3uj, we easily find

ðPh
1 � Ph

0 ÞvhðxÞ ¼ ðx� xjÞ
vjþ1 � vj

h
;

and so, with obvious notation,

�
ðPh

1 � Ph
0 ÞD3uh; f

�
¼

X
j jhjaR

DþD
3uj

ð xjþ1

xj

ðx� xjÞfðxÞ dt

¼ 1

h
ðDþD

3uj;AjÞ

¼ � 1

h
ðD�uj ;D0D�D�AjÞ:

A straightforward computation gives
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D0D�D�Aj

¼ 1

2h3

ð xjþ1

xj

�
fðxþ hÞ � 2fðxÞ þ 2fðx� 2hÞ � fðx� 3hÞ

�
ðx� xjÞ dx

from which we obtain by Taylor expansion of f and Proposition 3.7

ðT

0

���ðPh
1 � Ph

0 ÞD3uh; f
���aC

ðT

0

X
j jhjaR

hjD�ujj kf 000kl dt

aCkfkH 4ð�R;RÞ

ðT

0


 X
j jhjaR

hjD�ujj2
�1=2

dt

aCkfkH 4ð�R;RÞ:

From this and (3.19) we obtain the estimate

ðT

0

kPh
1D

3uhk2H�4ð�R;RÞ dtaC: ð3:20Þ

In an entirely similar way, we arrive at

ðT

0

kPh
1D

2
hu

hk2H�5ð�R;RÞ dtaC: ð3:21Þ

It remains to estimate the nonlinear terms in (3.18). Choose a smooth function

y : R ! R such that yðxÞ ¼ 1 if jxjaR and yðxÞ ¼ 0 if jxjbRþ 1. Using (3.6)

and (3.8) we derive, for R > 0, k ¼ 1; 2,

kPh
0 ½ðuhÞkD0u

h�k3=2;R;ha kD0u
hk2;Rþ1;hkyuhkk

6k;h

aCkD0u
hk2;Rþ1;hkyuhkk�1=3

l

a kD0u
hk2;Rþ1;hðC þ CkDþu

hkk=2�1=6
2;Kþ1;hÞ

aC þ CkDþu
hkk=2þ5=6

2;Rþ1;h ;

with C ¼ Cðkjk2;h;RÞ. Choosing p ¼ 12=ð3k þ 5Þ > 1, we obtain from Proposi-

tion 3.7

ðT

0

kPh
0 ½ðuhÞkD0u

h�kp

3=2 dtaC þ C

ðT

0

kDþu
hk22;Rþ1;haC:
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Since kðPh
1 � Ph

0 Þuhk3=2aCkPh
0u

hk3=2 (cf. (3.6)), we conclude that
ðT

0

kPh
1 ½ðuhÞkD0u

h�kp
3=2 dtaC; k ¼ 1; 2: ð3:22Þ

For the remaining nonlinear term Ph
1D0ðuhÞkþ1, we split it as above into

ðPh
1 � Ph

0 Þ þ Ph
0 . First, note that

kPh
0 ðuhÞkþ1k2;RaCkyuhkkþ1

2kþ2aCkyuhkk
laC þ CkDþu

hkk=2
2;Rþ1;h; ð3:23Þ

and, by (3.7), the same estimate is obtained for kPh
1 ðuhÞkþ1k2;R. Next, since

Ph
0D0 ¼ qxP

h
1 , we obtain for k ¼ 1; 2

ðT

0

kPh
0D0ðuhÞkþ1k4=k

H�1ð�R;RÞ dt ¼
ðT

0

kqxPh
1 ðuhÞkþ1k4=k

H�1ð�R;RÞ dt

a

ðT

0

kPh
1 ðuhÞkþ1k4=k2;R dt

aC þ C

ðT

0

kDþu
hk22;Rþ1;h dtaC:

We now need to estimate ðPh
1 � Ph

0 ÞD0ðuhÞkþ1. With computations similar to the

ones after (3.19), we find

���ðPh
0 � Ph

1 ÞD0ðuhÞkþ1; f
���aC

X
j jhjaR

hjujjkþ1kf 00kl

aCkPh
0 ðuhÞkþ1k2;RkfkH 3ð�R;RÞ;

and by (3.23),

ðT

0

kðPh
0 � Ph

1 ÞD0ðuhÞkþ1k4=k
H�3ð�R;RÞ dtaC þ C

ðT

0

kDþu
hk22;Rþ1;h dtaC:

Thus we conclude that

ðT

0

kPh
1D0ðuhÞkþ1k4=k

H�3ð�R;RÞ dtaC; k ¼ 1; 2: ð3:24Þ

The desired estimate (3.17), with p ¼ 12=ð3k þ 5Þ > 1, now follows from the

estimates (3.18), (3.20), (3.21), (3.22), and (3.24). This completes the proof of

Lemma 3.9. r
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Proof of Theorem 3.3. In view of the estimates in Lemma 3.9, we apply Lemma

3.8 with p ¼ 12=ð3k þ 5Þ, B0 ¼ H 1ð�R;RÞ, B ¼ Lqð�R;RÞ; q a ð1;l�, and

B1 ¼ H�5ð�R;RÞ (note that B0 HB with compact embedding). We conclude

that, up to a subsequence, Ph
1u

h converges weakly in L2
�
0;T ;H 1ð�R;RÞ

�
and

strongly in L2
�
0;T ;Lqð�R;RÞ

�
. Using a diagonal argument, we obtain for a fur-

ther subsequence

Ph
1u

h * u in L2
�
½0;T �;H 1ð�R;RÞ

�
weak;

Ph
1u

h ! u in L2
�
½0;T �;Lqð�R;RÞ

�
; R > 0; q a ð1;l�;

ð3:25Þ

for some u a Ll
�
0;T ;L2ðRÞ

�
BL2

�
0;T ;H 1

locðRÞ
�
, as h ! 0. Also, from (3.6) and

Proposition 3.7 we can conclude that

Ph
0u

h ! u in L2
�
0;T ;Lqð�R;RÞ

�
; 1 < qa 2: ð3:26Þ

Now we must prove that u is a weak solution of the problem (1.2a),(1.2b), in

the sense of Definition 3.2. Let us apply the piecewise constant interpolator Ph
0 to

the discrete equation (3.1a):

d

dt
Ph
0u

h þ Ph
0D

3uh þ b
k þ 1

k þ 2

�
Ph
0 ½ðuhÞkD0u

h� þ Ph
0D0ðuhÞkþ1�

þ hPh
0D

2
hu

h ¼ 0: ð3:27Þ

First, consider the linear terms. We take a test function f a D
�
R� ð0;lÞ

�
and

compute in the sense of distributions

ðPh
0D

3uh; fÞ ¼
ðl
0

X
j AZ

D3uj

ð xjþ1

xj

fðx; tÞ dx dt

¼ �
ðl
0

X
j AZ

uj

ð xjþ1

xj

�
q3xfþ OðhÞ

�
dx dt

¼ �ðPh
0u

h; q3xfÞ þ OðhÞ ! �ðu; q3xfÞ ¼ ðq3xu; fÞ

as h ! 0. The term hPh
0D

2
hu

h is treated similarly and tends to zero as h ! 0 in the

sense of distributions.

Now consider the nonlinear terms. Note that Ph
0D0 ¼ qxP

h
1 and write Ph

0 ¼
ðPh

0 � Ph
1 Þ þ Ph

1 . Using (3.6) and (3.8) we find

kðPh
1 � Ph

0 ÞðuhÞkþ1k1;R;haChkDþðuhÞkþ1k1;R;haChð1þ kDþujk3=22;Rþ1;hÞ

and so

ðPh
0 � Ph

1 ÞðuhÞkþ1 ! 0 ð3:28Þ
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in L4=3
�
0;T ;L1

locðRÞ
�
as h ! 0. Since Ph

0 commutes with the nonlinearity, it fol-

lows from (3.26) that

Ph
0 ðuhÞkþ1 ! ukþ1 in L1

�
0;T ;L1

locðRÞ
�
: ð3:29Þ

Hence, we deduce from (3.28),(3.29) that

Ph
0D0ðuhÞkþ1 ¼ qxP

h
1 ðuhÞkþ1 ! qxu

kþ1

in the sense of distributions. For the other nonlinear term, we note that

Ph
0 ½ðuhÞkD0u

h� ¼ Ph
0 ðuhÞkPh

0D0u
h. We have

Ph
0 ðuhÞk ! uk in L2

�
0;T ;L2

locðRÞ
�

and, from (3.25),

Ph
0D0u

h ¼ qxP
h
1u

h * qxu in L2
�
0;T ;L2

locðRÞ
�
:

Therefore,

Ph
0 ½ðuhÞkD0u

h� ! ukqxu in L1
�
0;T ;L1

locðRÞ
�
:

Multiplying (3.27) by a test function in D
�
R� ð0;lÞ

�
, the above convergences

allow us to conclude that u verifies the property (3.4) of Definition 3.2.

It remains to prove the weak L2ðRÞ-valued continuity property, (3.5), and that

uðtÞ ! j in L2ðRÞ as t ! 0 a.e. To prove the weak continuity property, we re-

mark that, for f a DðRÞ, t a ½0;TÞ,

�
Ph
1u

hðtþ rÞ � Ph
1u

hðtÞ; f
�
¼

ð tþr

t

duh

dt
; f

� �
ds

and, from (3.17), we get

���Ph
1u

hðtþ rÞ � Ph
1u

hðtÞ; f
���aCr

with C ¼ CðT ; fÞ, and so the family t 7! Ph
1u

hðtÞ is uniformly bounded in L2 (see

(3.7)) and weakly equicontinuous. Therefore, the Arzelà–Ascoli Theorem implies

that u a Cw

�
½0;lÞ;L2ðRÞ

�
.

Finally, since kuðtÞk2a kjk2 a.e. in t, we have

kuðtÞ � jk22a kuðtÞk22 � 2
�
uðtÞ; j

�
þ kjk22

a 2kjk22 � 2
�
uðtÞ; j

�
! 0

for almost every t ! 0þ. This completes the proof of Theorem 3.3. r
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4. Numerical experiments

4.1. A fully discrete, fully implicit scheme. In this section, we present some

numerical experiments to test the accuracy of our scheme and to illustrate our

results. In order to fully discretize the semi-discrete equations (3.1a), we use a

fully implicit Euler scheme, as follows. Given a time step t, a space step h, and

J a N, solve for each n ¼ 1; 2; . . . the system of J � 1 equations

unþ1
j � un

j

t
þD3unþ1

j þ k þ 1

k þ 2
½ðunþ1

j ÞkD0u
nþ1
j þD0ðunþ1

j Þkþ1�

þ hhD2
hu

nþ1
j ¼ 0; j ¼ 1; . . . J � 1; ð4:1Þ

with boundary conditions

unþ1
0 ¼ unþ1

J ¼ 0;

where un
j U uðaþ jh; ntÞ for some a a R. The computational domain is thus the

interval ½a; aþ Jh�. We have set b ¼ 1 and introduced a new viscosity parameter

h > 0 allowing us to explicitly control the amount of viscosity in the scheme.

As is standard in the numerical simulation of dispersive equations, we consider

a su‰ciently large spatial domain and initial data exponentially small outside

some bounded region, ensuring that spurious wave reflection at the boundary of

the domain remains negligible.

Written in full, the scheme (4.1) reads

unþ1
j � un

j

t
þ 1

2h3
ðunþ1

jþ2 � 2unþ1
jþ1 þ 2unþ1

j�1 � unþ1
j�2 Þ

þ k þ 1

2hðk þ 2Þ
�
ðunþ1

j Þkðunþ1
jþ1 � unþ1

j�1 Þ þ ðunþ1
jþ1 Þ

kþ1 � ðunþ1
j�1 Þ

kþ1�

þ h

2h3
ðunþ1

jþ2 � 4unþ1
jþ1 þ 6unþ1

j � 4unþ1
j�1 þ unþ1

j�2 Þ ¼ 0;

unþ1
0 ¼ unþ1

J ¼ 0:

Due to the nonlinear terms, it is necessary to perform a Newton iteration at each

time step, which we carry out with a tolerance of 10�6 in the simulations below.

To solve the pentadiagonal linear system at each iteration of Newton’s method,

we employ a standard LU decomposition method. Notice that the Jacobian ma-

trix needed for Newton’s method is easily computed explicitly from the method.

4.2. Comparison with exact solutions. The first step is to test our scheme

with the known soliton solutions of the KdV equation (1.1) [17], p. 140.
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These read

uðx; tÞ ¼ 1

2
ðk þ 2Þc2 sech2 k

2
cðx� d � c2tÞ

� � �1=k
ð4:2Þ

for arbitrary c > 0, d a R, and consist of traveling waves with speed c2. We ob-

serve in passing that these exact solutions actually solve the equation (1.1) and not

the slightly di¤erent version in [17], p. 139.

In Figures 1 and 2, we present the relative L2
�
½0;T �;L2ðRÞ

�
error between the

exact solution (4.2) with c ¼ 1, d ¼ 20; and the computed solution, for T ¼ 10,

computed on the domain x a ð10; 50Þ, as a function of the spatial step h, respec-

tively, for k ¼ 1 and k ¼ 2. Note that for the values of h presented here, the num-

ber of spatial points varies between 5000 and 45000. As can be readily seen from

the plot, we observe a convergence of order one, that is, proportional to h. In Fig-

ure 3 we present the result of varying t for a fixed value of h ¼ 0:004, correspond-

ing to 10000 spatial points, and we observe the same linear convergence rate.

In Figure 4 we show the evolution of the l2h norm of the discrete solution, com-

puted with 10000 spatial points on the interval ½0; 50� (thus h ¼ 0:005) up to T ¼ 5

with t ¼ 0:0001. The viscosity parameter was chosen as h ¼ 0:001. This quantity

should not increase, according to (3.10). Some decrease is observed, due to the

dissipation in the scheme. Of course ideally there should be no decrease of the dis-

crete L2 norm of the approximate solution, since the exact solution does not

dissipate. However, we stress again that the results presented here serve to illus-

Figure 1. Relative L2
�
½0;T �;L2ðRÞ

�
error as a function of the spatial step h, k ¼ 1 (KdV

equation).
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trate our rigorous convergence results, and we do not claim that the proposed

scheme is particularly e‰cient. Still, observe that for T ¼ 5 the decrease in the

l2h norm is very small.

One advantage of the present method is that it allows direct control of the

amount of dissipation my means of the parameter h in (4.1). We first note that

Figure 2. Relative L2
�
½0;T �;L2ðRÞ

�
error as a function of the spatial step, k ¼ 2 (mKdV

equation).

Figure 3. Relative L2
�
½0;T �;L2ðRÞ

�
error as a function of the time step, k ¼ 1 (KdV

equation).
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our convergence results remain valid for any h > 0 (but not for h ¼ 0). As would

be expected, reducing the value of h provides a sharper, less dissipative approxi-

mation. This is confirmed by our simulations, and in Figure 5 we present the L2

error at T ¼ 10 for various values of h. Interestingly, setting h ¼ 0 sometimes pro-

vides a very good approximation, but not always, which is perhaps a consequence

of the instability of the scheme without dissipation.

Figure 4. l2h norm of the approximate solution.

Figure 5. Relative L2 error at T ¼ 10 as a function of the viscosity parameter h (KdV
equation).
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It would be of interest, but falls outside the scope of the present paper, to

investigate the behavior of the present scheme if in (4.1) the factor h multi-

plying the double laplacian is replaced by some power ha. One can then en-

deavor to find the optimal power a, as was done by Sepúlveda [24] for a related

problem.

5. On an open question of Y. Tsutsumi

In [25], the Cauchy problem for the KdV equation (1.1) with measure initial data

is considered. In that work, the author addresses the open question of uniqueness

of solution to the Cauchy problem for the KdV equation with measure initial data

in the following way.

It is well known that a solution of the mKdV equation with L2 initial data

may be transformed, by the Miura transform u 7! MðuÞ ¼ qxuþ u2, into a so-

lution of the KdV equation with a measure as initial data. Now, the family of

functions

u0c ðxÞ ¼

cþ 1

ðcþ 1Þxþ c
; x > 0;

1

xþ c
; x < 0;

8>><
>>:

ð5:1Þ

with ca�1; all verify Mðu0c Þ ¼ dð0Þ, where d denotes the Dirac delta. Therefore,

if ucðx; tÞ is the solution of the mKdV equation with initial data u0c ðxÞ, the ques-

tion arises whether the Miura transform maps each of these di¤erent solutions

to the same solution of the KdV equation with dð0Þ as initial data, or if, on the

contrary, M
�
ucðx; tÞ

�
varies with c, which would establish non-uniqueness. If

the latter case is observed numerically, it would support the conjecture that the

Cauchy problem for the KdV equation with measure initial data does not enjoy

the uniqueness property.

We have investigated this question numerically, and found that our numerical

experiments support this lack of uniqueness conjecture. Thus, we have considered

the mKdV equation with initial data given by u0c (see (5.1)) and Dirichlet bound-

ary conditions for various values of ca�1, computed the solution ucðx; tÞ up to

some time T > 0, applied the Miura transform M
�
ucðx; tÞ

�
, and finally compared

the solutions obtained.

We have observed a clear dependence of M
�
ucðx; tÞ

�
as ca�1 varies, see Fig-

ure 6. This provides strong numerical evidence in support of a non-uniqueness

property for the KdV equation with measure initial data and also a non-trivial

test of the robustness of our numerical method: recall that the initial data (5.1)

are discontinuous functions in L2 only.
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Note that the simulations in Figure 6 were computed with an accuracy of

30000 spatial points. In this case, the boundary conditions are a delicate prob-

lem, since the initial data decays only as x�1. For this reason, we chose the large

computational domain ½�500; 500�, giving a value of h ¼ 1=30: We have also per-

formed the computations with a coarser grid of 5000 points, and have found that

the variation in the results does not a¤ect the overall qualitative aspect of the

solution. In other words, the lack of uniqueness conjecture is supported by our

numerical experiments.

We have verified as well that the result does not depend on the viscosity

parameter h appearing in (4.1). The simulations presented take h ¼ 0:001, but

considering larger values of h (up to h ¼ 0:1) gives virtually indistinguishable

results.

In fact, it is easy to check that the more general family

u0c; eðxÞ ¼

cþ e

ðcþ eÞxþ c
; x > 0;

1

xþ c
; x < 0

8>><
>>:

ð5:2Þ

verifies Mðu0c; eÞ ¼ Nðc; eÞd0; with N ¼ ðcþ e� 1Þ=c. The same remarks about

uniqueness apply, and so as a last test we have carried out simulations with

ðc; eÞ ¼ ð�1=4; 1=4Þ and ðc; eÞ ¼ ð�1;�2Þ (for which Nðc; eÞ ¼ 4), performing the

same comparison of the Miura transform of the computed solutions.

Figure 6. Miura transform of solution for various values of c. T ¼ 5, 30000 spatial points,
t ¼ 0:001.
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For these simulations we have taken a fine grid of 50000 spatial points,

which corresponds to h ¼ 0:02: The viscosity parameter is h ¼ 0:001. In Fig-

ure 7 we plot the Miura transform of the solution for two di¤erent values

of ðc; eÞ, with T ¼ 10, and 10000 and 50000 spatial points for each value of

ðc; eÞ.
Again, some variation with h is observed for the same values of ðc; eÞ, which is

natural since the scheme includes dissipation. But the main thing to note are the

appearance of two distinct solutions, one for each set of values of the pair ðc; eÞ;
clearly apparent in Figure 7. The same distinction between the two solutions is

also apparent for intermediate values of the number of grid points, whose solu-

tions are seen to lie smoothly between the ones presented here.

Moreover, in an e¤ort to show that the boundary e¤ects are negligible, we per-

formed very precise simulations reported in Figures 8 and 9 with an accuracy of

150000 spatial points on the interval ½�1000; 1000�, and t ¼ 0:0001: As far as we

can tell, the boundary e¤ects remain negligible. Further confirmation is given in

Figure 10. Here, we compare the approximation in Figure 8 with an approxima-

tion of the same problem on the smaller interval ½�500; 500� and with only 10000

spatial points (thus, with zero boundary conditions at di¤erent points). As can be

seen form the figure, the two solutions are clearly similar, suggesting that bound-

ary e¤ects contribute little to the solution.

We can therefore conclude that our numerical experiments strongly indicate

lack of uniqueness for the Cauchy problem for the KdV equation with a measure

initial data.

Figure 7. Miura transform of solution for various values of c, e. T ¼ 10, 10000 and 50000
spatial points. t ¼ 0:001.
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Figure 8. Miura transform of solution for various values of c, e, x a ½�1000; 1000� (zoom).
T ¼ 5, 150,000 spatial points. t ¼ 0:0001.

Figure 9. Miura transform of solution (global view). T ¼ 5, 150,000 spatial points.
t ¼ 0:0001.

47Convergence of numerical schemes



Acknowledgements. The authors would like to thank the anonymous referees

for useful comments and suggestions. The authors were partially supported by

the Portuguese Foundation for Science and Technology (FCT) through the grant

PTDC/MAT/110613/2009. PA was supported by the Portuguese Foundation for

Science and Technology (FCT) through a Ciência 2008 fellowship.

References

[1] J. Bona and R. Scott, Solutions of the Korteweg-de Vries equation in fractional
order Sobolev spaces. Duke Math. J. 43 (1976), 87–99. Zbl 0335.35032
MR 0393887

[2] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equa-
tion. Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 555–601. Zbl 0306.35027
MR 0385355

[3] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and
applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct.

Anal. 3 (1993), 209–262. Zbl 0787.35098 MR 1215780

[4] A. Cohen Murray, Solutions of the Korteweg-de Vries equation from irregular data.
Duke Math. J. 45 (1978), 149–181. Zbl 0372.35022 MR 0470533

[5] A. Cohen, Existence and regularity for solutions of the Korteweg-de Vries equation.
Arch. Rational Mech. Anal. 71 (1979), 143–175. Zbl 0415.35069 MR 525222

Figure 10. Miura transform of solution, comparison between 150,000 points on
½�1000; 1000� (h ¼ 0:0133) and 10000 points on ½�500; 500� (h ¼ 0:1), T ¼ 5, t ¼ 0:0001.

48 P. Amorim and M. Figueira

http://www.emis.de/MATH-item?0335.35032
http://www.ams.org/mathscinet-getitem?mr=0393887
http://www.emis.de/MATH-item?0306.35027
http://www.ams.org/mathscinet-getitem?mr=0385355
http://www.emis.de/MATH-item?0787.35098
http://www.ams.org/mathscinet-getitem?mr=1215780
http://www.emis.de/MATH-item?0372.35022
http://www.ams.org/mathscinet-getitem?mr=0470533
http://www.emis.de/MATH-item?0415.35069
http://www.ams.org/mathscinet-getitem?mr=525222


[6] A. Cohen, Decay and regularity in the inverse scattering problem. J. Math. Anal.

Appl. 87 (1982), 395–426. Zbl 0518.35067 MR 658022

[7] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-de Vries
equation and generalization. VI. Methods for exact solution. Comm. Pure Appl.

Math. 27 (1974), 97–133. Zbl 0291.35012 MR 0336122

[8] J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de
Vries equation. SIAM J. Math. Anal. 20 (1989), 1388–1425. Zbl 0702.35224
MR 1019307

[9] J. Ginibre, Y. Tsutsumi, and G. Velo, Existence and uniqueness of solutions for the
generalized Korteweg-de Vries equation. Math. Z. 203 (1990), 9–36. Zbl 0662.35114
MR 1030705

[10] K. Goda, On stability of some finite di¤erence schemes for the Korteweg-de Vries
equation. J. Phys. Soc. Japan 39 (1975), 229–236. MR 0388975

[11] H. Holden, U. Koley, and H. Risebro, Convergence of a fully discrete finite di¤erence
scheme for the Korteweg-de Vries equation. Prepint 2012. arXiv:1208.6410

[12] T. Kato, On the Korteweg-de Vries equation. Manuscripta Math. 28 (1979), 89–99.
Zbl 0415.35070 MR 535697

[13] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. In
Studies in applied mathematics, Adv. Math. Suppl. Stud. 8, Academic Press, New York
1983, 93–128. Zbl 0549.34001 MR 0759907

[14] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the gen-
eralized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl.

Math. 46 (1993), 527–620. Zbl 0808.35128 MR 1211741

[15] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Comm.

Pure Appl. Math. 21 (1968), 467–490. Zbl 0162.41103 MR 0235310

[16] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations. Universitext,
Springer, New York 2009. Zbl 1178.35004 MR 2492151
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